首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Total solar irradiance has been monitored from space for nearly two decades. These space-borne observations have established conclusively that total solar irradiance changes over a wide range of periodicities—from minutes to the 11-year solar cycle. Since the total energy flux of the Sun is the principal driver for all Earths atmospheric phenomena, the accurate knowledge of the solar radiation received by the Earth and its variations is an extremely important issue. In this paper we review the long-term variations of total solar irradiance during solar cycles 21 and 22. We conclude that, within the current accuracy and precision of the measurements, the minimum level of total solar irradiance is about the same for both solar cycles 21 and 22.  相似文献   

2.
Evidence of the solar activity modulation of the Earth’s climate has been observed on several parameters, from decadal to millennial time scales. Several proxies have been used to reconstruct the paleoclimate as well as the solar activity. The paleoclimate reconstructions are based on direct and/or indirect effects of global and regional climate conditions. The solar activity reconstructions are based on the production of the 14C isotope due to the interaction of cosmic ray flux and the Earth’s atmosphere. Because trees respond to climate conditions and store 14C, they have been used as proxies for both for climate and solar activity reconstructions. The imprints of solar activity cycles dating back to 10,000 years ago have been observed on tree-ring samples using 14C data, and those dating back to 20 million years ago have been analyzed using fossil tree-growth rings. All this corresponds to the Cenozoic era. However, solar activity imprints on tree rings from earlier than that era have not been investigated yet. In this work, we showed that tree rings from the Mesozoic Era (of ~200 million years ago) recorded 11- and 22-year cycles, which may be related to solar activity cycles, and that were statistically significant at the 95 % confidence level. The fossil wood was collected in the southern region of Brazil. Our analysis of the fossils' tree-ring width series power spectra showed characteristics similar to the modern araucaria tree, with a noticeable decadal periodicity. Assuming that the Earth’s climate responds to solar variability and that responses did not vary significantly over the last ~200 million years, we conclude that the solar–climate connection was likely present during the Mesozoic era.  相似文献   

3.
A high-resolution spectrometer (0.0014 nm at 313 nm) has been developed at the University of L’Aquila (Italy) for atmospheric spectroscopic studies. The layout, optics and software for the instrument control are described. Measurements of the mercury low-pressure lamp lines from 200 to 600 nm show the high performances of the spectrometer. Laboratory measurements of OH and NO2 spectrums demonstrate that the system could be used for cross-section measurements and to detect these species in the atmosphere. The first atmospheric application of the system was the observation of direct solar and sky spectrums that shows a filling-in of the sky lines due to rotational Raman scattering. The measurements have been done with clear and cloudy sky and in both there was a strong dependence of the filling-in from the solar zenith angle whereas no dependence from the wavelengths was evident at low solar zenith angles (less than 85°).  相似文献   

4.
Observing and Modeling Earth’s Energy Flows   总被引:1,自引:0,他引:1  
This article reviews, from the authors’ perspective, progress in observing and modeling energy flows in Earth’s climate system. Emphasis is placed on the state of understanding of Earth’s energy flows and their susceptibility to perturbations, with particular emphasis on the roles of clouds and aerosols. More accurate measurements of the total solar irradiance and the rate of change of ocean enthalpy help constrain individual components of the energy budget at the top of the atmosphere to within ±2 W m?2. The measurements demonstrate that Earth reflects substantially less solar radiation and emits more terrestrial radiation than was believed even a decade ago. Active remote sensing is helping to constrain the surface energy budget, but new estimates of downwelling surface irradiance that benefit from such methods are proving difficult to reconcile with existing precipitation climatologies. Overall, the energy budget at the surface is much more uncertain than at the top of the atmosphere. A decade of high-precision measurements of the energy budget at the top of the atmosphere is providing new opportunities to track Earth’s energy flows on timescales ranging from days to years, and at very high spatial resolution. The measurements show that the principal limitation in the estimate of secular trends now lies in the natural variability of the Earth system itself. The forcing-feedback-response framework, which has developed to understand how changes in Earth’s energy flows affect surface temperature, is reviewed in light of recent work that shows fast responses (adjustments) of the system are central to the definition of the effective forcing that results from a change in atmospheric composition. In many cases, the adjustment, rather than the characterization of the compositional perturbation (associated, for instance, with changing greenhouse gas concentrations, or aerosol burdens), limits accurate determination of the radiative forcing. Changes in clouds contribute importantly to this adjustment and thus contribute both to uncertainty in estimates of radiative forcing and to uncertainty in the response. Models are indispensable to calculation of the adjustment of the system to a compositional change but are known to be flawed in their representation of clouds. Advances in tracking Earth’s energy flows and compositional changes on daily through decadal timescales are shown to provide both a critical and constructive framework for advancing model development and evaluation.  相似文献   

