首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Physical, chemical, and biological data were collected from a suite of 57 lakes that span an elevational gradient of 1360 m (2115 to 3475 m a.s.l.) in the eastern Sierra Nevada, California, USA as part of a multiproxy study aimed at developing transfer functions from which to infer past drought events. Multivariate statistical techniques, including canonical correspondence analysis (CCA), were used to determine the main environmental variables influencing diatom distributions in the study lakes. Lakewater depth, surface-water temperature, salinity, total Kjeldahl nitrogen, and total phosphorus were important variables in explaining variance in the diatom distributions. Weighted-averaging (WA) and weighted-averaging partial least squares (WA-PLS) were used to develop diatom-based surface-water temperature and salinity inference models. The two best diatom-inference models for surface-water temperature were developed using simple WA and inverse deshrinking. One model covered a larger surface-water temperature gradient (13.7 °C) and performed slightly poorer (r2 = 0.72, RMSE = 1.4 °C, RMSEPjack = 2.1 °C) than a second model, which covered a smaller gradient (9.5 °C) and performed slightly better (r2 = 0.89, RMSE = 0.7 °C, RMSEPjack = 1.5 °C). The best diatom-inference model for salinity was developed using WA-PLS with three components (r2 = 0.96, RMSE = 4.06 mg L–1, RMSEPjack = 11.13 mg L–1). These are presently the only diatom-based inference models for surface-water temperature and salinity developed for the southwestern United States. Application of these models to fossil-diatom assemblages preserved in Sierra Nevada lake sediments offers great potential for reconstructing a high-resolution time-series of Holocene and late Pleistocene climate and drought for California.  相似文献   

2.
We explored the possibility of using artificial neural networks (ANN) to develop quantitative inference models in paleolimnology. ANNs are dynamic computer systems able to learn the relations between input and output data. We developed ANN models to infer pH from fossil diatom assemblages using a calibration data set of 76 lakes in Quebec. We evaluated the predictive power of these models in comparison with the two most commonly methods used in paleolimnology: Weighted Averaging (WA) and Weighted Averaging Partial Least Squares (WA-PLS). Results show that the relationship between species assemblages and environmental variables of interest can be modelled by a 3-layer back-propagation network, with apparent R2 and RMSE of 0.9 and 0.24 pH units, respectively. Leave-one-out cross-validation was used to access the reliabilities of the WA, WA-PLS and ANN models. Validation results show that the ANN model (R2 jackknife = 0.63, RMSEjackknife = 0.45, mean bias = 0.14, maximum bias = 1.13) gives a better predictive power than the WA model (R2 jackknife = 0.56, RMSEjackknife = 0.5, mean bias = –0.09, maximum bias = –1.07) or WA-PLS model (R2 jackknife = 0.58, RMSEjackknife = 0.48, mean bias = –0.15, maximum bias = –1.08). We also evaluated whether the removal of certain taxa according to their tolerance changed the performance of the models. Overall, we found that the removal of taxa with high tolerances for pH improved the predictive power of WA-PLS models whereas the removal of low tolerance taxa lowered its performance. However, ANN models were generally much less affected by the removal of taxa of either low or high pH tolerance. Moreover, the best model was obtained by averaging the predictions of WA-PLS and ANN models. This implies that the two modelling approaches capture and extract complementary information from diatom assemblages. We suggest that future modelling efforts might achieve better results using analogous multi-model strategies.  相似文献   

