首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 581 毫秒
1.
采用中子仪和负压计观测手段利用“零通量面”方法研究土壤水分运移规律,对春小麦生育期内各阶段的耗水量和作物系数进行了初浅研究测定,其结果是主生育期内耗水量为351.5MM,合234.39M^3/亩,因此,全年灌溉定额为350M^3/亩~400M^3/亩为宜,为建立节水型农业,实行科学灌溉提供了科学依据。  相似文献   

2.
多年冻土区活动层冻融状况及土壤水分运移特征   总被引:14,自引:8,他引:6  
利用位于典型多年冻土区的唐古拉综合观测场2007年9月1日—2008年9月1日实测活动层剖面土壤温度和水分数据,对多年冻土区活动层的冻结融化规律进行研究;同时,对冻融过程中的活动层土壤液态水含量的变化特征进行分析,探讨了活动层内部土壤水分分布特征及其运移特点对活动层冻结融化过程的影响. 结果表明:活动层融化过程从表层开始向下层土壤发展,冻结过程则会出现双向冻结现象. 一个完整的年冻融循环中活动层冻结过程耗时要远远小于融化过程. 活动层土壤经过一个冻融循环,土壤水分整体呈现下移的趋势,土壤水分逐步运移至多年冻土上限附近积累. 同时,土壤水分含量和运移特征会对活动层冻融过程产生显著的影响.  相似文献   

3.
对青藏高原高寒草甸30%、60%和93%三种覆盖度下,多年冻土活动层的土壤水分随季节变化的观测研究,结果表明:多年冻土活动层土壤水分分布对植被覆盖变化响应强烈.年内不同时期,植被覆盖度为65%和30%的土壤表层20cm深度内水分含量及分布相似,每次降水后30%覆盖度土壤水分的变率略大于65%覆盖度的;而93%覆盖度土壤水分在年内解冻开始到冻结前均小于前两种覆盖类型;植被覆盖度越小,土壤冻结和融化响应时间越早,响应历时也越短;浅层土壤冻结和融化对植被覆盖度的响应程度较强,接近深层土壤冻结和融化对植被覆盖度的响应程度降低.覆盖度为30%和65%土壤水分在整个冻结过程的减少幅度比93%覆盖度土壤大10%~26%,而融化期水分增加幅度更大为1.5%~80%;土壤冻融的相变水量对植被覆盖度变化响应明显,植被覆盖度降低,土壤冻结和融化相变水量增大.由于受植被蒸腾与地表蒸散发和土壤温度梯度的影响,融化期土壤剖面的水分重新分配,总体上呈现水分向剖面上部和底部迁移,剖面中部60~80cm深度左右的土壤出现"干层".  相似文献   

4.
微咸水膜下滴灌灌溉制度试验研究   总被引:4,自引:0,他引:4  
为了探讨科学合理的微咸水膜下滴灌灌溉制度,在新疆巴音郭楞蒙古自治州水利管理处国家重点灌溉试验站进行了不同灌溉定额、灌水频次的微咸水膜下滴灌大田试验。研究结果表明:①灌溉定额4500m3/hm2、灌水频次10次,灌溉定额3000m3/hm2、灌水频次7次,均有利于保持土壤水分。②当灌溉定额≤4500m3/hm2时,灌溉定额越大,土壤积盐越严重;在灌溉定额一定时,灌溉次数越多,土壤积盐越严重。③当灌溉定额≤4500m3/hm2时,灌溉定额越大,棉花产量越高,微咸水灌溉影响棉花产量的灌溉定额上限在4500m3/hm2左右;灌溉定额多时,灌水次数多棉花产量高,灌溉定额少时,灌水次数少棉花产量高。④灌溉水分生产率随着灌溉定额的增大而减小,在灌溉定额大时,采用少量多次灌溉,在灌溉定额小时,采用多量少次灌溉,均可提高灌溉水分生产率。⑤以节水、控盐和高产为优选标准,当地较为理想的微咸水膜下滴灌模式为灌溉定额3750m3/hm2、灌水次数20次、灌水间隔为7d。  相似文献   

