首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently,Near Earth Objects(NEOs) have been attracting great attention,and thousands of NEOs have been found to date.This paper examines the NEOs' orbital dynamics using the framework of an accurate solar system model and a Sun-Earth-NEO three-body system when the NEOs are close to Earth to search for NEOs with low-energy orbits.It is possible for such an NEO to be temporarily captured by Earth;its orbit would thereby be changed and it would become an Earth-orbiting object after a small increase in its velocity.From the point of view of the Sun-Earth-NEO restricted three-body system,it is possible for an NEO whose Jacobian constant is slightly lower than C1 but higher than C3 to be temporarily captured by Earth.When such an NEO approaches Earth,it is possible to change its orbital energy to nearly the zero velocity surface of the three-body system at point L1 and make the NEO become a small satellite of the Earth.Some such NEOs were found;the best example only required a 410 m s-1 increase in velocity.  相似文献   

2.
Abstract— 1996 FG3 is a binary near‐Earth object (NEO) that was likely formed during a tidal disruption event. Our results indicate that the formation of this binary object was unlikely to have occurred when the progenitor had a encounter velocity with the Earth significantly smaller than its current value (10.7 km/s); The formation of the binary object on an orbit similar to the present one is possible, and the survival of the satellite constrains this to have happened less than 1.6 Ma ago. However, the binary object could also have been formed when the progenitor's encounter velocity with Earth was >12 km/s, and in this case we cannot constrain its formation age. Our results indicate that tidal disruptions occurring among NEOs with low velocity encounters with Earth are unlikely to produce long‐lasting NEO binaries. Thus, tidal disruption may not be able to completely re‐supply the observed population. This would imply that a significant fraction of the observed NEO binaries evolved out of the main asteroid belt. Overall, our results suggest to us that the CM2 meteorites having cosmic ray exposure (CRE) ages of ?200,000 yr were likely liberated by the tidal disruption of a primitive NEO with a relative velocity with the Earth significantly smaller than that of 1996 FG3. We propose a list of such objects, although as far as we know, none of the candidates is a binary for the reasons described above.  相似文献   

3.
We have for the first time calculated the population characteristics of the Earth’s irregular natural satellites (NESs) that are temporarily captured from the near-Earth-object (NEO) population. The steady-state NES size–frequency and residence-time distributions were determined under the dynamical influence of all the massive bodies in the Solar System (but mainly the Sun, Earth, and Moon) for NEOs of negligible mass. To this end, we compute the NES capture probability from the NEO population as a function of the latter’s heliocentric orbital elements and combine those results with the current best estimates for the NEO size–frequency and orbital distribution. At any given time there should be at least one NES of 1-m diameter orbiting the Earth. The average temporarily-captured orbiter (TCO; an object that makes at least one revolution around the Earth in a co-rotating coordinate system) completes (2.88 ± 0.82) rev around the Earth during a capture event that lasts (286 ± 18) d. We find a small preference for capture events starting in either January or July. Our results are consistent with the single known natural TCO, 2006 RH120, a few-meter diameter object that was captured for about a year starting in June 2006. We estimate that about 0.1% of all meteors impacting the Earth were TCOs.  相似文献   

4.
This paper is the third in a series. Paper 1 presented the results of numerical modeling of deflections of NEOs in route of collision with the Earth. The model was applied to a variety of dynamical cases including both asteroidal and cometary NEOs. Paper 2 introduced the concept of “distributed deflection,” i.e., the possibility to provide the ΔV necessary to deflect an object with a succession of maneuvers each of which would have been insufficient per se to obtain the desired result. In both papers no assumptions were made on the physical composition and structure of the NEO, nor on the details of the possible deflection maneuvers from the point of view of mission analysis. Moreover, ΔV-plots were computed assuming only along-track impulses (both in the positive and negative directions), because it is easy to demonstrate that in general this is energetically the most favorable configuration. Also in the present paper no assumptions were made on the physical composition and structure of the NEO, even if order of magnitude considerations are made on the physical feasibility of a deflection, in terms of the internal strength of the NEO. We present here the results of an investigation on the mission requirements necessary to deflect an object (or contribute to a succession of deflecting maneuvers) in terms of accessibility of the spacecraft terminal orbit from Earth with the current launchers.  相似文献   