3.
The selection of a reliable inference model is a crucial step in developing ecologically sound reconstructions of environmental variables in the past. We compared intra- and inter-regional regression-based models, and an inter-regional Modern Analogue Technique (MAT) model in their ability to infer lakewater pH from scaled chrysophyte assemblages. The performance of each model was assessed by examining cross-validated coefficients of determination and prediction errors, and through reconstructing the pH of 50 modern and fossil samples in south-central Ontario, Canada. Using the intra- and inter-regional data sets, we found little difference in the ability of the regression-based models to infer present-day pH. Partial Least Squares (PLS) regression, Weighted Averaging (WA), and Weighted Averaging Partial Least Squares (WA-PLS) inference models showed similar values for jack-knifed coefficients of determination (r2 jack), root mean squared errors of prediction (RMSEPjack), and mean and maximum biases. Based on an analogue matching approach, the inferred values from 48 fossil sediment samples suggested that the intra-regional model did not provide reliable reconstructions for approximately half of the fossil samples. However, inferences from the inter-regional MAT and regression-based models were found to have appropriate analogues and thus considered to be more reliable.  相似文献   

4.
Previous studies have shown chironomids to be excellent indicators of environmental change and training sets have been developed in order to allow these changes to be reconstructed quantitatively from subfossil sequences. Here we present the results of an investigation into the relationships between surface sediment subfossil chironomid distribution and lake environmental variables from 42 lakes on the Tibetan Plateau. Canonical correspondence analysis (CCA) revealed that of the 11 measured environmental variables, salinity (measured as total dissolved solids TDS) was most important, accounting for 10.5% of the variance in the chironomid data. This variable was significant enough to allow the development of quantitative inference models. A range of TDS inference models were developed using Weighted Averaging (WA), Partial Least Squares (PLS), Weighted Averaging–Partial Least Squares (WA–PLS), Maximum Likelihood (ML), Modern Analogues Technique (MAT) and Modern Analogues Techniques weighted by similarity (WMAT). Evaluation of the site data indicated that four lakes were major outliers, and after omitting these from the training set the models produced jack-knifed coefficients of determination (r 2) between 0.60 and 0.80, and root-mean-squared errors of prediction (RMSEP) between 0.29 and 0.44 log10 TDS. The best performing model was the two-component WA–PLS model with r 2 jack = 0.80 and RMSEPjack = 0.29 log10 TDS. The model results were similar to other chironomid-salinity models developed in different regions, and they also showed similar ecological groupings along the salinity gradient with respect to freshwater/salinity thresholds and community diversity. These results therefore indicate that similar processes may be controlling chironomid distribution across salinity gradients irrespective of biogeographical constraints. The performance of the transfer functions illustrates that chironomid assemblages from the Tibetan Plateau lakes are clearly sensitive indicators of salinity. The models will therefore allow the quantification of long-term records of past water salinity for lacustrine sites across the Tibetan Plateau, which has important implications for future hydrological research in the region.  相似文献   

5.
The relationships between diatoms (Bacillariophyceae) in surface sediments of lakes and summer air temperature, pH and total organic carbon concentration (TOC) were explored along a steep climatic gradient in northern Sweden to provide a tool to infer past climate conditions from sediment cores. The study sites are in an area with low human impact and range from boreal forest to alpine tundra. Canonical correspondence analysis (CCA) constrained to mean July air temperature and pH clearly showed that diatom community composition was different between lakes situated in conifer-, mountain birch- and alpine-vegetation zones. As a consequence, diatoms and multivariate ordination methods can be used to infer past changes in treeline position and dominant forest type. Quantitative inference models were developed to estimate mean July air temperature, pH and TOC from sedimentary diatom assemblages using weighted averaging (WA) and weighted averaging partial least squares (WA-PLS) regression. Relationships between diatoms and mean July air temperature were independent of lake-water pH, TOC, alkalinity and maximum depth. The results demonstrated that diatoms in lake sediments can provide useful and independent quantitative information for estimating past changes in mean July air temperature (R2 jack = 0.62, RMSEP = 0.86 °C; R2 and root mean squared error of prediction (RMSEP) based on jack-knifing), pH (R2 jack = 0.61, RMSEP = 0.30) and TOC (R2 jack = 0.49, RMSEP = 1.33 mg l-1). The paper focuses mainly on the relationship between diatom community composition and mean July air temperature, but the relationships to pH and TOC are also discussed.  相似文献   

