首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Watershed services are the benefits people obtain from the flow of water through a watershed. While demand for such services is increasing in most parts of the world, supply is getting more insecure due to human impacts on ecosystems such as climate or land use change. Population and water management authorities therefore require information on the potential availability of watershed services in the future and the trade-offs involved.In this study, the Soil and Water Assessment Tool (SWAT) is used to model watershed service availability for future management and climate change scenarios in the East African Pangani Basin. In order to quantify actual “benefits”, SWAT2005 was slightly modified, calibrated and configured at the required spatial and temporal resolution so that simulated water resources and processes could be characterized based on their valuation by stakeholders and their accessibility. The calibrated model was then used to evaluate three management and three climate scenarios.The results show that by the year 2025, not primarily the physical availability of water, but access to water resources and efficiency of use represent the greatest challenges. Water to cover basic human needs is available at least 95% of time but must be made accessible to the population through investments in distribution infrastructure. Concerning the trade-off between agricultural use and hydropower production, there is virtually no potential for an increase in hydropower even if it is given priority. Agriculture will necessarily expand spatially as a result of population growth, and can even benefit from higher irrigation water availability per area unit, given improved irrigation efficiency and enforced regulation to ensure equitable distribution of available water. The decline in services from natural terrestrial ecosystems (e.g. charcoal, food), due to the expansion of agriculture, increases the vulnerability of residents who depend on such services mostly in times of drought. The expected impacts of climate change may contribute to an increase or decrease in watershed service availability, but are only marginal and much lower than management impacts up to the year 2025.  相似文献   

2.
Abstract

This paper reviews current knowledge of the potential impacts of climate change on water resources in Africa and the possible limits, barriers or opportunities for adaptation to climate change in internationally-shared river basins. Africa faces significant challenges to water resources management in the form of high variability and regional scarcity, set within the context of generally weak institutional capacity. Management is further challenged by the transboundary nature of many of its river basins. Climate change, despite uncertainty about the detail of its impacts on water resources, is likely to exacerbate many of these challenges. River basins, and the riparian states that share them, differ in their capacities to adapt. Without appropriate cooperation adaptation may be limited and uneven. Further research to examine the factors and processes that are important for cooperation to lead to positive adaptation outcomes and the increased adaptive capacity of water management institutions is suggested.  相似文献   

3.
ABSTRACT

Droughts have long impacted humans with adverse consequences, hindering the achievement of the United Nations Sustainable Development Goals. To reduce vulnerability, multiple ways of adaptation have been developed, most of which, historically, focused on “hard-path” implementation of infrastructure. However, since water consumption plays a major role in the supply–demand balance, “soft-path” solutions focusing on the control of water use have recently intensified. Furthermore, due to the dynamic interaction between humans and water, changes might occur over time, requiring adaptation measures to be continually reshaped. We assess the dynamic nature of human adaptation to droughts in the semi-arid Extended Jaguaribe Basin, Brazil. We explore the shift from hard, supply-oriented measures to soft governance, and its causes: natural and socio-economic processes not anticipated in the original water resources policy. The observed phenomenon and discussion of its causes help to build knowledge on human–water interactions that are applicable more generally.  相似文献   

4.
T. Estrela 《水文科学杂志》2013,58(6):1154-1167
Abstract

Impacts on water resources produced by climate change can be exacerbated when occurring in regions already presenting low water resources levels and frequent droughts, and subject to imbalances between water demands and available resources. Within Europe, according to existing climate change scenarios, water resources will be severely affected in Spain. However, the detection of those effects is not simple, because the natural variability of the water cycle and the effects of water abstractions on flow discharges complicate the establishment of clear trends. Therefore, there is a need to improve the assessment of climate change impacts by using hydrological simulation models. This paper reviews water resources and their variability in Spain, the recent modelling studies on hydrological effects of climate change, expected impacts on water resources, the implications in river basins and the current policy actions.