5.
Abstract— A study in late 2006 was sponsored by the Advanced Projects Office within NASA's Constellation Program to examine the feasibility of sending the Orion Crew Exploration Vehicle (CEV) to a near‐Earth object (NEO). The ideal mission profile would involve two or three astronauts on a 90 to 180 day flight, which would include a 7 to 14 day stay for proximity operations at the target NEO. This mission would be the first human expedition to an interplanetary body beyond the Earth‐Moon system and would prove useful for testing technologies required for human missions to Mars and other solar system destinations. Piloted missions to NEOs using the CEV would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in‐depth scientific investigations of these primitive objects. The main scientific advantage of sending piloted missions to NEOs would be the flexibility of the crew to perform tasks and to adapt to situations in real time. A crewed vehicle would be able to test several different sample collection techniques and target specific areas of interest via extra‐vehicular activities (EVAs) more efficiently than robotic spacecraft. Such capabilities greatly enhance the scientific return from these missions to NEOs, destinations vital to understanding the evolution and thermal histories of primitive bodies during the formation of the early solar system. Data collected from these missions would help constrain the suite of materials possibly delivered to the early Earth, and would identify potential source regions from which NEOs originate. In addition, the resulting scientific investigations would refine designs for future extraterrestrial resource extraction and utilization, and assist in the development of hazard mitigation techniques for planetary defense.  相似文献   

6.
Abstract— From 2001 June 17 to 25, we held the first international workshop in Erice, Italy, dedicated to the determination of geological and geophysical properties of near‐Earth objects (NEOs). The goal was to develop a roadmap for determining the physical and chemical properties of NEOs in the coming decades to meet the scientific requirements for development of Earth collision avoidance technology. We identified many properties that are desired, but four measurements are needed most critically for any potentially hazardous NEO: (1) its mass, (2) its mass distribution, (3) its material strengths, and (4) its internal structure. Global (whole‐body) properties, such as material strengths and internal structure, can be determined best from the analyses of permeating waves: artificially initiated seismology and multifrequency reflection and transmission radio tomography. Seismology provides the best geophysical (material strengths) data of NEOs composed of consolidated materials while radio tomography provides the best geological data (e.g., the state of fracture) of electrically nonconducting media. Thus, the two methods are complementary: seismology is most suitable for stony and metallic asteroids, while radio tomography is most appropriate for comet nuclei and carbonaceous asteroids. The three main conclusions are (1) remote sensing for physical characterization should be increased, (2) several dedicated NEO missions should be prepared for geophysical and geological investigations, and (3) that it is prudent to develop and prove the technology to make geophysical measurements on NEOs now.  相似文献   

7.
We have used an improved model of the orbit and absolute magnitude distribution of Near Earth Objects (NEOs) to simulate the performance of asteroid surveys. Our results support general conclusions of previous studies using preliminary Near Earth Asteroid (NEA) orbit and magnitude distributions and suggest that meeting the Spaceguard Goal of 90% completion for Near Earth Objects (NEOs) greater than 1 km diameter by 2008 is impossible given contemporary surveying capabilities.The NEO model was derived from NEO detections by the Spacewatch Project. For this paper we developed a simulator for the Catalina Sky Survey (CSS) for which we had a complete pointing history and NEO detection efficiency. The good match between the output of the simulator and the actual CSS performance gives confidence that both the NEO model and simulator are correct. Then, in order to determine if existing surveys can meet the Spaceguard Goal, we developed a simulator to mimic the LINEAR survey, for which detailed performance characteristics were unavailable. This simulator serendipitously provided an estimate for the currently undiscovered population of NEOs upon which we base all our estimates of time to 90% completion. We also developed a set of idealized NEO surveys in order to constrain the best possible survey performance in contrast to more realistic systems.A 100% efficient, all-sky, every night survey, subject only to the constraints of detection above a specified air mass and when the Sun is 18° below the horizon provides a benchmark from which to examine the effect of imposing more restrictions and the efficacy of some simple survey strategies. Such a survey must have a limiting V-magnitude of 20.1 ± 0.2 to meet the Spaceguard Goal.More realistic surveys, limited by latitude, the galaxy, minimum rates of NEO motion, etc., require fainter limiting magnitudes to reach the same completion. Our most realistic simulations, which have been normalized to the performance of the LINEAR detector system’s operation in the period 1999-2000, indicate that it would take them another 33 ± 5 years to reach 90% completeness for the larger asteroids (?1 km diameter). They would need to immediately increase the limiting magnitude to about 24 in order to meet the Spaceguard Goal.The simulations suggest that there may be little need for distributing survey telescopes in longitude and latitude as long as there is sufficient sky coverage from a telescope or network of telescopes which may be geographically close. An idealized space-based survey, especially from a satellite orbit much interior to Earth, would offer an advantage over their terrestrial counterparts. We do not consider a cost-benefit analysis for any of the simulations but suspect that a local-area network of telescopes capable of covering much of the sky in a month to V ∼ 21.5 may be administratively, financially, and scientifically the best compromise for reaching 90% completion of NEOs larger than 1 km diameter.  相似文献   