6.
Diatoms were identified and enumerated from the surface sediments of 111 lakes, 45 from the Kamloops region and 66 from the Cariboo/Chilcotin region, located on the southern Interior Plateau of British Columbia, Canada. This paper is an extension of another study which investigated the relationship of diatoms to salinity and ionic composition in 65 lakes from the Cariboo/Chilcotin region. The 111 lakes spanned a large gradient in salinity, ranging from fresh through hypersaline (late-summer salinity values ranged from 0.04 to 369 g l–1), and included both carbonate- and sulphate-dominated lakes with sodium and magnesium as the dominant cations. The Kamloops region had more sulphate-dominated, hypersaline lakes and fewer carbonate-rich lakes than the Cariboo/Chilcotin region. Most lakes had higher salinities in the late-summer compared to the spring.Both salinity and brine-type were important variables that could explain the different diatom assemblages present in the lakes. The majority of diatom taxa had salinity optima in the freshwater to subsaline range (<3 g l–1), and the taxa displayed a range of both narrow and broad tolerances along the salinity gradient. Weighted-averaging regression and calibration, and maximum likelihood techniques were used to develop salinity inference models from the diatom assemblages based on their relationship to the spring, late-summer and average lakewater salinity measurements. Simple weighted-averaging (WA) models generally produced the same or lower bootstrapped RMSEs of prediction than weighted-averaging with tolerance downweighting (WA(tol)) in the two regional and the combined datasets. Weighted averaging partial least squares (WA-PLS) showed little or no improvement in the predictive abilities of the datasets, as judged by the jackknifed RMSE of prediction. In all cases, the combined dataset of 102 lakes performed better than either of the smaller regional datasets, with relatively little difference between spring, average and late-summer salinity models. The maximum likelihood models gave lower apparent RMSEs of prediction in comparison to other methods; however, independent validation of this technique using methods such as bootstrapping were not undertaken because of the computer intensive nature of such analyses. These diatom-based salinity models are now available for reconstructing salinity and climatic trends from appropriately chosen closed-basin lakes in the Interior region of British Columbia.This is the second in a series of papers published in this issue on the paleolimnology of arid regions. These papers were presented at the Sixth International Palaeolimnology Symposium held 19–21 April, 1993 at the Australian National University, Canberra, Australia. Dr A. R. Chivas served as guest editor for these papers.  相似文献   

7.
About 145 freshwater to hypersaline lakes of the eastern Tibetan Plateau were investigated to develop a transfer function for quantitative palaeoenvironmental reconstructions using ostracods. A total of 100 lakes provided sufficient numbers of ostracod shells. Multivariate statistical techniques were used to analyse the influence of a number of environmental variables on the distributions of surface sediment ostracod assemblages. Of 23 variables determined for each site, 19 were included in the statistical analysis. Lake water electrical conductivity (8.2%), Ca% (7.6%) and Fe% (4.8%, ion concentrations as % of the cations) explained the greatest amounts of variation in the distribution of ostracod taxa among the 100 lakes. Electrical conductivity optima and tolerances were calculated for abundant taxa. A transfer function, based on weighted averaging partial least squares regression (WA-PLS), was developed for electrical conductivity (r 2 = 0.71, root-mean-square-error of prediction [RMSEP] = 0.35 [12.4% of gradient length], maximum bias = 0.64 [22.4% of gradient length], as assessed by leave-one-out cross-validation) based on 96 lakes. Our results show that ostracods provide reliable estimates of electrical conductivity and can be used for quantitative palaeoenvironmental reconstructions similarly to more commonly used diatom, chironomid or pollen data.  相似文献   

