首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Abstract

In New Zealand, the Marlborough strike-slip faults link the Hikurangi subduction zone to the Alpine fault collision zone. Stratigraphic and structural analysis in the Marlborough region constrain the inception of the current strike-slip tectonics.

Six major Neogene basins are investigated. Their infill is composed of marine and freshwater sediments up to 3 km thick; they are characterised by coarse facies derived from the basins bounding relief, high sedimentation rates and asymmetric geometries. Proposed factors that controlled the basins generation are the initial geometry of the strike-slip faults and the progressive strike-slip motion. Two groups of basins are presented: the early Miocene (23 My) basins were generated under wrench tectonics above releasing-jogs between basement faults. The late Miocene (11 My) basins were initiated by halfgrabens tilted along straighter faults during a transtensive stage. Development of faults during Cretaceous to Oligocene times facilitated the following propagation of wrench tectonics. The Pliocene (5 My) to current increasing convergence has shortened the basins and distorted the Miocene array of faults. This study indicates that the Marlborough Fault System is an old feature that connected part of the Hikurangi margin to the Alpine fault since the subduction and collision initiation. © Elsevier, Paris  相似文献   

2.
论走滑断层作用的几个主要问题   总被引:52,自引:1,他引:52  
徐嘉炜 《地学前缘》1995,2(2):125-136
介绍了走滑断层作用研究前缘的若干主要方面。认为普遍使用走滑断层的术语外,在大陆上当断层性质不明时可使用平移断层。强调了单剪机制对大型走滑断层形成的作用,并评论了X破裂的纯剪理论。基于我国郯庐断裂带等的研究成果,提出走滑断层作用的若干新概念。指出剪曲(牵引)构造不同于雁列褶皱。认为中国地质学家从地质力学研究走滑断层的旋转构造已有卓绝的成就,只要同世界科学接轨,就会获得新的巨大生命力。文中描述了确定位移的方法,提出平移幅度与错距是两个不同的概念。强调了剪切热在大陆构造中的作用,提出走滑剪切带演化中剪切变形-断裂动热变质-重熔岩浆作用旋回。讨论了剪切成矿作用及已成矿体、矿带的走滑错移及变形。划分了三种基本走滑盆地类型及论证了大陆浅源走滑型地震机制。  相似文献   

3.
中国含油气盆地构造分析主要进展与展望   总被引:4,自引:2,他引:4  
本文简要总结了中国含油气盆地构造分析的主要进展。中国区域大地构造理论特别是板块构造理论,对于指导盆地构造研究起了重要作用。通过各种地球物理探测方法,揭示了中国含油气盆地的上地幔结构,地壳结构、基底结构与盖层构造的关系。中国含油气盆地在地质历史中的演化过程十分复杂,伸展盆地、前陆盆地、走滑盆地、克拉通盆地和叠合具有各自独特的地球动力学系统。构造样式分析是盆地构造分析的重要方面,直接与寻找油气圈闭有关,可以划分出伸展构造、挤压构造、走滑构造、反转构造和潜山-披覆构造等。断裂和不含油气盆地中的重要构造要素,控制着油气运聚成藏、叠合盆地多期成盆、多期改造造成的复杂构成图像,是中国含油气盆地的重要特色之一。展望21世纪 中国油气盆地构造分析,需要重点关注的是:叠合盆地形成演化和地球动力学过程分析;盆-山耦合过程的深部-浅部耦全过程分析;盆地三维构造精细描述和盆地模拟技术,盐构造和天然气构造分析。  相似文献   