8.
D.J. Scheeres  A. Rossi 《Icarus》2004,170(2):312-323
In this paper we study the statistical effect of planetary flybys on the rotation rates and states of Near Earth Objects (NEOs). Our approach combines numerical and analytical methods within a Monte Carlo model that simulates the evolution of the NEO spin rates. We take as input for the simulation a source distribution of spin states and evolve it to find their steady state distribution. In performing this evolution we track the changes in the spin rate and state distribution for the different components of the NEO population. We show that the cumulative effect of planetary encounters is to spin up the overall population of NEOs. This spin up effect holds on average only, and particular members of the population may experience an overall decrease in rotation rate. This effect is clearly seen across all components of the NEO population and is significant both statistically and physically. For initially slow rotators the spin up effect is strong, lowering the mean rotation period by 32%. For faster rotating populations the effect is less, lowering the spin period by 15% for the intermediate case, 6% for fast rotating rubble piles, and 8% for fast rotating monoliths. Physically, the spin up effect pushes 1% of the fast rotating rubble-pile NEOs over the disruption limit, while 6% of these bodies experience a sub-disruption event that could modify their physical structure. For monolithic NEOs, the spin up effect is self-limiting, reaching a minimum spin period of 1.1 hr, with a strong cut-off between 2-3 hr. This has two implications. First, it may not be necessary to invoke the rubble-pile hypothesis to recover a cut-off in spin period. Second, it shows that planetary flybys cannot account for the extremely rapid rotation rates of some small NEOs. We also tested a different balance between the effects of Earth and Venus by treating the Aten sub-class of asteroids separately. Due to increased interactions with the planets, the spin up effect is more pronounced (10%) and disruptions increase by a factor of three. The slow rotation tails of the spin distributions are increased to longer periods, in general, with rotation periods of over 100 hr occurring for a few tenths of a percent for some component populations. Thus, this mechanism may account for some of the noted excess in slow rotators among the NEOs. Planetary flybys also cause NEOs to enter a tumbling state, with approximately 0.5% of the population being placed into a long-axis rotation mode. Finally, based on the evolution of spin states of different components of the NEO population, we compared the evolved states with the measured distribution of NEOs to estimate the relative populations of these components that comprise the NEOs.  相似文献   

9.
The near-Earth objects and their potential threat to our planet   总被引:1,自引:0,他引:1  
The near-Earth object (NEO) population includes both asteroids (NEAs) and comet nuclei (NECs) whose orbits have perihelion distances q<1.3 AU and which can approach or cross that of the Earth. A NEA is defined as a “potentially hazardous asteroid” (PHA) for Earth when its minimum orbit intersection distance (MOID) comes inside 0.05 AU and it has an absolute magnitude H<22 mag (i.e. mean diameter > 140 m). These are big enough to cause, in the case of impact with Earth, destructive effects on a regional scale. Smaller objects can still produce major damage on a local scale, while the largest NEOs could endanger the survival of living species. Therefore, several national and international observational efforts have been started (i) to detect undiscovered NEOs and especially PHAs, (ii) to determine and continuously monitor their orbital properties and hence their impact probability, and (iii) to investigate their physical nature. Further ongoing activities concern the analysis of possible techniques to mitigate the risk of a NEO impact, when an object is confirmed to be on an Earth colliding trajectory. Depending on the timeframe available before the collision, as well as on the object’s physical properties, various methods to deflect a NEO have been proposed and are currently under study from groups of experts on behalf of international organizations and space agencies. This paper will review our current understanding of the NEO population, the scientific aspects and the ongoing space- and ground-based activities to foresee close encounters and to mitigate the effects of possible impacts.  相似文献   