8.
The trophic status of lakes in New Zealand is, on average, low compared to more densely populated areas of the globe. Despite this, trends of eutrophication are currently widespread due to recent intensification in agriculture. In order to better identify baseline productivity and establish long-term trends in lake trophic status, diatom-based transfer functions for productivity-related parameters were developed. Water quality data and surface sediment diatom assemblages from 53 lakes across the North and South Islands of New Zealand were analysed to determine species responses to the principal environmental gradients in the data set. Repeat sampling of water chemistry over a 12-month period enabled examination of species responses to annual means as well as means calculated for stratified and mixed periods. Variables found to be most strongly correlated with diatom species distributions were chlorophyll a (Chl a), total phosphorus (TP), dissolved reactive phosphorus (DRP), ionic concentration (measured as electrical conductivity (EC)) and pH. These variables were used to develop diatom-based transfer functions using weighted averaging regression and calibration (simple, tolerance down-weighted and with partial least squares algorithm applied). Overall, models derived for stratified means were weaker than those using annual or isothermal means. For specific variables, the models derived for the isothermal mean of EC (WA-tol r2jack = 0.79; RMSEP = 0.15 log10 S cm–1),the annual mean of pH (WA r2jack = 0.72; RMSEP = 0.25 pH units) and the isothermal mean of Chl a (WA r2jack = 0.71; RMSEP = 0.18 log10 mg m–3 Chl a) performed best. The models derived for TP were weak in comparison (for the annual mean of TP: WA r2jack = 0.50; RMSEP = 0.24 log10 mg m–3 TP) and residuals on estimates for this model were correlated with several other water quality variables, suggesting confounding of species responses to TP concentrations. The model derived for the isothermal mean of DRP was relatively strong (WA-tol r2jack = 0.78; RMSEP = 0.17 log10 mg m–3 DRP); however, residual values for this model were also found to be strongly correlated with several other water quality variables. It is concluded that the poor performance of the TP and DRP transfer functions relative to that of the Chl a model reflects the coexistence of nitrogen and phosphorus limitation within the lakes in the data set. In spite of this, the suite of transfer functions developed from the training set is regarded as a valuable addition to palaeolimnological studies in NewZealand.  相似文献   

9.
A calibration data set of 51 surface sediment samples from Lake Donggi Cona on the northeastern Tibetan Plateau was investigated to study the relationship between sub-fossil ostracod assemblages and water depth. Samples were collected over a depth range from 0.6 to 80 m. A total of 16 ostracod species was identified from the lake with about half of the species restricted to the Tibetan Plateau and its adjacent mountain ranges and poorly known in terms of ecological preferences, and the other half displaying a mainly Holarctic distribution. Living macrophytes and macroalgae were recorded in Lake Donggi Cona down to a depth of about 30 m, and bivalve (Pisidium cf. zugmayeri) and gastropod (Gyraulus, Radix) shells were found down to depths of 43 and 48 m, respectively. The ostracod-water-depth relationship was assessed by multivariate statistical analysis and ostracod-based transfer functions for water depth were constructed. Weighted averaging partial least squares (WA-PLS) regression provided the best model with a coefficient of determination r 2 of 0.91 between measured and ostracod-inferred water depth, a root mean square error of prediction of 8% and a maximum bias of 10.6% of the gradient length, as assessed by leave-one-out cross-validation. Our results show the potential of ostracods as palaeo-depth indicators in appropriate settings. However, transfer-function applications using fossil ostracod assemblages for palaeo-depth estimations require a thorough understanding of the palaeolimnological conditions of lakes and therefore detailed multi-proxy analysis to avoid misinterpretation of ostracod-based inferences.  相似文献   

10.
A 72-lake diatom training set was developed for the Irish Ecoregion to examine the response of surface sediment diatom assemblages to measured environmental variables. A variety of multivariate data analyses was used to investigate environmental and biological data structure and their inter-relationships. Of the variables used in determining a typology for lakes in the Irish Ecoregion, alkalinity was the only one found to have a significant effect on diatom assemblages. A total of 602 diatom taxa were identified, with 233 recorded at three or more sites with abundances ≥1%. Generally diatom data displayed a high degree of heterogeneity at the species level and non-linear ecological responses. Both pH and total phosphorus (TP) (in the ranges of 5.1–8.5 and 4.0–142.3 μg l−1 respectively) were shown to be the most significant variables in determining the surface sediment diatom assemblages. The calibration models for pH and TP were developed using the weighted averaging (WA) method; data manipulation showed strong influences on model performances. The optima WA models based on 70 lakes produced a jack-knifed coefficient of determination (r 2 jack) of 0.89 with a root mean squared error (RMSEP) of 0.32 for pH and r 2 jack of 0.74 and RMSEP of 0.21 (log10 μg l−1) for TP. Both models showed strong performances in comparison with existing models for Ireland and elsewhere. Application of the pH and TP transfer functions developed here will enable the generation of quantitative water quality data from the expanding number of palaeolimnological records available for the Irish Ecoregion, and thus facilitate the use of palaeolimnological approaches in the reconstruction of past lake water quality, ecological assessment and restoration.  相似文献   

