首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The direct boundary integral equation technique is applied to determine the impact on surface amplification caused by an inhomogeneity in a bedrock half-space. The particular soil-rock configuration studied is one in which a soil layer rests on a rock half-space which includes a rock inclusion. The particular rock inclusion considered for this study is a semi-infinite rock layer with its upper boundary bordering the soil layer. Materials are considered viscoelastic except for the section of the rock half-space below the level of the rock inclusion which is considered elastic. A parametric study is performed to determine controlling factors for surface displacement due to a vertically incident shear wave. The study includes varying the stiffness and the thickness of the inclusion for a range of frequencies. Solutions from a one-dimensional analysis are compared with the results of a two-dimensional analysis in order to establish limits inside of which a two-dimensional analysis is required. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
A two-dimensional analysis is applied to examine the effect that a sloping bedrock half-space has on the amplification of an anti-plane shear wave. The direct boundary integral equation method is used for the two-dimensional analysis. The particular soil–rock configuration investigated includes a homogeneous soil layer underlain by a sloping rock half-space. The rock half-space dips for a horizontal distance L and then becomes horizontal so that the overlying soil layer has a thickness H that remains constant from this point to infinity. The materials in the soil–rock configuration are considered viscoelastic except in the rock half-space below soil layer thickness H, which is considered elastic. This limitation in damping is due to the correction used for the truncation of the half-space boundary. Four cases are used to study the relationship between rock slope and surface displacement, vertical, 1:2, 1:4, 1:8. Surface displacements are determined for each of these cases for half-space incidence angles of 90, 75, and 60°. To allow for applicability to a wide range of problems, results are determined as a function of dimensionless parameters. In addition, solutions from a one-dimensional analysis are compared with the results of the two-dimensional analysis to establish limits outside of which a one-dimensional analysis suffices.  相似文献   

3.
A coupling model of Finite Elements (FEs), Boundary Elements (BEs), Infinite Elements (IEs) and Infinite Boundary Elements (IBEs) is presented for analysis of soil–structure interaction (SSI). The radiation effects of the infinite layered soil are taken into account by FE–IE coupling, while the underlying bed rock half-space is discretized into BE–IBE coupling whereby the non-horizontal bed rock surface can be accounted for. Displacement compatabilities are satisfied for all types of aforementioned elements. The equivalent linear approach is employed for approximation of nonlinearity of the near field soil. This model has some advantages over the current SSI program in considering the bed rock half-space and non-vertical wave incidence from the far field. Examples of verification demonstrate the applicability and accuracy of the method when compared with the FLUSH program. Finally, the effects of the relative modulus ratio Er/Es of rock and soil and the incident angles of non-vertical waves on the responses of the structure and the soil are examined. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
弹性层状半空间中凸起地形对入射平面SH波的放大作用   总被引:7,自引:0,他引:7  
对Wolf理论进行拓展,使之可解决凸起地形对波的散射问题,进而利用间接边界元法,求解了弹性层状半空间中凸起地形对入射平面SH波的放大作用问题。本文模型的显著特点之一是考虑了层状半空间的动力特性以及层状半空间和凸起地形的阻尼;特点之二是计算精度高。文中以基岩上单一土层中半圆凸起地形对入射平面SH波的放大作用为例进行了数值计算分析。研究表明,基岩上单一土层中凸起地形对入射平面SH波放大作用和均匀半空间中凸起地形有着本质的差别;土层动力特性不仅影响凸起地形地表位移的幅值,还会影响地表位移的频谱;阻尼会显著降低凸起地形对高频波的放大作用。  相似文献   

5.
Linear in-plane soil–structure interaction in two dimensions (2D) is studied in fluid-saturated, poroelastic, layered half-space using the Indirect Boundary Element Method (IBEM). The structure is a shear wall supported by a rigid embedded foundation. Exact stiffness matrices for the soil layer and half-space, and Green׳s functions of uniformly distributed loads and pore pressure on an inclined line are derived. Results of the system response in the frequency domain are presented for the special case of single soil layer over bedrock, semi-circular foundation and zero seepage force. The effects of water saturation, soil porosity, depth of soil layer, rigidity contrast between layer and bedrock are investigated in the frequency domain for incident plane P- and SV waves. The results suggest that water saturation may cause increase of the system frequency by more than 10%.  相似文献   