10.
The atmospheric detonation of a 17 m-asteroid above Chelyabinsk, Russia on 2013 February 15 shows that even small asteroids can cause extensive damage. Earth-based telescopes have found smaller harmless objects, such as 2008 TC3, a 4 m-asteroid that was discovered 20h before it exploded over northeastern Sudan (Jenniskens, 2009). 2008 TC3 remains the only asteroid discovered before it hit Earth because it approached Earth from the night side, where it was observed by large telescopes searching for near-Earth objects (NEO’s). The larger object that exploded over Chelyabinsk approached Earth from the day side, from too close to the Sun to be detected from Earth. A sizeable telescope in an orbit about the Sun-Earth L1 (SE-L1) libration point could find objects like the “Chelyabinsk” asteroid approaching approximately from the line of sight to the Sun about a day before Earth closest approach. Such a system would have the astrometric accuracy needed to determine the time and impact zone for a NEO on a collision course. This would give at least several hours, and usually 2–4 days, to take protective measures, rather than the approximately two-minute interval between the flash and shock wave arrival that occurred in Chelyabinsk. A perhaps even more important reason for providing warning of these events, even smaller harmless ones that explode high in the atmosphere with the force of an atomic bomb, is to prevent mistaking such an event for a nuclear attack that could trigger a devastating nuclear war. A concept using a space telescope similar to that needed for an SE-L1 monitoring satellite, is already conceived by the B612 Foundation, whose planned Sentinel Space Telescope could find nearly all 140 m and larger NEO’s, including those in orbits mostly inside the Earth’s orbit that are hard to find with Earth-based telescopes, from a Venus-like orbit (Lu, 2013). Few modifications would be needed to the Sentinel Space Telescope to operate in a SE-L1 orbit, 0.01 AU from Earth towards the Sun, to find most asteroids larger than about 5 meters that approach the Earth from the solar direction. The spacecraft would scan 165 square degrees of the sky around the Earth every hour, finding asteroids when they are brightest (small phase angle) as they approach Earth. We will undertake Monte Carlo studies to see what fraction of asteroids 5 m and larger approaching from the Sun might be found by such a mission, and how much warning time might typically be expected. Also, we will check the overall coverage for all Earth-approaching NEO’s, including ground-based observations and observations by the recently-launched NEOSSat, which may best fill any gaps in coverage between that provided by an SE-L1 telescope and ground-based surveys. Many of the objects as large as 50 m, like the one that created Meteor Crater in Arizona, will not be found by current NEO surveys, while they would usually be seen by this possible mission even if they approached from the direction of the Sun. We should give better warning for future “Bolts out of the blue.”  相似文献   

11.
By virtue of their landing on Earth, meteorites reside in near-Earth object (NEO) orbits prior to their arrival. Thus the population of observable NEOs, in principle, gives important representation of meteorite source bodies. By linking meteorites to NEOs, and linking NEOs to their most likely main-belt source locations, we seek to gain insight into the original Solar System formation locations for different meteorite classes. To forge possible links between meteorites and NEOs, we have developed a three dimensional method for quantitative comparisons between laboratory measurements of meteorites and telescopic measurements of near-Earth objects. We utilize meteorite spectra from the Reflectance Experiment Laboratory (RELAB) database and NEO data from the SpeX instrument on the NASA Infrared Telescope Facility (IRTF). Using the Modified Gaussian Model (MGM) as a mathematical tool, we treat asteroid and meteorite spectra identically in the calculation of 1-μm and 2-μm Geometric Band Centers and their Band Area Ratios (BARs). Using these identical numerical parameters we quantitatively compare the spectral properties of S-, Sq-, Q- and V-type NEOs with the spectral properties of the meteorites in four classes: H, L, LL and HED. For each NEO spectrum, we assign a set of probabilities for it being related to each of these four meteorite classes. Our NEO-meteorite correlation probabilities are then convolved with NEO-source region probabilities to yield a final set of meteorite-source region correlations. While the ν6 resonance dominates the delivery for all four meteorite classes, an excess (significant at the 2.1-sigma level) source region signature is found for the H chondrites through the 3:1 mean motion resonance. This results suggest an H chondrite source with a higher than average delivery preference through the 3:1 resonance. A 3:1 resonance H chondrite source region is consistent with the short cosmic ray exposure ages known for H chondrites.  相似文献   