11.
Diatoms were identified and enumerated from surface sediments of 25 sites in Double Haven, Hong Kong. The relationship between diatom species distribution and 14 environmental variables was examined using Detrended Correspondence Analysis (DCA) and Canonical Correspondence Analysis (CCA). Water depth was identified as the most important environmental variable influencing the distribution of diatoms in Double Haven. Subsequently a Weighted Average (WA) calibration model was developed to infer water depth. The reliability of the model was evaluated by the error of prediction (RMSEboot= 3.479) and the correlation (r 2= 0.7342) between observed and diatom-inferred values. This predictive calibration model has the potential to infer past sea level change in Hong Kong and the adjacent coastal areas.  相似文献   

12.
Surface lake sediment was recovered from 57 lakes along an elevation gradient in the central, eastern Sierra Nevada of California. The surface sediment was analysed for subfossil chironomid remains in order to assess the modern distribution of chironomids in the region. The lakes sampled for the calibration dataset were between 2.0 and 40.0 m in depth, spanned an altitudinal gradient of 1360 m and a surface water temperature gradient of approximately 14 °C. Redundancy analysis (RDA) identified that five of the measured environmental variables – surface water temperature, elevation, depth, strontium, particulate organic carbon – accounted for a statistically significant amount of the variance in chironomid community composition. Quantitative transfer functions, based on weighted-averaging (WA), partial least squares (PLS) and weighted-averaging partial least squares (WA-PLS), were developed to estimate surface water temperature from the chironomid assemblages. The best model was a WA model with classical deshrinking, which had a relatively high coefficient of determination (r2 = 0.73), low root mean square error of prediction (RMSEP = 1.2 °C) and a low maximum bias (0.90 °C). The results from this study suggest that robust quantitative estimates of past surface water temperature can be derived from the application of these models to fossil chironomid assemblages preserved in late-Quaternary lake sediment in this region.  相似文献   