4.
At its eastern termination, the High Atlas Fault in the Western High Atlas in Morocco, consists of a splay of three faults. In the interjacent fault blocks, Neo- and Paleoproterozoic basement, forming the northernmost extremity of the NW-African Craton, is cropping out. The Precambrian basement witnesses a long history of brittle deformation starting at the end of the Pan-African Orogeny. A subsequent episode of normal faulting can be related to the development of a Hercynian basin along the northern passive margin of the cratonic promontory. With regard to the main tectonic activity in the Western High Atlas, basically two models exist: one emphasising block tectonics reflecting Mesozoic rifting followed by Alpine uplift and inversion, the other emphasising Late Paleozoic dextral wrench tectonics. The analysis of the fault activity along the splay faults reveals a predominantly Alpine history, consisting of the Triassic development of the Atlas Rift along the axial zone of the orogen, followed by uplift and inversion. The Late Jurassic to Cenozoic fault activity took place in a sinistral transpressive regime and was partitioned over the three splay faults. Dextral strike-slip fault activity could not be demonstrated in the fault blocks nor along the splay faults. Therefore the faults were probably not involved in Late Paleozoic dextral wrench tectonics.  相似文献   

5.
In eastern North Island New Zealand, oblique subduction of the Pacific Plate beneath the Australian Plate is associated with strain partitioning. Dextral along-strike component of displacement occurred first at Early Miocene major faults within the eastern fore-arc domain. These faults were active from Early Miocene to Pliocene times. Since Pliocene times, most of the movement occurs at western faults such as the Wellington Fault. The latter joins the back-arc domain to the north. The jump of wrench faulting is related to the oblique opening of the back-arc domain. Both phenomena are impeded southwards by the Hikurangi oceanic plateau entering the subduction zone. To cite this article: J. Delteil et al., C. R. Geoscience 335 (2003).  相似文献   

6.
Models for the Tertiary evolution of SE Asia fall into two main types: a pure escape tectonics model with no proto-South China Sea, and subduction of proto-South China Sea oceanic crust beneath Borneo. A related problem is which, if any, of the main strike–slip faults (Mae Ping, Three Pagodas and Aliao Shan–Red River (ASRR)) cross Sundaland to the NW Borneo margin to facilitate continental extrusion? Recent results investigating strike–slip faults, rift basins, and metamorphic core complexes are reviewed and a revised tectonic model for SE Asia proposed. Key points of the new model include: (1) The ASRR shear zone was mainly active in the Eocene–Oligocene in order to link with extension in the South China Sea. The ASRR was less active during the Miocene (tens of kilometres of sinistral displacement), with minor amounts of South China Sea spreading centre extension transferred to the ASRR shear zone. (2) At least three important regions of metamorphic core complex development affected Indochina from the Oligocene–Miocene (Mogok gneiss belt; Doi Inthanon and Doi Suthep; around the ASRR shear zone). Hence, Paleogene crustal thickening, buoyancy-driven crustal collapse, and lower crustal flow are important elements of the Tertiary evolution of Indochina. (3) Subduction of a proto-South China Sea oceanic crust during the Eocene–Early Miocene is necessary to explain the geological evolution of NW Borneo and must be built into any model for the region. (4) The Eocene–Oligocene collision of NE India with Burma activated extrusion tectonics along the Three Pagodas, Mae Ping, Ranong and Klong Marui faults and right lateral motion along the Sumatran subduction zone. (5) The only strike–slip fault link to the NW Borneo margin occurred along the trend of the ASRR fault system, which passes along strike into a right lateral transform system including the Baram line.  相似文献   

7.
In contrast to the normal ‘Wilson cycle’ sequence of subduction leading to continental collision and associated mountain building, the evolution of the New Zealand plate boundary in the Neogene reflects the converse—initially a period of continental convergence that is followed by the emplacement of subduction. Plate reconstructions allow us to place limits on the location and timing of the continental convergence and subduction zones and the migration of the transition between the two plate boundary regimes. Relative plate motions and reconstructions since the Early to Mid-Miocene require significant continental convergence in advance of the emplacement of the southward migrating Hikurangi subduction—a sequence of tectonism seen in the present plate boundary geography of Hikurangi subduction beneath North Island and convergence in the Southern Alps along the Alpine Fault. In contrast to a transition from subduction to continental convergence where the leading edge of the upper plate is relatively thin and deformable, the transition from a continental convergent regime, with its associated crustal and lithospheric thickening, to subduction of oceanic lithosphere requires substantial thinning (removal) of upper plate continental lithosphere to make room for the slab. The simple structure of the Wadati–Benioff zone seen in the present-day geometry of the subducting Pacific plate beneath North Island indicates that this lithospheric adjustment occurs quickly. Associated with this rapid lithospheric thinning is the development of a series of ephemeral basins, younging to the south, that straddle the migrating slab edge. Based on this association between localized vertical tectonics and slab emplacement, the tectonic history of these basins records the effects of lithospheric delamination driven by the southward migrating leading edge of the subducting Pacific slab. Although the New Zealand plate boundary is often described as simply two subduction zones linked by the transpressive Alpine Fault, in actuality the present is merely a snapshot view of an ongoing and complex evolution from convergence to subduction.  相似文献   