12.
This paper presents the results of some numerical simulations of deflection of Near-Earth Objects (NEOs) on a collision course with the Earth. These simulations show that it is possible, in principle, to deviate even large objects applying in succession moderate impulses resulting in small velocity variations of the impactor. The use of this technique of "distributed deflection" is always applicable, provided that the impact has been detected many years in advance, and that the object passes its perihelion many times before impact. The modest values of the required velocity variations may allow to use low-energy methods for deflection, such as kinetic energy, thus suggesting an interesting, very flexible solution to this difficult problem.  相似文献   

13.
Among 11 673 of near-Earth objects (NEOs), 52 asteroids are identified, which, together with the Eccentrids meteor system, comprise a single population of small bodies of the Solar System with the smallest orbits of high eccentricity. Some features of this unique system of bodies are discussed in this paper. The distribution of perihelion longitudes is studied for the given group of asteroids and compared to that of the Aten asteroids, which are the most similar to the Eccentrids. The dependence is obtained of the character of perihelion longitude distribution on the eccentricities of the NEO orbits. Eight asteroid stream of the Eccentrids are found. The Eccentrids asteroids approaching the Earth’s orbit along its whole length in their aphelia can pose a certain hazard for the Earth.  相似文献   

14.
We present results from long-term numerical integrations of hypothetical Jupiter-family comets (JFCs) over time-scales in excess of the estimated cometary active lifetime. During inactive periods these bodies could be considered as 'cometary' near-Earth objects (NEOs) or 'cometary asteroids'. The contribution of cometary asteroids to the NEO population has important implications not only for understanding the origin of inner Solar system bodies but also for a correct assessment of the impact hazard presented to the Earth by small bodies throughout the Solar system. We investigate the transfer probabilities on to 'decoupled' subJovian orbits by both gravitational and non-gravitational mechanisms, and estimate the overall inactive cometary contribution to the NEO population. Considering gravitational mechanisms alone, more than 90 per cent of decoupled NEOs are likely to have their origin in the main asteroid belt. When non-gravitational forces are included, in a simple model, the rate of production of decoupled NEOs from JFC orbits becomes comparable to the estimated injection rate of fragments from the main belt. The Jupiter-family (non-decoupled) cometary asteroid population is estimated to be of the order of a few hundred to a few thousand bodies, depending on the assumed cometary active lifetime and the adopted source region.  相似文献   

15.
As of August 2007, over 5000 near-earth-objects (NEO) have been discovered. Some already represent a potential danger to the Earth while others might become hazards in the future. The Planetary Society organised in 2007 the “Apophis Mission Design Competition” in response to this potential threat with the objective to identify promising concepts to track NEOs; the asteroid 99942 Apophis was taken as the study case. This paper describes the “Houyi” proposal which was evaluated by the competition jury as an innovative approach to this problem. Instead of launching a large satellite for NEO tracking, this novel concept proposes a miniaturized satellite that is piggybacked onto a larger (scientific) mission. Such mission design would drastically reduce the costs for NEO surveillance. The presented scenario uses the ESA’s SOLO mission as a design baseline for the piggyback option. This paper summarizes the architecture of this CubeSat towards Apophis and extends the previous study by focusing on the feasibility of a piggybacked mission in terms of propulsion requirements.  相似文献   

16.
Abstract— Near‐Earth object (NEO) research plays an increasingly important role not only in solar system science but also in protecting our planetary environment as well as human society from the asteroid and comet hazard. Consequently, interest in detecting, tracking, cataloguing, and the physical characterizing of these bodies has steadily grown. The discovery rate of current NEO surveys reflects progressive improvement in a number of technical areas. An integral part of NEO discovery is astrometric follow‐up crucial for precise orbit computation and for the reasonable judging of future close encounters with the Earth, including possible impact solutions. The KLENOT Project of the Klet Observatory (South Bohemia, Czech Republic) is aimed especially at the confirmation, early follow‐up, long‐arc follow‐up, and recovery of near‐Earth objects. It ranks among the world's most prolific professional NEO follow‐up programs. The 1.06 m KLENOT telescope, put into regular operation in 2002, is the largest telescope in Europe used exclusively for observations of minor planets and comets, and full observing time is dedicated to the KLENOT team. In this paper, we present the equipment, technology, software, observing strategy, and results of the KLENOT Project obtained during its first phase from March 2002 to September 2008. The results consist of thousands of precise astrometric measurements of NEOs and also three newly discovered near‐Earth asteroids. Finally, we also discuss future plans reflecting also the role of astrometric follow‐up in connection with the modus operandi of the next generation surveys.  相似文献   