13.
Stable isotopes and trace elements in ostracod shells have been used widely in paleolimnological investigations of past lake hydrochemistry and climate because they provide insights into past water balance and solute evolution of lakes. Regional differences in lake characteristics and species-specific element fractionation, however, do not permit generalization of results from other regions or ostracod species to the southern Tibetan Plateau, in part because most common taxa from the southern Tibetan Plateau are endemic to the area. This study evaluated relations between present-day environmental conditions and the geochemical composition of modern ostracod shells from the southern Tibetan Plateau, to assess the suitability of using shell chemistry to infer hydrological conditions. We studied nine lakes and their catchments, located along a west–east transect in the south-central part of the Tibetan Plateau. Stable oxygen and carbon isotope values and trace element concentrations in recent shells from the four most abundant ostracod species (Leucocytherella sinensis, ?Leucocythere dorsotuberosa, Limnocythere inopinata, Tonnacypris gyirongensis) were measured, together with hydrochemical properties of host waters at the time of sampling. Results revealed significant between-species differences in stable isotope fractionation and trace element incorporation into shell calcite. Stable oxygen and carbon isotope values of ostracod shells were correlated significantly with the stable isotope composition of the respective water body \( \left( {\updelta^{18} {\text{O}}_{{{\text{H}}_{ 2} {\text{O}}}} \,{\text{and }}\updelta^{13} {\text{C}}_{{{\text{H}}_{ 2} {\text{O}}}} } \right) \), reflecting salinity and productivity, respectively. Offsets between δ18Oshell and δ13Cshell and inorganic calcite, the latter representing isotopic equilibrium, suggest shell formation of T. gyirongensis during spring melt. L. sinensis reproduces throughout the monsoon season until September and shows several consecutive generations, and L. inopinata molts to the adult stage after the monsoon season in August/September. The influence of pore water δ13C was displayed by L. inopinata, suggesting shell calcification within the sediment. Mg/Cashell is primarily influenced by water Mg/Ca ratios and salinity and confirms the use of this shell ratio as a proxy for precipitation-evaporation balance and lake level. In addition, Sr/Ca and Ba/Ca can be used to infer changes in salinity, at least in closed-basin lakes with calcite saturation. Observed effects of water Sr/Ca and salinity on Sr/Ca incorporation are biased by the presence of aragonite precipitation in the lakes, which removes bioavailable Sr from the host water, resulting in low Sr/Cashell values. Changes in carbonate mineralogy affect the bioavailability of trace elements, a process that should be considered in paleoclimate reconstructions. Oxygen isotopes and Mg/Cashell ratios were unaffected by water temperature. Positive correlations among Fe/Ca, Mn/Ca and U/Ca in ostracod shells, and their negative correlation with δ13C, which reflects organic matter decay, show the potential to infer changes in redox conditions that can be used to reconstruct past oxygen supply to bottom waters and thus past water-circulation changes within lakes. The intensity of microbial activity, associated with organic matter decomposition, can be inferred from U/Ca ratios in ostracod shells. These findings highlight the value of fossil ostracod records in lake deposits for inferring paleoenvironmental conditions on the southern Tibetan Plateau.  相似文献   

14.
The resolution achievable for chironomid identifications has increased in recent years because of significant improvements in taxonomic literature. However, high taxonomic resolution requires more training for analysts. Furthermore, with greater taxonomic resolution, misidentifications and the number of rare, poorly represented taxa in chironomid calibration datasets may increase. We assessed the effects of various levels of taxonomic resolution on the performance of chironomid-based temperature inference models (transfer functions) and temperature reconstruction. A calibration dataset consisting of chironomid assemblage and temperature data from 100 lakes was examined at four levels of taxonomic detail. The coarsest taxonomic resolution primarily represented identifications to genus or suprageneric level. At the highest level of taxonomic resolution, identification to genus level was possible for 37% of taxa, and identification below genus was possible for 60% of taxa. Transfer functions were obtained using Weighted Averaging (WA) and Weighted Averaging-Partial Least Squares (WA-PLS) regression. Cross-validated performance statistics, such as the root mean square error of prediction (RMSEP) and the coefficient of determination (r 2) between inferred and observed values improved considerably from the lowest taxonomic resolution level (WA: RMSEP 1.91°C, r 2 0.78; WA-PLS: RMSEP 1.59°C, r 2 0.86) to the highest taxonomic resolution level (WA: RMSEP 1.66°C, r 2 0.84; WA-PLS: RMSEP 1.41°C, r 2 0.89). Reconstructed July air temperatures during the Lateglacial period based on fossil chironomid assemblages from Hijkermeer (The Netherlands) were similar for all levels of taxonomic resolution, except the coarsest level. At the coarsest taxonomic level, reconstruction failed to infer one of the known Lateglacial cold episodes in the record. Also, the difference in reconstructed values based on lowest and highest taxonomic resolutions exceeded sample-specific estimated standard errors of prediction in several instances. Our results suggest that chironomid-based transfer functions at the highest taxonomic resolution outperform models based on lower-resolution calibration data. However, transfer functions of intermediate taxonomic resolution produced results very similar to models based on high-resolution taxonomic data. In studies that include analysts with different levels of expertise, inference models based on intermediate taxonomic resolution, therefore, might provide an alternative to transfer functions of maximum taxonomic detail in order to ensure taxonomic consistency between calibration datasets and down-core records produced by different analysts.  相似文献   