Editor Z.W. Kundzewicz

Citation Estrela, T., Pérez-Martin, M.A., and Vargas, E., 2012. Impacts of climate change on water resources in Spain. Hydrological Sciences Journal, 57 (6), 1154–1167.  相似文献   

5.
This paper presents an overview of the current water resources scenario in India, and recent work carried out in India to assess the climate change impact on hydrology and water resources. Issues that need to be addressed with respect to climate change/variability in sustainable water resources planning and management are discussed.  相似文献   

6.
The Tibetan Plateau (TP) is the “water tower of Asia” and it plays a key role on both hydrology and climate for southern and eastern Asia. It is critical to explore the impact of climate change on runoff for better water resources management in the TP. However, few studies pay attention to the runoff response to climate change in large river systems on the TP, especially in data-sparse upstream area. To complement the current body of work, this study uses two rainfall-runoff models (SIMHYD and GR4J) to simulate the monthly and annual runoff in the upstream catchments of the Yarlung Tsangpo River basin (YTR) under historical (1962–2002) and future (2046–2065 A1B scenario) climate conditions. The future climate series are downscaled from a global climate model (MIROC3.2_hires) by a high resolution regional climate model (RegCM3). The two rainfall-runoff models successfully simulate the historical runoff for the eight catchments in the YTR basin, with median monthly runoff Nash–Sutcliffe Efficiency of 0.86 for SIMHYD and 0.83 for GR4J. The mean annual future temperature in eight catchments show significant increase with the median of +3.8 °C. However, the mean annual future precipitation shows decrease with the median of ?5.8 % except in Lhatse (+2.0 %). The two models show similar modeling results that the mean annual future runoff in most of catchments (seven in eight) shows decrease with the median of ?13.9 % from SIMHYD and ?15.2 % from GR4J. The results achieved in this study are not only helpful for local water resources management, but also for future water utilization planning in the lower reaches region of the Brahmaputra.  相似文献   

7.
Planning and design of coastal protection rely on information about the probabilities of very severe storm tides and the possible changes that may occur in the course of climate change. So far, this information is mostly provided in the form of high percentiles obtained from frequency distributions or return values. More detailed information and assessments of events that may cause extreme damages or have extreme consequences at the coast are so far still unavailable. We describe and compare two different approaches that may be used to identify highly unlikely but still physically possible and plausible events from model simulations. Firstly, in the case when consistent wind and tide-surge data are available, different metrics such as the height of the storm surge can be derived directly from the simulated water levels. Secondly, in cases where only atmospheric data are available, the so called effective wind may be used. The latter is the projection of the horizontal wind vector on that direction which is most effective in producing surges at the coast. Comparison of events identified by both methods show that they can identify extreme events but that knowledge of the effective wind alone does not provide sufficient information to identify the highest storm surges. Tracks of the low-pressure systems over the North Sea need to be investigated to find those cases, where the duration of the high wind is too short to induce extreme storm tides. On the other hand, factors such as external surges or variability in mean sea level may enhance surge heights and are not accounted for in estimates based on effective winds only. Results from the analysis of an extended data set suggest that unprecedented storm surges at the German North Sea coast are possible even without taking effects from rising mean sea level into account. The work presented is part of the ongoing project “Extreme North Sea Storm Surges and Their Consequences” (EXTREMENESS) and represents the first step towards an impact assessment for very severe storm surges which will serve as a basis for development of adaptation options and evaluation criteria.  相似文献   

8.
The recent (1970–1999) and future (2070–2099) climates under the SRES A1B scenario, simulated by the regional climate model RegCM4.0 driven with lateral boundary conditions from the ECHAM5 general circulation model, are utilized to force a large-scale hydrological model for assessing the hydrological response to climate changes in the Yangtze River Basin, China. The variable infiltration capacity model (VIC) is utilized to simulate various hydrological components for examining the changes in streamflow at various locations throughout the Yangtze River Basin. In the end of the twenty-first century, most of the Yangtze River Basin stands out as “hotspots” of climate change in China, with an annual temperature increase of approximately 3.5 °C, an increase of annual precipitation in North and a decrease in South. Runoff in the upper reach of Yangtze River is projected to increase throughout the year in the future, especially in spring when the increase will be approximately 30 %. Runoff from the catchments in the northern part of Yangtze River will increase by approximately 10 %, whereas that in the southern part will decrease, especially in the dry season, following precipitation changes. The frequency of extreme floods at three mainstream stations (Cuntan, Yichang, and Datong) is projected to increase significantly. The original extreme floods with return periods of 50, 20, and 10 years will change into floods with return periods of no more than 20, 10, and 5 years. The projected increase in extreme floods will have significant impacts on water resources management and flood control systems in the Yangtze River Basin.  相似文献   