17.
We consider a small sample of known near Earth objects (NEOs), both asteroids and comets, with low minimum orbital intersection distance (MOID). Through a simple numerical procedure we generate slightly different orbits from this sample in such a way that these bodies will collide with the Earth at a specific epoch. Then we study the required change in orbital velocity (along track Δv) in order to deflect these NEOs at different epochs before the impact event. The orbital evolution of these NEOs is performed through a full N-body numerical integrator. A comparison with analytical estimates is also performed in selected cases. Interesting features in the Δv/time before impact plots are found; as a prominent result, we find that close approaches to the Earth before the epoch of the impact can make the overall deflection easier.  相似文献   

18.
C.L Dandy  A Fitzsimmons 《Icarus》2003,163(2):363-373
We present the results of BVRIZ photometry of 56 near-Earth objects (NEOs) obtained with the 1-m Jacobus Kapteyn telescope on La Palma during 2000 and 2001. Our sample includes many NEOs with particularly deep 1-μm pyroxene/olivine absorption bands, similar to Q-type asteroids. We also classify three NEOs with particularly blue colors. No D-type asteroids were found, placing an upper limit of ∼2% on the fraction of the NEO population originating in the outer main belt or the Trojan clouds. The ratio of dark to bright objects in our sample was found to be 0.40, significantly higher than current theoretical predictions. As well as classifying the NEOs, we have investigated color trends with size and orbit. We see a general trend for larger silicate objects to have shallower absorption bands but find no significant difference in the distribution of taxonomic classes at small and large sizes. Our data clearly show that different taxonomic classes tend to occupy different regions of (a, e) space. By comparing our data with current model predictions for NEO dynamical evolution we see that Q-, R-, and V-type NEOs tend to have orbits associated with “fast track” delivery from the main belt, whereas S-type NEOs tend to have orbits associated with “slow track” delivery. This outcome would be expected if space weathering occurs on time scales of >106 years.  相似文献   

19.
Missions to near-Earth objects (NEOs) are key destinations in NASA's new ‘Flexible Path’ approach. NEOs are also of interest for science, for the hazards they pose, and for their resources. We emphasize the importance of ultra-low delta-v from LEO to NEO rendezvous as a target selection criterion, as this choice can greatly increase the payload to the NEO. Few such ultra-low delta-v NEOs are currently known; only 65 of the 6699 known NEOs (March 2010) have delta-v <4.5 km/s, 2/3 of typical LEO-NEO delta-v. Even these are small and hard to recover. Other criteria – short transit times, long launch windows, a robust abort capability, and a safe environment for proximity operations – will further limit the list of accessible objects. Potentially there is at least an order of magnitude more ultra-low delta-v NEOs, but finding them all on a short enough timescale (before 2025) requires a dedicated survey in the optical or mid-IR, optimally from a Venus-like orbit because of the short synodic period for NEOs in that orbit, plus long arc determination of their orbits.  相似文献   

20.
Near‐Earth objects (NEOs) with diameters of <300 m are difficult to detect from the Earth with radar or optical telescopes unless and until they approach closely. If they are on collisional courses with the Earth, there is little that can be done to mitigate the considerable damage. Although destructive collisions in space are rare for 1 km diameter bodies and above, once hit by a sizeable impactor, such a NEO can develop a relatively dense cloud of co‐orbiting material in which destructive collisions are relatively frequent. The gas and nanoscale dust released in the destructive collisions can be detected remotely by downstream spacecraft equipped with magnetometers. In this paper, we use such magnetic disturbances to identify regions of near‐Earth space in which high densities of small objects are present. We find that asteroid (138175) 2000EE104 currently may have a cloud of potentially threatening co‐orbiting material. Due to the scattered co‐orbitals, there can be a finite impact probability whenever the Earth approaches the orbit of asteroid 2000EE104, regardless of the position of the asteroid itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号