5.
典型岩溶山坡土壤剖面水分对降雨响应过程研究   总被引:4,自引:1,他引:3  
为揭示岩溶石山山坡降雨入渗补给机制,选取典型岩溶石山山坡土壤剖面为研究对象,于2015年7-10月期间对不同深度土壤水分进行高分辨率连续监测,研究典型场雨条件下土壤剖面水分对降雨的响应过程,分析土壤剖面水分的动态变化规律及其可能影响因素。研究结果表明:土壤剖面水分对降雨的响应受前期土壤含水量、降雨量、降雨强度的影响,还与土壤所处的地形地貌有关;表层土壤水分对首次次降雨响应的滞后时间与前期土壤含水量有关,响应时间在0.5~4.75 h之间,旱季响应时间比雨季长;降雨阈值是引起土壤水分降雨响应的重要条件,旱季6 mm降雨量是土壤水分响应的降雨阈值。当降雨量补充土壤水分亏缺后,土壤剖面水分对降雨响应迅速,响应时间最小为0.25 h,不同深度土壤水分对降雨的响应时间一致,说明下层土壤水分可能受到优先流或侧向径流补给影响。土壤含水量的变化幅度随土层深度的增加而减小,不同深度土壤水分变化主要受土壤-大气界面、土壤-植被、土壤-基岩界面控制下的气候条件、植被蒸散发和介质渗透性差异影响。   相似文献   

6.
毛乌素沙地冻融期气态水迁移机理及影响因素   总被引:1,自引:0,他引:1       下载免费PDF全文
受冰-水间相变影响, 冻融期内土壤水、热传输过程变得复杂, 研究气态水分布特征与运移规律, 可为厘清冻融过程中沙地包气带水文循环机理提供关键信息。通过在毛乌素沙地建立原位监测点, 并利用修改后的Hydrus-1D冻融程序建立包气带水-汽-冰-热耦合数值模型, 对冻融期包气带气态水迁移过程展开研究。结果表明: 模拟与实测土壤水分及温度变化拟合较好, 证实所建立的模型具有良好的精度以及适用性; 对比典型未冻结、初始冻结、向下冻结以及融化时段结果可知, 冻融过程会改变剖面土壤水分、含冰量以及水汽密度分布, 其中水汽密度变化与温度联系紧密; 冻结后, 由温度梯度驱动的非等温气态水通量在总水分通量中的占比超过90%, 表明气态水占据主导地位, 其运移过程对于剖面土壤水分分布以及高含水量带出现有重要影响。  相似文献   

7.
查明青藏高原高寒草甸区土壤水分运移机制,对正确理解土壤水分迁移过程、提高高寒草甸重建效率具有重要指导意义。通过开展土壤剖面负压、地温观测等原位试验,结合气象资料,对土壤剖面地温、含水率及总水头特征进行分析。结果表明,土壤的冻结期起始于10月,解冻期起始于4月;地温最高值出现在植物生长旺盛期8月,最低值出现在1月;1~3月土壤水分呈固态,6~10月土壤水分呈液态,处于稳定变化阶段,4~5月、11~12月土壤水分呈固液转化态,含水率变化幅度较大,处于过渡阶段。随着气温升高及降水量增加,6~8月水热同季有利于高寒草甸生长,属于高寒草甸主要生长阶段;春季土层由表及深土壤解冻,冻土层滞水性能保障了返青期春旱牧草生长的水分需求;深秋季节的由表及深的土壤冻结,深层土壤水分随水汽发生的表聚作用保障了牧草生长的水分需求,也是高原生态系统能够维持稳定的原因之一。  相似文献   