15.
Diatom-based transfer functions for inferring epilimnetic total phosphorus (TP) have been developed from a data set of 33 southeastern Australian water storages. Regular institutional monitoring of these sites has allowed comparison of models developed from TP data covering different time periods. A model based on mean annual TP performs better than models derived from winter maximum TP, spring minimum TP or TP nearest the time of diatom sampling. A mean annual TP model (WA-PLS 2 component) has a jack-knifed diatom-inferred versus measured TP correlation coefficient (r 2 jack) of 0.69 and a root-mean-square-error of prediction (RMSEP) of 0.246 log10g TP l–1, while alternative models have RMSEP > 0.27. Deletion of two samples with uncharacteristic species composition and environmental conditions improved performance of the mean annual TP model (r 2 jack= 0.74; RMSEP = 0.233 log10g TP l–1). Comparison with other published diatom-TP calibration models indicates that this model performs relatively well, with possible contributing factors including the extensive characterisation of TP (with an average 15 determinations making up the annual mean) and the dominance of planktonic diatoms in most sites. Downcore application of the model will allow the reconstruction of reservoir nutrient histories since commissioning, and thus provide a basis for understanding and management of reservoirs.  相似文献   

16.
Using an expanded surface sample data set, representing lakes distributed across a transect from southernmost Canada to the Canadian High Arctic, a revised midge-palaeotemperature inference model was developed for eastern Canada. Modelling trials with weighted averaging (with classical and inverse deshrinking; with and without tolerance downweighting) and weighted averaging partial least squares (WA-PLS) regression, with and without square-root transformation of the species data, were used to identify the best model. Comparison of measured and predicted temperatures revealed that a 2 component WA-PLS model for square-root transformed percentage species data provided the model with the highest explained variance (r =0.88) and the lowest error estimate (RMSEP jack =2.26 °C). Comparison of temperature inferences based on the new and old models indicates that the original model may have seriously under-estimated the magnitude of late-glacial temperature oscillations in Atlantic Canada. The new inferences suggest that summer surface water temperatures in Splan Pond, New Brunswick were approximately 10 to 12 °C immediately following deglaciation and during the Younger Dryas. During the Allerod and early Holocene, surface water temperatures of 20 to 24 °C were attained. The new model thus provides the basis for more accurate palaeotemperature reconstructions throughout easternmost Canada.  相似文献   

17.
Diatoms are identified and enumerated from the surface sediments of 100 lakes of Truelove Lowland, Devon Island, N.W.T., Canada. These lakes range from large oligotrophic lakes, to small tundra ponds, to coastal marine lagoons which are diverse in terms of ionic concentration and composition. The relationship between diatoms and 15 limnological variables is examined using Canonical Correspondence Analysis (CCA). Specific conductivity is identified as the most important variable influencing the distribution of diatoms in the Truelove lakes. A Weighted Averaging (WA) calibration model is developed to predict diatom-inferred specific conductivity. The reliability of the model is tested by evaluating the correlation between observed and diatom-inferred values and determining the error of prediction by bootstrapping. The applicability of the predictive conductivity equation is demonstrated by reconstructing the paleoconductivity history of Fish Lake.  相似文献   

