首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To quantify chemical weathering and biological uptake, mass-balance calculations were performed on two small forested watersheds located in the Blue Ridge Physiographic Province in north-central Maryland, USA. Both watersheds, Bear Branch (BB) and Fishing Creek Tributary (FCT), are underlain by relatively unreactive quartzite bedrock. Such unreactive bedrock and associated low chemical-weathering rates offer the opportunity to quantify biological processes operating within the watershed. Hydrologic and stream-water chemistry data were collected from the two watersheds for the 9-year period from June 1, 1990 to May 31, 1999. Of the two watersheds, FCT exhibited both higher chemical-weathering rates and biomass nutrient uptake rates, suggesting that forest biomass aggradation was limited by the rate of chemical weathering of the bedrock. Although the chemical-weathering rate in the FCT watershed was low relative to the global average, it masked the influence of biomass base-cation uptake on stream-water chemistry. Any differences in bedrock mineralogy between the two watersheds did not exert a significant influence on the overall weathering stoichiometry. The difference in chemical-weathering rates between the two watersheds is best explained by a larger proportion of reactive phyllitic layers within the bedrock of the FCT watershed. Although the stream gradient of BB is about two-times greater than that of FCT, its influence on chemical weathering appears to be negligible. The findings of this study support the biomass nutrient uptake stoichiometry of K1.0Mg1.1Ca0.97 previously determined for the study site. Investigations of the chemical weathering of relatively unreactive quartzite bedrock may provide insight into critical zone processes.  相似文献   

2.
Hydrologists have long been concerned with the interface of groundwater flow into estuaries, but not until the end of the last century did other disciplines realize the major role played by groundwater transport of nutrients to estuaries. Mass balance and stable isotopic data suggest that land-derived NO3, NH4, and dissolved organic N do enter estuaries in amounts likely to affect the function of the receiving ecosystem. Because of increasing human occupancy of the coastal zone, the nutrient loads borne by groundwater have increased in recent decades, in spite of substantial interception of nutrients within the land and aquifer components of watersheds. Groundwater-borne nutrient loads have increased the N content of receiving estuaries, increased phytoplankton and macroalgal production and biomass, decreased the area of seagrasses, and created a cascade of associated ecological changes. This linkage between land use and eutrophication of estuaries occurs in spite of mechanisms, including uptake of land-derived N by riparian vegetation and fringing wetlands, “unloading” by rapid water removal, and direct N inputs to estuaries, that tend to uncouple the effects of land use on receiving estuaries. It can be expected that as human activity on coastal watersheds continues to increase, the role of groundwater-borne nutrients to the receiving estuary will also increase.  相似文献   

3.
Solute-based geochemical mass balance methods are commonly used in small-watershed studies to estimate rates of a variety of geochemical processes at the Earth’s surface, including primary-mineral weathering and soil formation, and the quantitative contribution of these elemental transfer processes to cation budgets, nutrient cycling, and landscape susceptibility to acid deposition. Weathering rates of individual minerals in watershed mass-balance studies are determined by solving a system of simultaneous linear geochemical mass-balance equations with constant (stoichiometric) coefficients. These equations relate the measured net fluxes to the (known) stoichiometries and (unknown) rates of weathering reactions for multiple minerals in the weathering profiles. Solving the system of equations requires petrologic, mineralogic, hydrologic, botanical, and aqueous geochemical data. The number of mineral-weathering rates that can be determined is limited by the number of elements for which solute mass-balance equations can be written. In addition to calculating mineral weathering rates, elemental transfer into or out of the biomass may also be calculated. Elemental uptake by aggrading forest vegetation can act as an intrawatershed sink for at least some mineral-derived cations, producing mineral weathering rates higher than would be estimated from solute fluxes alone; similarly, element release from decaying forest biomass can result in higher solute fluxes than are produced by weathering alone. The mathematics of, significant contributions from, role of biomass in, and recent advances in, watershed geochemical mass-balance methods are discussed using examples from the Appalachian headwaters watersheds of the Coweeta Hydrologic Laboratory in the southern Blue Ridge Physiographic Province of North Carolina, USA.  相似文献   