8.
在水资源短缺的沙地生态系统中,土壤水分是植被恢复和水资源管理的主要控制因子,正确认识沙地土壤水分的分布特征及时空变化规律是促进沙地水资源可持续发展的基础。以毛乌素沙地为研究区,利用原位试验观测、经典统计学分析和聚类分析相结合的方法,揭示了有无植被覆盖下的土壤剖面水分时空变化特征,探讨了植物生长对土壤水分布的影响。结果表明:在2016年非冻结期内,地下水水位埋深较浅时,裸地与植被覆盖情况下土壤平均含水率均随土壤深度的增加而增大,可将0~350 cm土层划分为气候影响层、过渡层与地下水影响层。裸地剖面平均含水率为23.59%,变异系数为4.24%,属于弱变异,剖面含水率在观测期间明显上升,并在8月中旬强降雨时上升速率达到最大;植被覆盖下土壤剖面平均含水率为17.74%,变异系数为15.61%,属于中等变异,剖面含水率在观测期间显著下降,在8月沙柳发育成熟后剖面含水率下降最快。在垂向深度上,植被对土壤剖面含水率的影响近似呈高斯曲线变化,对过渡层含水率的影响最大,占总影响的50%以上,对气候影响层与地下水影响层的影响相对较小,且随着植物生长,气候影响层受到的相对影响逐渐减弱,地下水影响层受到的...  相似文献   

9.
针对位于干旱-半干旱气候带的我国西北部矿区生态修复过程中重构层状土壤水分运移规律不清等问题,通过设置不同层状结构土壤进行水分运移入渗试验,监测土壤剖面水分变化,采用Hydrus-1D模拟降雨入渗过程,从土壤水分、水势和水通量3个方面揭示层状土壤水分运移特征,并基于优化后的模型进行情景模拟,探究夹层特征对浅层土壤水分运移的影响。研究结果表明,夹层明显改变了土壤水分的分配与运移过程,土壤水势在夹层界面连续分布,而土壤水分在夹层界面发生突变;虽然黄土夹层和风化砂岩夹层都阻滞了土壤水分的下渗,但其阻滞原理不同,前者表现为黏质夹层渗透性能差导致夹层以上土壤水分滞留,后者归因于粗质夹层土壤基质势小造成水分持留在上部黏质土壤中;根据不同夹层属性的情景模拟结果,提出在风积沙40 cm深度处设置20 cm厚的黄土夹层有利于提高夹层以上土壤水分以供植被利用。研究探明了风积沙区充填黄土对土壤水分运动的影响,并为土壤类型以风积沙和黄土为主的我国西北部矿区在生态修复中的土壤重构方式提供了参考依据。  相似文献   

10.
为研究土壤冻融过程中不同地下水位对土壤的补给规律,在室内进行了两组不同地下水边界条件下的土柱冻结试验: A组无地下水补给,土柱高度60cm;B组地下水维持在距土柱表层60cm深度处。土壤在冻结过程中水分及盐分均呈向上运移趋势,稳定浅地下水补给会加剧水分及盐分向上运移,造成上层土壤盐分的聚积,影响土壤剖面的热量平衡,引起剖面温度的重新分布,从而减缓冻结锋的推进速度。运用HYDRUS-1D冻融模块对不同地下水埋深(0.5m,1.0m,1.5m,2.0m,2.5m)情况下冻结过程中水分运移规律进行了模拟。模拟结果表明:累积补给量在埋深小于1.5 m时随埋深增加而有所增加,而当地下水埋深大于1.5 m时,累积补给量随着埋深增加而有所减小,甚至保持不变。  相似文献   

11.
地下水浅埋条件下越冬期土壤水热迁移的数值模拟   总被引:26,自引:3,他引:23  
雷志栋 《冰川冻土》1998,20(1):51-54
应用土壤冻融过程中水热耦合迁移模型,对内蒙古河套灌区地下水浅埋条件下整个土壤冻融过程进行了模拟,分析了越冬期土壤水热迁移规律.结果表明,快速冻结阶段土壤冻结速度随深度线性减小.冻结过程中某一深度处的含水量增量与冻结速度呈双曲线型相关关系.提出了土壤冻融过程中的特征含水量概念,以描述土壤含水量的动态变化特征.  相似文献   