9.
Heyin Chen 《水文科学杂志》2013,58(10):1739-1758
Abstract

Changes in climate and land cover are among the principal variables affecting watershed hydrology. This paper uses a cell-based model to examine the hydrologic impacts of climate and land-cover changes in the semi-arid Lower Virgin River (LVR) watershed located upstream of Lake Mead, Nevada, USA. The cell-based model is developed by considering direct runoff based on the Soil Conservation Service - Curve Number (SCS-CN) method and surplus runoff based on the Thornthwaite water balance theory. After calibration and validation, the model is used to predict LVR discharge under future climate and land-cover changes. The hydrologic simulation results reveal climate change as the dominant factor and land-cover change as a secondary factor in regulating future river discharge. The combined effects of climate and land-cover changes will slightly increase river discharge in summer but substantially decrease discharge in winter. This impact on water resources deserves attention in climate change adaptation planning.
Editor Z.W. Kundzewicz  相似文献   

10.
Population explosion and its many associated effects (e.g. urbanization, water pollution, deforestation) have already caused enormous stress on the world’s fresh water resources and, in turn, environment, health, and economy. According to latest World Health Organization estimates, about 900 million people still lack access to safe drinking water, about 2.5 billion people lack access to proper sanitation, millions of people die every year from water-related disasters and diseases, and economic losses in the order of billions of dollars occur due to water-related disasters. With the global climate change anticipated to have threatening consequences on our water resources and environment both at the global level and at local/regional levels (e.g. increases in the number and magnitude of floods and droughts, increases in sea levels), a general assessment is that the future state of our water resources will be a lot worse than it is now. The facts that over 300 rivers around the world are being shared by two or more nation states and that there are already numerous conflicts in the planning, development, and management of water resources in these basins further complicate matters for future water resources planning. In view of these, any sincere effort towards proper management of our future water resources and resolving potential future water-related conflicts will need to overcome many challenges. These challenges are both biophysical science-related and human science-related. The biophysical science challenges include: identification of the actual causes of climate change, development of global climate models (GCMs) that can adequately incorporate these causes to generate dependable future climate projections at larger scales, formulation of appropriate techniques to downscale the GCM outputs to local conditions for hydrologic predictions, and reliable estimation of the associated uncertainties in all these. The human science challenges have social, political, economic, and environmental facets that often act in an interconnected manner; proper ‘communication’ of (or lack thereof) our climate-water ‘scientific’ research activities to fellow scientists and engineers, policy makers, economists, industrialists, farmers, and the public at large crucially contributes to these challenges. The present study is intended to review the current state of our water resources and the climate change problem and to detail the challenges in dealing with the potential impacts of climate change on our water resources.  相似文献   

11.
Two approaches can be distinguished in studies of climate change impacts on water resources when accounting for issues related to impact model performance: (1) using a multi-model ensemble disregarding model performance, and (2) using models after their evaluation and considering model performance. We discuss the implications of both approaches in terms of credibility of simulated hydrological indicators for climate change adaptation. For that, we discuss and confirm the hypothesis that a good performance of hydrological models in the historical period increases confidence in projected impacts under climate change, and decreases uncertainty of projections related to hydrological models. Based on this, we find the second approach more trustworthy and recommend using it for impact assessment, especially if results are intended to support adaptation strategies. Guidelines for evaluation of global- and basin-scale models in the historical period, as well as criteria for model rejection from an ensemble as an outlier, are also suggested.  相似文献   

12.
Climate change and its impact on hydrological processes are overarching issues that have brought challenges for sustainable water resources management. In this study, surface water resources in typical regions of China are projected in the context of climate change. A water balance model based on the Fu rational function equation is established to quantify future natural runoff. The model is calibrated using data from 13 hydrological stations in 10 first-class water resources zones of China. The future precipitation and temperature series come from the ISI-MIP (Inter-Sectoral Impact Model Intercomparison Project) climate dataset. Taking natural runoff for 1961–1990 as a baseline, the impacts of climate change on natural runoff are studied under three emissions scenarios: RCP2.6, RCP4.5 and RCP8.5. Simulated results indicate that the arid and semi-arid region in the northern part of China is more sensitive to climate change compared to the humid and semi-humid region in the south. In the near future (2011–2050), surface water resources will decrease in most parts of China (except for the Liaozhong and Daojieba catchments), especially in the Haihe River Basin and the middle reaches of the Yangtze River Basin. The decrement of surface water resources in the northern part of China is more than that in the southern part. For the periods 2011–2030 and 2031–2050, surface water resources are expected to decrease by 12–13% in the northern part of China, while those in the southern part will decrease by 7–10%.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR R. Hirsch  相似文献   