6.
Scattering and diffraction of elastic in-plane P- and SV-waves by a surface topography such as an elastic canyon at the surface of a half-space is a classical problem which has been studied by earthquake engineers and strong motion seismologists for over forty years. The case of out-of-plane SH-waves on the same elastic canyon that is semicircular in shape on the half-space surface is the first such problem that was solved by analytic closed-form solutions over forty years ago by Trifunac. The corresponding case of in-plane P- and SV-waves on the same circular canyon is a much more complicated problem because the in-plane P- and SV- scattered waves have different wave speeds and together they must have zero normal and shear stresses at the half-space surface. It is not until recently in 2014 that analytic solution for such problem is found by Lee and Liu. This paper uses their technique of defining these stress-free scattered waves, which Brandow and Lee previously used to solve the problem of the scattering and diffraction of these in-plane waves on an almost-circular surface canyon that is arbitrary in shape, to the study of the scattering and diffraction of these in-plane waves on an almost circular arbitrary-shaped alluvial valley.  相似文献   

7.
Scattering and diffraction of elastic in-plane P-and SV-waves by a surface topography such as an elastic canyon at the surface of a half-space is a classical problem which has been studied by earthquake engineers and strong motion seismologists for over forty years. The case of out-ofplane SH-waves on the same elastic canyon that is semicircular in shape on the half-space surface is the first such problem that was solved by analytic closed-form solutions over forty years ago by Trifunac. The corresponding case of in-plane P-and SV-waves on the same circular canyon is a much more complicated problem because the in-plane P-and SV-scattered waves have different wave speeds and together they must have zero normal and shear stresses at the half-space surface. It is not until recently in 2014 that analytic solution for such problem is found by Lee and Liu. This paper uses their technique of defining these stress-free scattered waves, which Brandow and Lee previously used to solve the problem of the scattering and diffraction of these in-plane waves on an almost-circular surface canyon that is arbitrary in shape, to the study of the scattering and diffraction of these in-plane waves on an almost circular arbitrary-shaped alluvial valley.  相似文献   

8.
层状半空间中洞室对平面SH波的放大作用   总被引:1,自引:0,他引:1  
利用间接边界元法,求解了弹性层状半空间中洞室对入射平面SH波的放大作用问题,并以基岩上单一土层中洞室对入射平面SH波的放大作用为例进行了数值计算分析。本文模型的特点之一是考虑了层状场地的动力特性,因而更接近于实际工程;特点之二是计算精度非常高。研究表明,层状半空间中洞室对波的放大作用与均匀半空间中情况有着本质的差别;层状半空间中洞室附近地表动力响应由土层动力特性和洞室对波的散射二者共同决定。土层动力特性不仅影响洞室附近地表位移的幅值,还会影响地表位移的频谱。在土层的前几阶共振频率附近,随着基岩与土层剪切波速比的增大,土层的影响随之增大,而随着土层厚度的增加,土层的影响随之减小,并逐渐趋于均匀半空间情况。  相似文献   

9.
The generalized Rayleigh type surface waves are studied in a multilayered medium consisting of anisotropic poroelastic solid layered stack beneath a fluid layer and overlying a heterogeneous elastic solid half-space. The heterogeneity, considered, is of vertical type. The interface between solid layer and half-space is treated as an imperfect interface and suitable boundary conditions are applied thereat. The technique of transfer matrix is used to obtain the dispersion equation in compact and convenient form. Numerical results are obtained for particular models. The effects of anisotropy and heterogeneity on the surface waves speed are discussed.  相似文献   

10.
以基岩上单一土层场地为例, 计算分析了在斜入射平面SH波作用下弹性层状半空间中无限长洞室附近的地表位移. 研究表明, 层状半空间中地下洞室对波的散射与均匀半空间情况存在显著差别. 层状场地由于考虑了场地自身的动力特性, 使得洞室附近地表位移幅值的空间变化更为复杂, 基岩与土层刚度比、 土层厚度对散射效应均有着重要影响. 随着基岩与土层刚度比的增大, 地表位移幅值整体上逐渐增大; 随着土层厚度的增大, 土层对地表位移幅值的影响逐渐减小. 在频域解答的基础上, 给出了层状半空间中洞室对斜入射SH波散射的时域解答, 并以Ricker波为例进行了数值计算.   相似文献   

11.
Scattering and Diffraction of elastic in-plane P- and SV- waves by a surface topography such as an elastic canyon at the surface of a half-space is a classical problem which has been studied by earthquake engineers and strong-motion seismologists for over forty years. The case of out-of-plane SH waves on the same elastic canyon that is semi-circular in shape on the half-space surface is the first such problem that was solved by analytic closed form solutions over forty years ago by Trifunac. The corresponding case of in-plane P- and SV-waves on the same circular canyon is a much more complicated problem because, the in-plane P- and SV- scattered waves have different wave speeds and together they must have zero normal and shear stresses at the half-space surface. It is not until recently in 2014 that analytic solution for such problem is found by the author in the work of Lee and Liu. This paper uses the technique of Lee and Liu of defining these stress-free scattered waves to solve the problem of the scattered and diffraction of these in-plane waves on an almost-circular surface canyon that is arbitrary in shape.  相似文献   