5.
The knowledge of solar extreme and far ultraviolet (EUV) irradiance variations is essential for the characterization of the Earth’s upper atmosphere. For a long time, this knowledge has been based on empirical models, which are themselves based on proxies of the solar activity. However, the accurate modeling and prediction of the Earth’s upper atmosphere necessitate to improve the precision on the irradiance and its variations below about 200 nm. Here, we present a review of recent works made by the authors that aim at quantifying the irradiance variability at these wavelengths, and that lead to new way of monitoring the solar EUV/FUV irradiance spectrum. In more details, it is shown that the quantification of the high level of redundancy in the solar spectrum variability allows to envisage measuring only a small portion of the spectrum without losing essential knowledge. Finally, we discuss what should and could be measured in order to retrieve the solar extreme and far ultraviolet spectrum.  相似文献   

6.
The paper presents data on flux variations of ionizing EUV radiation for wavelengths shorter than 130 nm and in L-alpha hydrogen line on the basis of measurements performed on-board a Russian Earth-orbiting and interplanetary spacecrafts in the period since 1978 to 1997. These data were received by using common heritage instrumentation installed on four PROGNOZ satellites, INTERBALL-1, PHOBOS, and the geosynchronous meteorological satellite ELECTRO. Though the time series of observations is not continuous, it gives a possibility to estimate flux variations in certain periods of time and during 11–year cycle. During quiet periods of solar activity (except for flares) a level of diurnal variations is rather low, it being equal to about 3%. Radiation changes in L-alpha line from maximum to minimum in an 11–year cycle of solar activity achieves 200% and increases in the range of short waves. Data measured onboard the Russian satellites are compared with data obtained by Solar Mesospheric Explorer.  相似文献   

7.
SOLAR2000 is a collaborative project for accurately characterizing solar irradiance variability across the spectrum. A new image- and full-disk proxy empirical solar irradiance model, SOLAR2000, is being developed that is valid in the spectral range of 1–1,000,000 nm for historical modeling and forecasting throughout the solar system. The overarching scientific goal behind SOLAR2000 is to understand how the Sun varies spectrally and through time from X-ray through infrared wavelengths. This will contribute to answering key scientific questions and will aid national programmatic goals related to solar irradiance specification. SOLAR2000 is designed to be a fundamental energy input into planetary atmosphere models, a comparative model with numerical/first principles solar models, and a tool to model or predict the solar radiation component of the space environment. It is compliant with the developing International Standards Organization (ISO) solar irradiance standard. SOLAR2000 captures the essence of historically measured solar irradiances and this expands our knowledge about the quiet and variable Sun including its historical envelope of variability. The implementation of the SOLAR2000 is described, including the development of a new EUV proxy, E10.7, which has the same units as the commonly used F10.7. SOLAR2000 also provides an operational forecasting and global specification capability for solar irradiances and information can be accessed at the website address of http://www.spacenvironment.net.  相似文献   

8.
N. C. Wells 《Annales Geophysicae》1995,13(10):1047-1053
Estimates of the components of the surface heat flux in the Western Equatorial Pacific Ocean are presented for a 22-day period, together with a critical analysis of the errors. It is shown that the errors in latent heat, and solar and longwave radiation fluxes, dominate the net heat flux for this period. It is found that the net heat flux into the ocean over the 22-day period is not significantly different from zero. It is also demonstrated that because of the variability in daily averaged values of solar radiation and the latent heat of evaporation, a large number of independent flux measurements will be required to determine with confidence the climatological net heat flux in this region. The variability of latent fluxes over the 22-day period suggest that climatological estimates based on monthly mean observations may lead to a significant underestimate of the latent heat flux.  相似文献   