4.
Macrobenthic community indices were examined for their ability to characterize the influence of shoreline alteration and watershed land use in nearshore estuarine environments of the Chesapeake Bay, U.S.A. Twenty-three watersheds were surveyed in 2002 and 2003 for nearshore macrobenthic assemblages, environmental parameters (i.e., dissolved oxygen, pH, total suspended solids, salinity, and sediment composition), shoreline condition, and land use. Two indices of macrobenthic biological integrity, benthic index of biological integrity in the nearshore (B-IBIN) and abundance biomass comparison (W-value), were evaluated for associations with environmental and shoreline condition, and riparian and watershed land use. Comparisons between nearshore measures of the B-IBI with offshore values (>2 m; Chesapeake Bay benthic index of biological integrity [B-IBICB]) were conducted to assess the ability of the index to reflect land use patterns at near and far proximities to shore. Nearshore macrobenthic communities were represented by a total of 94 species (mean number of species =9.2 ± 0.4 sample−1), and were dominated by the phyla Arthropoda, Annelida, and Mollusca. Temporal variability in environmental conditions and macrobenthic abundance and biomass may be attributable to the notable increase in precipitation in 2003 that led to nutrient influxes and algal blooms. For the biotic indices applied in the nearshore, the highest scores were associated with forested watersheds (W-value, B-IBIN). Ecological thresholds were identified with nonparametric change-point analysis, which indicated a significant reduction in B-IBIN and W-value scores when the amount of developed shoreline exceeded 10% and developed watershed exceeded 12%, respectively.  相似文献   

5.
In September 2011 and March 2012, benthic nutrient fluxes were measured in the San Francisco Bay Delta, across a gradient from above the confluence of the Sacramento and San Joaquin Rivers to Suisun Bay. Dark and illuminated core incubation techniques were used to measure rates of denitrification, nutrient fluxes (phosphate, ammonium, nitrate), and oxygen fluxes. While benthic nutrient fluxes have been assessed at several sites in northern San Francisco Bay, such data across a Delta–Bay transect have not previously been determined. Average September rates of DIN (nitrate, nitrite, ammonium) flux were net positive across all sites, while March DIN flux indicated net uptake of DIN at some sites. Denitrification rates based on the N2/Ar ratio approach were between 0.6 and 1.0 mmol m?2 day?1, similar to other mesotrophic estuarine sediments. Coupled nitrification–denitrification was the dominant denitrification pathway in September, with higher overlying water nitrate concentrations in March resulting in denitrification driven by nitrate flux into the sediments. Estimated benthic microalgal productivity was variable and surprisingly high in Delta sediments and may represent a major source of labile carbon to this ecosystem. Variable N/P stoichiometry was observed in these sediments, with deviations from Redfield driven by processes such as denitrification, variable light/dark uptake of nutrients by microalgae, and adsorption of soluble reactive phosphorus.  相似文献   

6.
Biomass, net primary productivity (NPP), foliar elemental content, and demography of Thalassia testudinum were monitored in populations from five sites across Florida Bay beginning in January 2001. Sites were selected to take advantage of the spatial variability in phosphorus (P) availability and salinity climates across the bay. Aboveground biomass and NPP of T. testudinum were determined five to six times annually. Short-shoot demography, belowground biomass, and belowground NPP were assessed from a single destructive harvest at each site and short-shoot cohorts were estimated from leaf scar counts multiplied by site-specific leaf production rates. Biomass, relative growth rate (RGR), and overall NPP were positively correlated with P availability. Additionally, a positive correlation between P availability and the ratio of photosynthetic to non-photosynthetic biomass suggests that T. testudinum increases allocation to aboveground biomass as P availability increases. Population turnover increased with P availability, evident in positive correlations of recruitment and mortality rates with P availability. Departures from seasonally modeled estimates of RGR were found to be influenced by salinity, which depressed RGR when below 20 psu or above 40 psu. Freshwater management in the headwaters of Florida Bay will alter salinity and nutrient climates. It is becoming clear that such changes will affect T. testudinum, with likely feedbacks on ecosystem structure, function, and habitat quality.  相似文献   