12.
A well-defined boundary-valued problem of wave scattering and diffraction in elastic half-space should have closed-form analytic solutions. This two-dimensional (2-D) scattering around a semi-circular canyon in elastic half-space subjected to seismic plane and cylindrical waves has long been a challenging boundary-value problem. In all cases, the diffracted waves will consist of both longitudinal (P-) and shear (S-) rotational waves. Together at the half-space surface, these in-plane longitudinal P- and shear SV-waves are not orthogonal over the infinite half-space flat-plane boundary. Thus, to simultaneously satisfy both the zero normal and shear stresses at the flat-plane boundary, some approximation of the geometry and/or wave functions often has to be made, or in some cases, relaxed (disregarded). This paper re-examines this two-dimensional (2-D) boundary-value problem from an applied mathematics points of view and redefines the proper form of the orthogonal cylindrical-wave functions for both the longitudinal P- and shear SV-waves so that they can together simultaneously satisfy the zero-stress boundary conditions at the half-space surface. With the zero-stress boundary conditions satisfied at the half-space surface, the most difficult part of the problem will be solved, and the remaining boundary conditions at the finite-canyon surface are then comparatively less complicated to solve. This is now a closed-form analytic solution of the 2-D boundary-valued problem satisfying the half-space zero-stress boundary conditions exactly.  相似文献   

13.
A new numerical procedure is proposed for the analysis of three-dimensional dynamic soil–structure interaction in the time domain. In this study, the soil is modelled as a linear elastic solid, however, the methods developed can be adapted to include the effects of soil non-linearities and hysteretic damping in the soil. A substructure method, in which the unbounded soil is modelled by the scaled boundary finite-element method, is used and the structure is modelled by 8–21 variable-number-node three-dimensional isoparametric or subparametric hexahedral curvilinear elements. Approximations in both time and space, which lead to efficient schemes for calculation of the acceleration unit-impulse response matrix, are proposed for the scaled boundary finite-element method resulting in significant reduction in computational effort with little loss of accuracy. The approximations also lead to a very efficient scheme for evaluation of convolution integrals in the calculation of soil–structure interaction forces. The approximations proposed in this paper are also applicable to the boundary element method. These approximations result in an improvement over current methods. A three-dimensional Dynamic Soil–Structure Interaction Analysis program (DSSIA-3D) is developed, and seismic excitations (S-waves, P-waves, and surface waves) and externally applied transient loadings can be considered in analysis. The computer program developed can be used in the analysis of three-dimensional dynamic soil–structure interaction as well as in the analysis of wave scattering and diffraction by three-dimensional surface irregularities. The scattering and diffraction of seismic waves (P-, S-, and Rayleigh waves) by various three-dimensional surface irregularities are studied in detail, and the numerical results obtained are in good agreement with those given by other authors. Numerical studies show that the new procedure is suitable and very efficient for problems which involve low frequencies of interest for earthquake engineering. Copyright © 1999 John Wiley & Sons Ltd  相似文献   

14.
地下夹塞断面形状随机性对平面SH波散射的影响   总被引:2,自引:2,他引:0       下载免费PDF全文
何颖  梁建文  林永星 《地震学报》2014,36(4):584-594
采用波函数展开法及边界离散的方法给出了任意断面形状的地下夹塞对平面SH波散射的半解析解; 利用蒙特卡罗方法随机模拟产生了30组夹塞断面样本, 通过对该样本在平面SH波入射下地表位移幅值的统计分析, 研究了夹塞断面形状随机性对平面SH波散射的影响. 结果表明, 夹塞断面形状随机性对平面SH波的散射具有重要影响. 以圆形夹塞为例, 当断面半径的变异系数为0.1时, 地表位移响应幅值变异系数可达0.71. 随着入射频率的升高, 变异系数逐渐增大; 随着夹塞刚度的降低, 变异系数逐渐增大; 随着夹塞埋深的增加, 变异系数逐渐减小.   相似文献   