9.
The Shuttle SBUV (SSBUV) and NOAA-11 SBUV/2 instruments measured solar spectral UV irradiance during the maximum and declining phase of solar cycle 22. The SSBUV data accurately represent the absolute solar UV irradiance between 200–405 nm, and also show the long-term variations during eight flights between October 1989 and January 1996. These data have been used to correct long-term sensitivity changes in the NOAA-11 SBUV/2 data, which provide a near-daily record of solar UV variations over the 170–400 nm region between December 1988 and October 1994. The NOAA-11 data demonstrate the evolution of short-term solar UV activity during solar cycle 22.  相似文献   

10.
Observations of field strengths of signals from a number of VLF transmitters, after propagation over long paths in the Earth–ionosphere waveguide, have been used to examine changes in the daytime attenuation rate in the course of a solar cycle. The measurements reported were recorded in the period 1986–1996. The paths studied range in length over about 8–14 Mm; they included NLK (Seattle) and NPM (Hawaii) to Dunedin, NZ, and NAA (Cutler, Maine) and NSS (Annapolis, Maryland) to Faraday, Antarctica. The frequencies monitored were mainly in the range 21–25 kHz but measurements near 10 kHz of Omega Hawaii at Faraday were also used. The daytime VLF attenuation rates at solar minimum were found to be greater by about 0.3 dB/Mm than at solar maximum.  相似文献   

11.
Water vapor plays an important role in the global climate system. A clear relationship between water vapor and solar activity can explain some physical mechanisms of how solar activity influences terrestrial weather/climate changes. To gain insight of this possible relationship, the atmospheric precipitable water vapor (PWV) as the terrestrial climate response was observed by ground-based GPS receivers over the Antarctic stations. The PWV changes analyzed for the period from 2003 to 2008 coincided with the declining phase of solar cycle 23 exhibited following the solar variability trend. Their relationship showed moderate to strong correlation with 0.45 < R 2 < 0.93 (p < 0.01), on a monthly basis. This possible relationship suggests that when the solar-coupled geomagnetic activity is stronger, the Earth’s surface will be warmer, as indicated by electrical connection between ionosphere and troposphere.  相似文献   

12.
The ionospheric D-region (~60 km up to ~95 km) and the corresponding neutral atmosphere, often referred to as the mesosphere–lower thermosphere (MLT), are challenging and costly to probe in situ. Therefore, remote sensing techniques have been developed over the years. One of these is based on very low frequency (VLF, 3–30 kHz) electromagnetic waves generated by various natural and man-made sources. VLF waves propagate within the Earth–ionosphere waveguide and are extremely sensitive to perturbations occurring in the D-region along their propagation path. Hence, measurements of these signals serve as an inexpensive remote sensing technique for probing the lower ionosphere and the MLT region. This paper reviews the use of VLF narrowband (NB) signals (generated by man-made transmitters) in the study of the D-region and the MLT for over 90 years. The fields of research span time scales from microseconds to decadal variability and incorporate lightning-induced short-term perturbations; extraterrestrial radiation bursts; energetic particle precipitation events; solar eclipses; lower atmospheric waves penetrating into the D-region; sudden stratospheric warming events; the annual oscillation; the solar cycle; and, finally, the potential use of VLF NB measurements as an anthropogenic climate change monitoring technique.  相似文献   

13.
Photosynthetically active radiation (PAR) is essential for plant photosynthesis and carbon cycle, and is also important for meteorological and environmental monitoring. To advance China’s disaster and environmental monitoring capabilities, the HJ-1A/B satellites have been placed in Earth orbit. One of their environmental monitoring objectives is the study of PAR. We simulated direct solar, scattered and environment radiation between 400 and 700 nm under different atmospheric parameters (solar zenith angle, atmospheric water vapor, atmospheric ozone, aerosol optical thickness, surface elevation and surface albedo), and then established a look-up table between these input parameters and PAR. Based on the look-up table, we used HJ-1A/B aerosol and surface albedo outputs to derive the corresponding PAR. Validation of inversed instantaneous and observed PAR values using HJ-1 Heihe experimental data had a root mean square error of 25.2 W m?2, with a relative error of 5.9%. The root mean square error for accumulated daily PAR and observed values was 0.49 MJ m?2, with a relative error of 3.5%. Our approach improved significantly the computational efficiency, compared with using directly radiation transfer equations. We also studied the sensitivity of various input parameters to photosynthetically active radiation, and found that solar zenith angle and atmospheric aerosols were sensitive PAR parameters. Surface albedo had some effect on PAR, but water vapor and ozone had minimal impact on PAR.  相似文献   

14.