8.
谢皓  刘彩彩  张会平  詹艳  赵旭东 《岩石学报》2022,38(4):1107-1125
阿尔金断裂带是青藏高原自印度与欧亚大陆碰撞后向北扩展的前缘断裂,其新生代活动性对于研究青藏高原隆升与扩展过程和机制具有重要意义。近些年,运用热年代学、断裂几何学和运动学、沉积学、磁性地层学和地震学等方法对阿尔金断裂带的性质、组成结构、断裂活动时代、走滑断裂运动特征、走滑位移量和走滑速率等进行了细致的研究,而对阿尔金断裂带沿线受其控制的新生代沉积盆地的地层年代、沉积演化特征虽然也有一定研究,但往往仅限于单个盆地,缺乏对沿线盆地整体的对比认识,造成对阿尔金断裂带走滑起始时间及阿尔金山的隆升历史存在不同的认识。本文对近二十年来阿尔金断裂带沿线新生代沉积盆地的磁性地层年代与沉积相演化的研究进展进行综述,建立阿尔金断裂带沿线盆地新生代沉积序列和年代框架;辅助热年代学等资料,提出阿尔金断裂带的三阶段演化模型:始新世-中中新世,阿尔金断裂带以大幅度的走滑运动为主,同时伴随着阿尔金山小范围的隆升;中中新世开始,阿尔金山开始大规模的隆升,伴随着较少量的走滑运动;晚中新世以来,阿尔金断裂带构造活动加强。  相似文献   

9.
The Southeast Anatolian orogen is a part of the eastern Mediterranean-Himalayan orogenic belt. Development of the Southeast Anatolian orogen began with the first ophiolite obduction onto the Arabian platform during the Late Cretaceous, and it continued until the Miocene. Its lingering effects continue to be discernible at present. During the Late Cretaceous-Miocene interval, three major deformational phases occurred, related to Late Cretaceous, Eocene, and Miocene nappe emplacements. The Miocene nappes are composed of ophiolites and metamorphic massifs.

For a decade, field studies in the region have shown that strike-slip tectonics played a role complementary to the major horizontal effects of the nappe movement, as indicated by: (1) fault systems active during the Eocene; (2) different Eocene rock units composed of coeval continental and deep-sea deposits and presently tectonically juxtaposed; and (3) other stratigraphic and structural data obtained across the present strike-slip fault zones.

These strike-slip faults possibly resulted from oblique subduction of the mid-oceanic ridge underneath the northerly situated Yuksekova ensimatic island-arc complex, causing a gradual cessation of the island-arc system. The subduction also led to the development of a back-arc pull-apart basin, i.e., the Maden basin, which opened on the upper plate. The geologic history in Southeast Anatolia resembles the development of the San Andreas fault system and subsequent tectonic evolution.  相似文献   