15.
The unfolded cone model used for calculating the dynamic response of a disk on the surface of a soil layer resting on flexible rock for translational motion is extended to rotational motion. The method is analogous to that for a layer on rigid rock, the only modification being that the reflection coefficient – α replaces the coefficient of total reflection – 1. The modified value of – α, which, in general, is frequency-dependent, is determined by considering one-dimensional wave propagation along the cone for the first impingement at the layer–rock interface. The low- and high-frequency limits of – α for the rotational motion are the same as for translational motion. As these limits do not depend on frequency, the dynamic analysis using cones can be performed in the familiar time domain. The transfer function constructed by addressing the reflections–refractions at the soil–rock interface and the reflections at the free surface in the unfolded cone model is highly accurate, resulting in the same accuracy of the dynamic response of a disk on a layer resting on flexible rock as that on a homogeneous half-space modelled with a cone.  相似文献   

16.
The dynamic soil-tunnel interaction is studied by indirect boundary element method (IBEM), using the model of a rigid tunnel in layered half-space, which is simplified to a single soil layer on elastic bedrock, subjected to incident plane SH waves. The accuracy of the results is verified through comparison with the analytical solution. It is shown that soil-tunnel interaction in layered half-space is larger than that in homogeneous half-space and this interaction mechanism is essentially different from that of soil-foundation-superstructure interaction.  相似文献   

17.
A boundary integral formulation is presented and applied to model the ground motion on alluvial valleys under incident P, S and Rayleigh waves. It is based on integral representations for the diffracted and the refracted elastic waves using single-layer boundary sources. This approach is called indirect BEM in the literature as the sources' strengths should be obtained as an intermediate step. Boundary conditions lead to a system of integral equations for boundary sources. A discretization scheme based on the numerical and analytical integration of exact Green's functions for displacements and tractions is used. Various examples are given for two-dimensional problems of diffraction of elastic waves by soft elastic inclusion models of alluvial deposits in an elastic half-space. Results are displayed in both frequency and time domains. These results show the significant influence of locally generated surface waves in seismic response and suggest approximations of practical interest. For shallow alluvial valleys the response and its resonant frequencies are controlled by a coupling mechanism that involves both the simple one-dimensional shear beam model and the propagation of surface waves.  相似文献   

18.
An extensive investigation has been made into the interaction between topographic amplification and soil layer amplification of seismic ground motion. This interaction is suggested in the literature as a possible cause for the differences between topographic amplification magnitudes observed in field studies and those obtained from numerical analysis. To investigate this issue a numerical finite element (FE) parametric study was performed for a slope in a homogeneous linear elastic soil layer over rigid bedrock subjected to vertically propagating in-plane shear waves (Sv waves). Analyses were carried out using two types of artificial time history as input excitation, one mimicking the build-up and decay of shaking in the time histories of real earthquake events, and the other to investigate the steady-state response. The study identified topographic effects as seen in previous numerical studies such as modification of the free-field horizontal motion, generation of parasitic vertical motion, zones of alternating amplification and de-amplification on the ground surface, and dependence of topographic amplification on the frequency of the input motion. For the considered cases, topographic amplification and soil layer amplification effects were found to interact, suggesting that in order to accurately predict topographic effects, the two effects should not be always handled separately.  相似文献   

19.
Scattering of plane harmonic SH, P, SV and Rayleigh waves by several inclusions of arbitrary shape, completely embedded into an elastic half-space, is considered. Perfect bonding between the half-space and the inclusions is assumed. The problem is investigated for linear, isotropic and homogeneous elastic materials. The displacement field is evaluated throughout the elastic medium so that the continuity conditions between the half-space and the inclusions are satisfied in mean-square sense. Numerical results of the surface displacement field are evaluated for single and two elliptic inclusions. The results show the following: (a) presence of a subsurface inhomogeneity may lead to large amplifications of the surface ground motion; (2) different surface displacement patterns emerge for different incident waves; (3) the presence of an additional inclusion may change significantly the surface displacement response of a single inclusion; (4) the surface motion extremes strongly depend upon (i) angle of incidence; (ii) frequency of incident field; (iii) embedment depth of the inclusions; (iv) separation distance between the inclusions; (v) material properties of the half-space and the inclusions; and (vi) location of observation point on the surface of the half-space.  相似文献   

20.
The dynamic soil-tunnel interaction is studied by the model of a rigid tunnel embedded in layered half-space,which is simplified as a single soil layer on elastic bedrock to the excitation of P- and SV-waves.The indirect boundary element method is used,combined with the Green's function of distributed loads acting on inclined lines.It is shown that the dynamic characteristics of soil-tunnel interaction in layered half-space are different much from that in homogeneous half-space,and that the mechanism of soil-tunnel interaction is also different much from that of soil-foundation-superstructure interaction.For oblique incidence,the tunnel response for in-plane incident SV-waves is completely different from that for incident SH-waves,while the tunnel response for vertically incident SV-wave is very similar to that of vertically incident SH-wave.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号