12.
冻结层的存在使得寒区有着与非寒区差别明显的水文循环过程,土壤冻融规律、水热盐运移、融雪水入渗等已成为众多学者的研究对象. 寒区低温条件下冻融土壤持水性质与非冻融土壤不同,其包气带冻结层往往具有弱透水性、蓄水保墒和隔热减渗的作用,使得寒区春季冻结层土壤的墒情较高. 以冻融土壤和非冻融土壤墒情对比监测为基础,选取地表以下100 cm的土壤为研究对象,在黑龙江大学呼兰校区设置冻融和非冻融对比监测试验场,同时段、同频率、同埋深(间隔 20 cm土层)进行土壤结构、水热及环境参数监测. 通过对比分析了不同埋深不同冻融阶段的墒情参数,量化了低温冻融条件下土壤墒情较非冻融土壤的高出部分,最后对冻土保墒的机理进行探讨与分析. 结果表明:冻结条件下土壤水分重新分布,在土水势的作用下由非冻结区向冻结区迁移. 初冻期地表土壤墒情达到最大,冻结期土壤最大墒情值随冻结锋面迁移分别在20、40、60 cm处达到最大,稳定冻结期和融化初期在80 cm处达到最大;土壤最大墒情值一般在冻结锋面前沿的10~20 cm处,较好地保持了土壤水分. 无论是从空间(不同埋深)还是时间(不同冻融阶段)角度分析,冻融土壤含水率均大于非冻融土壤,二者含水率的差值随埋深和冻融阶段的推移而加大,在稳定冻结期80 cm处达到最大,差值量可达6.4%~7.8%.  相似文献   

13.
选取长江源北麓河地区受冻融作用影响而严重退化的高寒草甸典型区域进行取样, 通过实验和模拟等方法, 对该区域内不同深度土层的土壤特征曲线、土壤饱和导水率、土壤粒径、容重和总孔隙度进行了研究和分析.结果表明: 土壤的水分特征曲线由Gardner等与van Genuchten提出的幂函数方程拟合效果良好, 0.1 MPa为土壤水分特征曲线的临界值. 0~5 cm表层土壤的持水能力最小, 20~30 cm土壤的持水能力最大. 0~5 cm表层土壤供水能力最小, 15~30 cm土层的供水性能最好, 适合植被根系的生长.土壤的饱和导水率随着深度的增加而减小.  相似文献   

14.
论季节冻结区盐渍土改良问题   总被引:2,自引:1,他引:2  
邱国庆 《冰川冻土》1991,13(1):9-16
  相似文献   

15.
冻融期东北农田土壤温度和水分变化规律及影响因素分析   总被引:3,自引:3,他引:0  
为了更好地认识季节性冻融区冻融过程对农田土壤温度和水分的影响, 以吉林省长春市黑顶子河流域为研究对象, 监测了冻融期流域内玉米田和水稻田土壤温度和水分的变化过程。结果表明: 冻融期表层土壤温度主要受积雪厚度影响, 深层土壤温度主要受土壤初始含水率影响。冻结期, 冻结层含水率几乎都呈增加趋势, 其中浅层土壤增幅最大; 冻结速度慢、 初始含水量低、 相邻土层含水量高的土层冻结过程水分增加量更大, 反之则小。融化期, 各下垫面、 土层土壤含水率基本呈下降趋势, 且主要集中在表层0 ~ 30 cm, 水分损失以蒸发为主, 冻结层对土壤蒸发有抑制作用; 冻结层的融化是造成各下垫面不同土层土壤含水率差异, 以及各土层在不同融化阶段土壤含水率差异的主要原因。  相似文献   