Photosynthetically active radiation (PAR) is essential for plant photosynthesis and carbon cycle, and is also important for meteorological and environmental monitoring. To advance China’s disaster and environmental monitoring capabilities, the HJ-1A/B satellites have been placed in Earth orbit. One of their environmental monitoring objectives is the study of PAR. We simulated direct solar, scattered and environment radiation between 400 and 700 nm under different atmospheric parameters (solar zenith angle, atmospheric water vapor, atmospheric ozone, aerosol optical thickness, surface elevation and surface albedo), and then established a look-up table between these input parameters and PAR. Based on the look-up table, we used HJ-1A/B aerosol and surface albedo outputs to derive the corresponding PAR. Validation of inversed instantaneous and observed PAR values using HJ-1 Heihe experimental data had a root mean square error of 25.2 W m−2, with a relative error of 5.9%. The root mean square error for accumulated daily PAR and observed values was 0.49 MJ m−2, with a relative error of 3.5%. Our approach improved significantly the computational efficiency, compared with using directly radiation transfer equations. We also studied the sensitivity of various input parameters to photosynthetically active radiation, and found that solar zenith angle and atmospheric aerosols were sensitive PAR parameters. Surface albedo had some effect on PAR, but water vapor and ozone had minimal impact on PAR.

  相似文献   

15.
Solar radiation (both total and in various wavelengths) varies at different time scales—from seconds to decades or centuries—as a consequence of solar activity. The energy received from the Sun is one of the natural driving forces of the Earth's atmosphere and since this energy is not constant, it has been argued that there must be some non-zero climate response to it. This response must be fully specified in order to improve our understanding of the climate system and the impact of anthropogenic activities on it. However, despite all the efforts, if and how subtle variations of solar radiation affect climate and weather still remains an unsolved puzzle. One key element that is very often taken as evidence of a response, is the similarity of periodicities between several solar activity indices and different meteorological parameters. The literature contains a long history of positive or negative correlations between weather and climate parameters like temperature, rainfall, droughts, etc. and solar activity cycles like the 27-day cycle, the prominent 11-year sunspot cycle, the 22-year Hale cycle and the Gleissberg cycle of 80–90 years. A review of these different cycles is provided as well as some of the correlative analyses between them and several stratospheric parameters (like stratospheric geopotential heights, temperature and ozone concentration) and tropospheric parameters (like temperature, rainfall, water level in lakes and river flooding, clouds) that point to a relationship of some kind. However, the suspicion on these relationships will remain as long as an indisputable physical mechanism, which might act to produce these correlations, is not available.  相似文献   

16.
Discovery of the Van Allen radiation belts by instrumentation flown on Explorer 1 in 1958 was the first major discovery of the Space Age. A view of the belts as distinct inner and outer zones of energetic particles with different sources was modified by observations made during the Cycle 22 maximum in solar activity in 1989–1991, the first approaching the activity level of the International Geophysical Year of 1957–1958. The dynamic variability of outer zone electrons was measured by the NASA–Air Force Combined Radiation Release and Effects Satellite launched in July 1990. This variability is caused by distinct types of heliospheric structure which vary with the solar cycle. The largest fluxes averaged over a solar rotation occur during the declining phase from solar maximum, when high-speed streams and co-rotating interaction regions (CIRs) dominate the inner heliosphere, leading to recurrent storms. Intense episodic events driven by high-speed interplanetary shocks launched by coronal mass ejections (CMEs) prevail around solar maximum when CMEs occur most frequently. Only about half of moderate storms, defined by intensity of the ring current, lead to an overall flux increase, emphasizing the need to quantify loss as well as source processes; both increase when the magnetosphere is strongly driven. Three distinct types of acceleration are described in this review: prompt and diffusive radial transport, which increases energy while conserving the first invariant, and local acceleration by waves, which change the first invariant. The latter also produce pitch angle diffusion and loss, as does outward radial transport, especially when the magnetosphere is compressed. The effect of a dynamic magnetosphere boundary on radiation belt electrons is described in the context of MHD-test particle simulations driven by measured solar wind input.  相似文献   