10.
朱光  牛漫兰等 《地质学报》2002,76(3):325-334
郯庐断裂带内一系列走滑糜棱岩类的^40Ar/^39Ar测年表明,郯庐断裂早白垩世发生了左旋走滑运动。这一大规模的走滑运动,造成了两类走滑构造,一类为变质岩中低绿片岩相左旋韧性剪切带,另一类为中生代火成岩、沉积岩中的脆性、脆-韧性左行平移断层。这反映断裂带的走滑运动从早白垩世初期持续到早白垩世后期。断裂带的走滑运动诱发大规模的、以富钾、中酸性为主的岩浆活动。地球化学分析显示,这些岩浆岩既有壳源的信息,也有幔源的贡献,反映是断裂减压、壳-幔相互作用下形成的岩浆活动,也暗示断裂带在走滑期切入壳-幔边界。该断裂带走滑运动中,除了在莱阳盆地形成了拉分盆地外,还在合肥盆地东部造成了走滑挠曲盆地,控制下白垩统朱巷组的沉积,郯庐断裂带早白垩世走滑运动中的构造、岩浆、沉积事件,是西太平洋伊泽纳崎板块高速斜向俯冲的结果,属于滨太平洋构造。  相似文献   

11.
Understanding the roles of Cenozoic strike-slip faults in SE Asia observed in outcrop onshore, with their offshore continuation has produced a variety of structural models (particularly pull-apart vs. oblique extension, escape tectonics vs. slab-pull-driven extension) to explain their relationships to sedimentary basins. Key problems with interpreting the offshore significance of major strike-slip faults are: (1) reconciling conflicting palaeomagnetic data, (2) discriminating extensional, and oblique-extensional fault geometries from strike-slip geometries on 2D seismic reflection data, and (3) estimating strike-slip displacements from seismic reflection data.Focus on basic strike-slip fault geometries such as restraining vs. releasing bends, and strongly splaying geometries approach the gulfs of Thailand and Tonkin, suggest major strike-slip faults probably do not extend far offshore Splays covering areas 10,000’s km2 in extent are characteristic of the southern portions of the Sagaing, Mae Ping, Three Pagodas and Ailao Shan-Red River faults, and are indicative of major faults dying out. The areas of the fault tips associated with faults of potentially 100 km+ displacement, scale appropriately with global examples of strike-slip faults on log–log displacement vs. tip area plots. The fault geometries in the Song Hong-Yinggehai Basin are inappropriate for a sinistral pull-apart geometry, and instead the southern fault strands of the Ailao Shan-Red River fault are interpreted to die out within the NW part of the Song Hong-Yinggehai Basin. Hence the fault zone does not transfer displacement onto the South China Seas spreading centre. The strike-slip faults are replaced by more extensional, oblique-extensional fault systems offshore to the south. The Sagaing Fault is also superimposed on an older Paleogene–Early Miocene oblique-extensional rift system. The Sagaing Fault geometry is complex, and one branch of the offshore fault zone transfers displacement onto the Pliocene-Recent Andaman spreading centre, and links with the West Andaman and related faults to form a very large pull-apart basin.  相似文献   

12.
用物理模拟实验研究走滑断裂和拉分盆地   总被引:6,自引:1,他引:5  
本文按照下地壳和岩石圈地幔塑性流动控制上地壳构造变形的思想,采用脆延性双层模型,在考虑模型相似性的条件下,通过延性层流动驱动脆性层进行走滑断裂和拉分盆地模拟实验。实验结果表明,在左行走滑阶段发育两条"S"型左行右阶断裂带;在右行走滑改造阶段,早期左行右阶断裂带被改造为"Z"型右行右阶断裂带。走滑断裂发育过程中共有三种类型的拉张伸展:(1)"S"型破裂逐渐伸展,形成多个菱形盆地;(2)几个相邻的斜列"S"型断裂在剪切作用下端部被错断连通,形成"地堑-地垒"构造;(3)在右行走滑阶段,沿右行右阶断裂拉张形成拉分盆地。先存的上隆拱张断裂限制了走滑断裂的位置和方向。脆性层强度对走滑断裂的形成和发展具有约束作用,脆性层结构对脆延性的层间耦合作用和走滑断裂特征具有显著影响。   相似文献   

13.
对郯庐断裂系研究的最新进展作了介绍。郯庐断裂是多期活动,性质多次转换的巨型断裂,最初的启动时间在晚三叠世末,与南北大陆的碰撞有着直接的关系,早期以走滑(左行)运动为主,伴随挤压和拉伸,范围限于华北地块内部,断裂纵向伸展的高峰期为白垩纪到早始新世,这一时期也是裂陷作用最强的时期,始新世以来以挤压作用为主,东亚走滑断裂系各组成断裂性质复杂,不能以中生代左行平移运动简单概括,走滑断裂系的发展和演化与同时  相似文献   