16.
多年冻土区活动层土壤水分对不同高寒生态系统的响应   总被引:2,自引:0,他引:2  
土地覆被变化对土壤水分的影响是生态水文学和流域水文学研究的关键问题,基于长江源典型多年冻土区不同高寒草地土壤水分的观测,结合降水、生物量(包括地上和地下)和土壤理化性质,研究了活动层土壤水分变化对不同高寒生态系统的响应. 结果表明:高寒草甸生物量、土壤养分含量均比高寒草原高,且对降水响应更为强烈,致使高寒草甸土壤水分变异性弱于高寒草原. 在土壤完全融化阶段,高寒草甸土壤活动层存在一个低含水层(50 cm左右)和两个相对高含水层(20 cm和120 cm),但高寒草原土壤水分在活动层剖面上有随深度逐渐增大的一致性趋势;在秋季冻结过程中,高寒草甸土冻结起始日滞后于高寒草原土3~15 d;在春季融化阶段,高寒草原土更高的含冰量需要更多的融化潜热. 此外,表层土壤中(0~20 cm),高寒草甸土比高寒草原土有更大的持水特性,而在活动层中下部则呈现完全相反的结果,不同高寒生态系统的演替改变了土壤的水热迁移过程.  相似文献   

17.
兰州新区位于黄土高原西段, 为典型干旱区, 道路修建形成了许多坡度大于30°的工程开挖边坡。在边坡上重建植被对改善局地景观和防治水土流失具有重要的作用, 而坡面土壤水分状况对植被重建影响重大。选择3种整地类型(条形坑、 圆形坑和原状坡样地), 研究兰州新区黄土工程开挖边坡植被重建的初期土壤水分状况, 结果表明: 3种整地类型中条形坑的土壤水分条件最好, 与圆形坑、 原状坡样地土壤水分存在显著差异(P<0.05)。不同灌溉频率下原状坡样地0 ~ 20 cm土层土壤含水量较低, 20 ~ 50 cm土层土壤含水量较高。土壤含水量的变异系数随土层深度的增加而减小, 随灌溉频率的降低而增加。在边坡植被重建初期, 需把土壤水分维持在8.4% ~ 10.8%, 即田间持水量的38% ~ 49%, 才能保证植物正常生育生长。当栽植的植被根系长度大于10 cm时, 可考虑将喷灌频率从每天喷灌改为隔天喷灌, 否则植物有死亡的风险。研究结果可为类似的黄土边坡植被恢复和生态建设提供参考。  相似文献   

18.
20世纪80年代零通量面方法在我国应用中解决了"四水"转化研究中参数不确定性带来的问题,发现在降水入渗补给地下水过程中土壤总水势梯度大于1.0cm H2O/cm,且逐渐降低,流入、流出被监测土层的水量相等时土壤总水势梯度趋近于1.0cm H2O/cm。20世纪90年代,利用土壤水势与含水量之间量化关系,指导了农业节水灌溉,提出在灌溉过程中土壤水势梯度等于1.0cm H2O/cm的时间持续愈长,表明过剩灌溉而浪费的水量愈多的认识。进入21世纪以来,水势理论较广泛地用来解决土壤水盐分运移数值模拟与入渗模型中水文地质参数问题和降水入渗土壤水势运移微观机理研究,并发现表聚型、中聚型和底聚型土壤盐分剖面的水动力学特征。通过土壤水动力场调控改变土壤水盐(养分或污染物)运移是未来重要研究方向。  相似文献   

19.
非饱和土降雨诱发塌陷成因探讨   总被引:9,自引:0,他引:9  
有些土体塌陷由降雨诱发,特别是久旱无雨后突降暴雨,有时会导致岩溶塌陷成群出现。同样,在干旱季节农田灌溉也会导致塌陷大量出现,可见塌陷的产生与土壤的干湿状态密切相关。自然土层接近地表部位为非饱和的包气带,以下才是饱水带,大气降雨及农田灌溉水入渗地下要有一个由非饱和带向饱水带运动的过程。由于土体为固气液和收缩膜四相体系,在地表水入渗地下的过程中,入渗的水峰会对土体结构中的气体产生驱动作用,对固体骨架也会产生动力作用。本文采用非饱和土力学的基本原理,对于非饱和土中吸力和水压传递机理以及降雨诱发塌陷进行了分析,并按提出的成因机制对暴雨诱发塌陷实例进行了分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号