13.
Globally, various climatic studies have estimated a reduction of crop yields due to changes in surface temperature and precipitation especially for the developing countries which is heavily dependent on agriculture and lacks resources to counter the negative effects of climate change. Uganda's economy and the wellbeing of its populace depend on rain-fed agriculture which is susceptible to climate change. This study quantified the impacts of climate change and variability in Uganda and how coping strategies can enhance crop production against climate change and/or variability.The study used statistical methods to establish various climate change and variability indicators across the country, and uses the FAO AquaCrop model to simulate yields under possible future climate scenarios with and without adaptation strategies. Maize, the most widely grown crop was used for the study. Meteorological, soil and crop data were collected for various districts representing the maize growing ecological zones in the country.Based on this study, it was found that temperatures have increased by up to 1 °C across much of Uganda since the 1970s, with rates of warming around 0.3 °C per decade across the country. High altitude, low rainfall regions experience the highest level of warming, with over 0.5 °C/decade recorded in Kasese. Rainfall is variable and does not follow a specific significant increasing or decreasing trend. For both future climate scenarios, Maize yields will reduce in excess of 4.7% for the fast warming-low rainfall climates but increase on average by 3.5% for slow warming-high rainfall regions, by 2050. Improved soil fertility can improve yields by over 50% while mulching and use of surface water management practices improve yields by single digit percentages. The use of fertilizer application needs to go hand in hand with other water management strategies since more yields as a result of the improved soil fertility leads to increased water stress, especially for the dry climates.  相似文献   

14.
Water scarcity is a media darling often times described as a trigger of conflict in arid regions, a by‐product of human influences ranging from desertification to climate change, or a combination of natural‐ and human‐induced changes in the water cycle. A multitude of indexes have been developed over the past 20 years to define water scarcity to map the “problem” and guide international donor investment. Few indexes include groundwater within the metrics of “scarcity.” Institutional communication contributes to the recognition of local or regional water scarcity. However, evaluations that neglect groundwater resources may incorrectly define conditions as scarce. In cases where there is a perception of scarcity, the incorporation of groundwater and related storage in aquifers, political willpower, new policy tools, and niche diplomacy often results in a revised status, either reducing or even eliminating the moniker locally. Imaginative conceptualization and innovative uses of aquifers are increasingly used to overcome water scarcity.  相似文献   

15.
Understanding and modelling pluvial flood patterns is pivotal for the estimation of flood impacts in urban areas, especially in a climate change perspective. However, urban flood modelling under climate change conditions poses several challenges. On one hand, the identification and collection of climate change data suitable for flood-related evaluations requires consistent computational and scientific effort. On the other hand, large difficulties can arise in the reproduction of the rainfall-runoff transformation process in cases when only little information about the subsurface processes is known. In this perspective, a simplified approach is proposed to address the challenges regarding the quantitative estimation of climate change effects on urban flooding for real case applications. The approach is defined as “bottom-up” because climate change information is not included in flood modelling, but it is only invoked for the interpretation of results. In other words, the challenge faced in this work is the development of a modelling strategy that is expeditious, because it does not require flood simulations for future rainfall scenarios, but only under current climate conditions, thus reducing the overall computational effort; and it is flexible, because results can be easily updated once new climate change data, scenarios or methods become available, without the need of additional flood simulations. To simulate real case applications, the approach is tested for a scenario analysis, where different return periods and hyetograph shapes are used as input for urban inundation modelling in Naples, Italy. The approach can support public and private stakeholders, such as land administrators and water systems managers; moreover, it represents a valuable and effective basis for climate change risk communication strategies.  相似文献   

16.
In Malawi, production from subsistence rain fed agriculture is highly vulnerable to climate change and variability. In response to the adverse effects of climate change and variability, a National Adaptation Programme of Action is used as framework for implementing adaptation programmes. However, this framework puts limited significance on indigenous knowledge systems (IKS). In many parts of the world, IKS have shown potential in the development of locally relevant and therefore sustainable adaptation strategies. This study was aimed at assessing the role of IKS in adaptation to climate change and variability in the agricultural sector in a rural district of Chikhwawa, southern Malawi. The study used both qualitative data from focus group and key informant interviews and quantitative data from household interviews and secondary data to address the research objectives. The study established that the local communities are able to recognise the changes in their climate and local environment. Commonly mentioned indicators of changing climatic patterns included delayed and unpredictable onset of rainfall, declining rainfall trends, warming temperatures and increased frequency of prolonged dry spells. An analysis of empirical data corroborates the people’s perception. In addition, the community is able to use their IKS to adapt their agricultural systems to partially offset the effects of climate change. Like vulnerability to climate change, IKS varies over a short spatial scale, providing locally relevant adaptation to impacts of climate change. This paper therefore advocates for the integration of IKS in programmes addressing adaptation to climate change and vulnerability. This will serve to ensure sustainable and relevant adaptation strategies.  相似文献   