14.
对郯庐断裂系研究的最新进展作了介绍。郯庐断裂是多期活动、性质多次转换的巨型断裂。最初的启动时间在晚三叠世末,与南北大陆的碰撞有着直接的关系。早期以走滑(左行)运动为主,伴随挤压和拉伸,范围限于华北地块内部。断裂纵向伸展的高峰期为白垩纪到早始新世,这一时期也是裂陷作用最强的时期。始新世以来以挤压作用为主。东亚走滑断裂系各组成断裂性质复杂,不能以中生代左行平移运动简单概括。走滑断裂系的发展和演化与同时期大陆边缘所处的地球动力学环境,也就是与南北大陆的碰撞和古大洋板块的持续俯冲关系密切。新生代以来的构造事件使中生代的构造发生强烈变形变位改造。  相似文献   

15.
中国西部新生代沉积盆地演化   总被引:2,自引:0,他引:2       下载免费PDF全文
新生代期间中国西部发生了多次强烈的构造运动, 经历了复杂的构造-地貌演化历史.地质构造背景和地球动力学过程则控制了中国西部大陆新生代期间的构造-地貌演化.盆-山系统是中国西部新生代构造的基本格局, 盆-岭体系是中国西部新生代的主要地貌单元.根据盆地的几何学、动力学与构造演化特征, 中国西部新生代盆地可以划分为压陷盆地、断陷盆地、走滑拉分盆地以及残留海-前陆盆地4类.这些新生代封闭盆地均被造山带所围限, 而盆地与山脉之间由挤压型活动断裂(逆冲断层和走滑断层)所分割.新生代以来印度板块与欧亚板块的碰撞以及其后印度板块的向北俯冲挤压, 对中国西部新生代沉积盆地的发育和演化产生了重大影响.中国西部新生代盆地构造岩相古地理演化与板块运动和构造隆升之间存在明显的耦合.   相似文献   

16.
郯庐断裂带的平移运动与成因   总被引:61,自引:4,他引:61  
在华北、华南板块碰撞期间,郯庐断裂带究竟是何种边界仍是没有解决的重大地学问题,许多学者对此提出了不同的构造解释模式。关于郯庐断裂的平移距离仍存在着较大的分歧与有待深入研究之处。在华北、华南板块拼合之后,郯庐断裂带发生了一次大规模的左行平移,其糜棱岩的^40Ar/^39Ar年龄为132~119Ma,指示为早白垩世的平移活动,平移活动中伴生了强烈的岩浆活动。这期左行平移标志着中国东部构造的重大转折,是滨太平洋构造对前期古特提斯构造的叠加,其动力学机制为太平洋区伊侨奈岐板块突然出现的高速斜向俯冲。  相似文献   

17.
The Qinling Orogenic belt has been well documented that it was formed by multiple steps of convergence and subsequent collision between the North China and South China Blocks during Paleozoic and Late Triassic times. Following the collision in Late Triassic times, the whole range evolved into an intracontinental tectonic process. The geological, geophysical and geochronological data suggest that the intracontinental tectonic evolutionary history of the Qinling Orogenic Belt allow deduce three stages including strike-slip faulting during Early Jurrassic, N-S compressional deformation during Late Jurassic to Early Cretaceous and orogenic collapse during Late Cretaceous to Paleogene. The strike-slip faulting and the infills in Early Jurassic along some major boundary faults show flower structures and pull-apart basins, related to the continued compression after Late Triassic collision between the South Qinling Belt and the South China Block along the Mianlue suture. Late Jurassic to Early Cretaceous large scale of N-S compression and overthrusting progressed outwards from inner of Qinling Orogen to the North China Block and South China Block, due to the renewed southward intracontinental subduction of the North China Block beneath the Qinling Orogenic Belt and continuously northward subduction of the South China Block, respectively. After the Late Jurassic-Early Cretaceous compression and denudation, the Qinling Orogenic Belt evolved into Late Cretaceous to Paleogene orogen collapse and depression, and formed many large fault basins along the major faults.  相似文献   