17.
2001年4月2日, 太阳爆发了一个近年来X射线通量最大的一次耀斑并伴有质子事件, 利用“资源一号”卫星星内粒子探测器和神舟二号飞船X射线探测器的观测资料, 对这一事件的高能粒子响应进行了特例研究. “资源一号”卫星运行于太阳同步轨道, 高度约800km, 和宁静时期的统计结果对比, 这次耀斑后, 星内粒子探测器在地球极盖区(地球开磁场区)观测到耀斑粒子的出现, 这是宁静时期没有的; 神舟二号飞船轨道高度400km, 倾角为42°, X射线探测器在42°中高纬地区也观测到高能电子通量比宁静时明显的增加, 这表明, 太阳耀斑引起的近地空间辐射环境的变化遍及纬度约40°以上的区域, 甚至在40°N附近400 km左右的高度上仍然有响应. 但是, 中高纬度、极光带和极盖区的粒子来源, 加速机制和响应方式却不一定相同, 需要分别讨论. 资料分析和对比还表明, 质子事件的强度并不一定和耀斑的X射线通量成正比, 因此, 近地空间高能粒子对耀斑的响应也不是完全决定于X射线强度.  相似文献   

18.
A reconstruction of data on ancient (to ~600 Ma ago) solar fluxes of protons and helium has been performed on the basis of isotopic investigations of helium and neon in lunar soil samples from columns delivered by the automatic stations Luna-16 and Luna-24 in 1970 and 1976. Recent investigations have shown the presence of long-term climate variations, which can be explained in the context of solar-terrestrial links. However, the “space” impact, simultaneously with the Sun’s influence on the Earth, takes place in the form of cosmic ray irradiation and as an influence on the Earth that is exerted by the flux of cosmic dust and meteorites (including the very large ones at the early stage of the Earth evolution). Therefore the existence of long-term variability of solar corpuscular fluxes may serve as direct evidence of the manifestation of solar-terrestrial links. The possibility of finding these links appears on the basis of the revealed variations of solar wind fluxes with an age from the contemporary level to the level of ~600 Ma ago.  相似文献   

19.
Particle fluxes in the outer radiation belts can show substantial variation in time, over scales ranging from a few minutes, such as during the sudden commencement phase of geomagnetic storms, to the years-long variations associated with the progression of the solar cycle. As the energetic particles comprising these belts can pose a hazard to human activity in space, considerable effort has gone into understanding both the source of these particles and the physics governing their dynamical behavior. Computationally tracking individual test particles in a model magnetosphere represents a very direct, physically-based approach to modeling storm-time radiation belt dynamics. Using global magnetohydrodynamic models of the Earth–Sun system coupled with test particle simulations of the radiation belts, we show through two examples that such simulations are capable of capturing the outer zone radiation belt configuration at a variety of time scales and through all phases of a geomagnetic storm. Such simulations provide a physically-based method of investigating the dynamics of the outer radiation zone, and hold promise as a viable method of providing global nowcasts of the radiation environment during geomagnetically active periods.  相似文献   

20.
The ground track of the annular eclipse of 3 October 2005 crossed the Iberian Peninsula. The main objective of this work was to analyze the variability of the solar irradiance and the total ozone column during the course of this event at El Arenosillo (Southwestern Spain). For achieving this goal, two Kipp & Zonen broadband radiometers (one for measuring total solar irradiance and other for measuring ultraviolet erythemal solar irradiance), one NILU-UV multi-band instrument and one Brewer spectroradiometer were used in this work. Total irradiance (310–2800 nm), and ultraviolet erythemal radiation (UVER) were recorded at a high frequency of 5 s, showing a strong reduction (higher than 80%) of the irradiance at the maximum solar obscuration which was of 79.6%. The irradiance decrease during the course of the eclipse was positively correlated with the percentage of eclipse obscuration, showing a very high agreement (R2~0.99). The irradiance recorded at selected wavelengths from the NILU-UV instrument shows a more pronounced decrease in the UV irradiance at the lower wavelengths during the solar eclipse. Finally, the evolution of the total ozone column (TOC) derived from Brewer and NILU instruments during the eclipse presented an opposite behavior: while the Brewer derived TOC values increase about 15 DU, the NILU derived TOC values decrease about 11 DU. This opposite behavior is mainly related to an artifact in the spectral irradiances recorded by the two instruments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号