17.
Climate variability and human activity were regarded as two contributors to streamflow alteration. However, the contributions of the two factors were still unclear in Dongting Lake. Therefore, it was crucial to quantify the relative impact of climate variability and human activity on streamflow alteration. The time series (1961–2010) was divided into three periods, namely, natural period (1961–1980), change period I (1981–2002) and change period II (2003–2010). Sensitivity analysis based on Budyko‐type equations was applied to reveal the contributions of climate variability and human activity in those two change periods, respectively. The results showed that during the change period I, climate variability was the main factor responsible for streamflow alteration in most parts of Dongting Lake, accounting for 60.07–67.27%. However, the impact of climate variability was slightly smaller than that of human activity in West Dongting Lake (the former accounting for 43.20% while the latter accounting for 56.80%). For the change period II, human activity was the dominate factor for streamflow alteration, accounting for 58.89–78.33%. The impact of climate variability gradually decreased while the impact of human activity gradually increased. Along with the intensification of the human activity, the impact of it became more dominant. The results could provide a reference for water resources planning and management decisions. Under the condition of uncontrollable climatic factor, effective measures should be put forward in controlling human activity, such as reservoir/dam operation, closed management of protected area and so on. Besides, it is essential to study the impact of climate variability on future water resources and water resource management under different climate change scenarios. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
In this study, the impacts of climate change on crop water requirements and irrigation water requirements on the regional cropping pattern were evaluated using two climate change scenarios and combinations of 20 GCM models. Different models including CROPWAT, MODFLOW, and statistical models were used to evaluate the climate change impacts. The results showed that in the future period (2017 to 2046) the temperature in all months of the year will increase at all stations. The average annual precipitation decline in Isfahan, Tiran, Flavarjan, and Lenj stations for RCP 4.5 and RCP 8.5 scenarios are 18.6 and 27.6%, 15.2 and 18%, 22.5 and 31.5%, and 10.5 and 12.1%, respectively. The average increase in the evapotranspiration for RCP 4.5 and RCP 8.5 scenarios are about 2.5 and 4.1%, respectively. The irrigation water demands increases considerably and for some crops, on average 18%. Among the existing crops in the cropping pattern, barley, cumin, onion, wheat, and forage crops are more sensitive and their water demand will increase significantly. Results indicate that climate change could have a significant impact on water resources consumption. By considering irrigation efficiency in the region, climate change impacts will result in about 35 to 50 million m3/year, over-extraction from the aquifer. This additional exploitation causes an extra drop of 0.4 to 0.8 m in groundwater table per year in the aquifer. Therefore, with regard to the critical condition of the aquifer, management and preventive measures to deal with climate change in the future is absolutely necessary.  相似文献   

19.
Stochastic Environmental Research and Risk Assessment - Adaptive planning in climate change condition is a significant challenge for effective management of water resources and agricultural...  相似文献   

20.
Identifying the role of the two main driving factors—climate change and human interventions—in influencing runoff processes is essential for sustainable water resources management. For this purpose, runoff regime change detection methods were used to divide the available hydroclimatic variables into a baseline and a disturbed period. We applied hydrological modelling and the climate elasticity of runoff method to determine the contribution of climate change and human interventions to changes in runoff. The hydrological model, SWAT, was calibrated during the baseline period and used to simulate the naturalized runoff pattern for the disturbed period. Significant changes in runoff in the study watershed were detected from 1982, suggesting that human interventions play a dominant role in influencing runoff. The combined effects of climate change and human interventions resulted in a 41.3 mm (23.9%) decrease in runoff during the disturbed period, contributing about 40% and 60% to the total runoff change, respectively. Furthermore, analysis of changes in land cover dynamics in the watershed over the past four decades supported these changes in runoff. Contrary to other decades, the discrepancy between naturalized and observed runoff was small in the 2010s, likely due to increased baseflow as a result of storage and/or release of excess water during the dry season. This study contributes to our understanding of how climate change and human interventions affect hydrological responses of watersheds, which is important for future sustainable water management and drought adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号