18.
郯庐断裂带山东段的中新生代构造演化特征   总被引:2,自引:0,他引:2  
本文在总结郯庐断裂带的最新研究成果的基础上,对郯庐断裂带山东段深部构造特征、运动学特征和内部结构特征进行了分析,并对郯庐断裂带山东段的中新生代构造演化过程进行了研究。在华南华北碰撞造山时期,郯庐断裂带山东段发生了显著的左旋走滑剪切变形。郯庐断裂带山东段在晚侏罗至早始新世(50Ma前)的左旋走滑直接受控于古太平洋板块向东亚大陆的俯冲,板块俯冲边界的应力直接传递到郯庐断裂带导致其发生走滑运动;早白垩世中期至古近纪,郯庐断裂带山东段内部及两侧盆地的伸展则受控于深部岩石圈减薄、地幔底辟导致的裂陷作用。  相似文献   

19.
Some allochthonous terranes form along active continental margins when slivers of forearc crust (or more extensive crust) are displaced along arc-parallel strike-slip faults. Such faults can be generated or reactivated in response to either oblique subduction or ridge collision (collision between an oceanic spreading ridge and the leading edge of the forearc). The mechanical and thermal effects of ridge collision are important factors in the origin crustal development of some forearc sliver terranes. Some of the effects of ridge collision are well illustrated in the South American forearc near the Chile triple junction (46° S) where the Chile Rise is colliding today. Impingement of the Chile Rise, in conjuction with oblique subduction, has caused an elongate forearc sliver terrane to move northward away from an extensional zone at the collision site. The terrane is bounded on the east by the arc-parallel Liquiñe-Ofqui fault system (LOF) which coincides roughly with the forearc-arc boundary, and on the south by the Golfo de Penas extensional basin. Fault fabrics, recent seismicity, and paleomagnetic results indicate a component of right-lateral strike-slip movement on the LOF. Neotectonic geomorphology and pre- and post-seismic vertical strain data from the 1960 Concepcíon earthquake indicate a west-down dip-slip component of movement. Three-dimensional finite element models of ridge collision in this region substantiate these shear strains and development of an arc-parallel fault at about 150–200 km from the trench.Development of the forearc crust during Miocene and younger collision also involved intrusion of silicic magmas and emplacement of the Pliocene(?) Taitao ophiolite within about 15 km of the trench. The ophiolite and the silicic magmas constitute anomalous additions to the forearc crust, and record tectonic events leading to the origin of the allochthonous terrane carrying them. Similar ophiolite/silicic plutonic associations may help unravel the origin of other allochthonous terranes.  相似文献   

20.
Kinematics of compressional fold development in convergent wrench terranes   总被引:1,自引:0,他引:1  
Kinematic models are presented for compressional fold development in wrench and convergent wrench terranes that relate fold shortening, axial rotation, and axial extension. Fold shortening may be derived from final fold geometry. Existing fold geometry and axial orientation, two readily measurable quantities, provide the data needed to determine the relative components of shearing and convergence within the fold system. Analyses utilizing these kinematic models indicate that folds developed in sedimentary rocks in the wrench borderlands of both the Rineonada and San Andreas wrench faults in central California are the product of strongly convergent wrenching. The axes of these folds have been rotated no more than a few degrees during the course of their development. In contrast, folds developed in the Alpine Schists along the Alpine fault in New Zealand and in Pleistocene sediments along the southern limit of the San Andreas fault suggest an almost pure wrench setting and large (>25 °) axial rotations.

Significant axial extension is inherent in wrench-related compressional folds. This axial extension is commonly manifest in the form of normal and strike-slip faults that are internal to the folds and trend at high angles to the fold axes. The relative amount of axial extension diminishes as the degree of convergence increases. This axial extension, and the associated extensional features, can be a diagnostic indication of the influence of wrenching.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号