18.
Lake eutrophication is a problem in many areas of Ontario, although the history of nutrient enrichment is poorly documented. The aim of this study was to construct a diatom-based transfer function to infer past phosphorus levels in Ontario lakes using paleolimnological analyses. The relationship between diatom assemblages and limnological conditions was explored from a survey of diatoms preserved in the surface sediments of 64 Southern Ontario lakes, spanning a total phosphorus gradient of 0.004 to 0.054 mg L-1. Over 420 diatom taxa were identified, 98 of which were sufficiently common to be considered in statistical analyses. Canonical correspondence analysis (CCA) determined that pH, ammonium, aluminum, spring total phosphorus (TP), strontium, total nitrogen (TN), maximum depth (MaxZ), chlorophyll a (Chla) and mean depth were significant variables in explaining the variance in the diatom species data. The environmental optima of common diatom taxa for the limnologically important variables (TP, pH, TN, MaxZ, Chla) were calculated using weighted averaging (WA) regression and calibration techniques, and transfer functions were generated. The diatom inference model for spring TP provided a robust reconstructive relationship (r2 = 0.637; RMSE = 0.007 mg L-1; r2 boot = 0.466; RMSEboot = 0.010 mg L-1). Other variables, including pH (r2 = 0.702; RMSE = 0.208; r2 boot = 0.485; RMSEboot = 0.234), TN (r2 = 0.574; RMSE = 0.0899 mg L-1; r2 boot = 0.380; RMSEboot = 0.127 mg L-1) and MaxZ (r2 = 0.554; RMSE = 1.05 m; r2 boot = 0.380; RMSEboot = 1.490 m), were also strong, indicating that they may also be reconstructed from fossil diatom communities. This study shows that it is possible to reliably infer lakewater TP and other limnological variables in alkaline Southern Ontario lakes using the WA technique. This method has the potential to aid rehabilitation programs, as it can provide water quality managers with the means to estimate pre-enrichment phosphorus concentrations and an indication of the onset and development of nutrient enrichment in a lake.  相似文献   

19.
The water chemistry of lake systems on the edge of the Antarctic continent responds quickly to changes in the moisture balance. This is expressed as increasing salinity and decreasing lake water level during dry periods, and the opposite during wet periods. The diatom composition of the lakes also changes with these fluctuations in salinity and lake water depth. This is important, as their siliceous remains become incorporated into lake sediments and can provide long-term records of past salinity using transfer functions. In order to develop transfer functions, diatoms and water chemistry data were inter-calibrated from five different East Antarctic oases, namely the Larsemann Hills, the Bølingen Islands, the Vestfold Hills, the Rauer Islands and the Windmill Islands. Results indicate that salinity is the most important environmental variable explaining the variance in the diatom flora in East Antarctic lakes. In oligo- saline lakes the variance is mainly explained by lake water depth. This dataset was used to construct a weighted averaging transfer function for salinity in order to infer historical changes in the moisture balance. This model has a jack-knifed r2 of 0.83 and a RMSEP of 0.31. The disadvantage of this transfer function is that salinity changes in oligo-saline lakes are reconstructed inaccurately due to the edge effect and due to the low species turnover along the salinity gradient at its lower end. In order to infer changes in the moisture balance in these lakes, a second transfer function using weighted averaging partial least squares (with two components) for depth was constructed. This model has a jack-knifed r2 of 0.76 and a RMSEP of 0.22. Both transfer functions can be used to infer climate driven changes in the moisture balance in lake sediment cores from oligo-, hypo-, meso- and hyper-saline lakes in East Antarctic oases between 102–75°E. The transfer function for lake water depth is promising to track trends in the moisture balance of small freshwater lakes, where changes in shallow and deep-water sediments are readily reflected in changing diatom composition.  相似文献   

20.
Freshwater midges, consisting of Chironomidae, Chaoboridae and Ceratopogonidae, were assessed as a biological proxy for palaeoclimate in eastern Beringia. The northwest North American training set consists of midge assemblages and data for 17 environmental variables collected from 145 lakes in Alaska, British Columbia, Yukon, Northwest Territories, and the Canadian Arctic Islands. Canonical correspondence analyses (CCA) revealed that mean July air temperature, lake depth, arctic tundra vegetation, alpine tundra vegetation, pH, dissolved organic carbon, lichen woodland vegetation and surface area contributed significantly to explaining midge distribution. Weighted averaging partial least squares (WA-PLS) was used to develop midge inference models for mean July air temperature (r boot2 = 0.818, RMSEP = 1.46°C), and transformed depth (ln (x+1); r boot2 = 0.38, and RMSEP = 0.58).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号