7.
陆地生态系统植物的生长受到营养元素氮(N)和磷(P)的可利用性的限制。已有的证据表明营养元素的相对丰度将控制生态系统的营养元素循环和能量流动的速度。文章提出如下假设:为了适应环境的变化,植物具有可伸缩性地调整营养元素含量的能力,也就是营养元素化学计量比值变化的能力,植物N/P比值波动的影响不仅来源于N对P的相对可利用性的变化,也来源于其他营养元素化学计量的变化,尤其是与Ca的化学计量的变化。为了验证上述假设,本研究利用3种C4植物和11种C3植物,研究了植物N/P化学计量比值的波动随N与Ca和P与Ca化学计量的变化模式:对C4植物来说,N/P比值的波动主要受生物量P与Ca化学计量变化的影响;而对C3植物来说,则同时受N与Ca和P与Ca化学计量变化的控制,它们之间的相对控制能力的大小将决定植物N/P比值波动的变化梯度,C4植物和C3植物的N/P比值的波动都要受土壤pH值的影响。本研究对了解物种丰度和N对P的相对可利用性、N与Ca,以及P与Ca的化学计量之间关系具有重要意义。  相似文献   

8.
This study proposes an ecological mechanism for the terminal Pleistocene population collapse and subsequent extinction of North American megafauna. Observations of modern ecosystems indicate that feedback mechanisms between plant nutrient content, nitrogen cycling, and herbivore–plant interactions can vary between a nutrient accelerating mode favoring increased herbivore biomass and a nutrient decelerating mode characterized by reduced herbivore biomass. These alternate modes are determined largely by plant nitrogen content. Plant nitrogen content is known to be influenced by atmospheric CO2 concentrations, temperature, and precipitation. It is argued that Lateglacial climate change, particularly increases in atmospheric CO2, shifted herbivore–ecosystem dynamics from a nutrient accelerating mode to a nutrient decelerating mode at the end of the Pleistocene, leading to reduced megafaunal population densities. An examination of Sporormiella records – a proxy for megaherbivore biomass – indicates that megafaunal populations collapsed first in the east and later in the west, possibly reflecting regional differences in precipitation or vegetation structure. The fortuitous intersection of the climatically driven nitrogen sink, followed by any one or combination of subsequent anthropogenic, environmental, or extra-terrestrial mechanisms could explain why extinctions took place at the end of the Pleistocene rather than during previous glacial–interglacial cycles.  相似文献   

9.
The geoindicators of land degradation such as erosion, vegetation change and wetland loss were identified in the Kashmir Himalayan region using a geospatial model. Geomatics techniques were used to generate information on landuse/landcover, NDVI, slope and the lithological formations that form inputs to map the erosion risk. The results of erosion analysis revealed that 48.27?% of the area is under very high erosion risk. The Middle Himalayan watersheds were found to be under high erosion risk compared to the Greater Himalayan watersheds. Pohru and Doodhganga watersheds of the Middle Himalayas were found to be under very high erosion risk. These two watersheds were studied in detail from 1992 to 2001 for vegetation change and wetland loss. In Pohru watershed, significant change was found in the dense forest with 10?% decrease. Wular lake, an important wetland in the Pohru watershed, has shrunk by 2.7?km2 during the last decade. The vegetation change analysis of the Doodhganga watershed revealed that there has been 9.13?% decrease in the forest, 7?% increase in built up and the largest wetland in the Doodhganga, Hokarsar, has reduced by 1.98?km2 from 1992 to 2001. Field studies showed that anthropogenic activities and chemically deficit soil (Karewa) along Pir Panjal ranges are the main factors responsible for high land degradation in the area. The assessment of these geoindicators provided valuable information for identifying causes and consequences of the land degradation and thus outlining potential hazard areas and designing remedial measures.  相似文献   

10.
The marine shelf areas in subtropical and tropical regions represent only 35% of the total shelf areas globally, but receive a disproportionately large amount of water (65%) and sediment (58%) discharges that enter such environments. Small rivers and/or streams that drain the mountainous areas in these climatic zones deliver the majority of the sediment and nutrient inputs to these narrow shelf environments; such inputs often occur as discrete, episodic introductions associated with storm events. To gain insight into the linked biogeochemical behavior of subtropical/tropical mountainous watershed-coastal ocean ecosystems, this work describes the use of a buoy system to monitor autonomously water quality responses to land-derived nutrient inputs and physical forcing associated with local storm events in the coastal ocean of southern Kaneohe Bay, Oahu, Hawaii, USA. The data represent 2.5 years of near-real time observations at a fixed station, collected concurrently with spatially distributed synoptic sampling over larger sections of Kaneohe Bay. Storm events cause most of the fluvial nutrient, particulate, and dissolved organic carbon inputs to Kaneohe Bay. Nutrient loadings from direct rainfall and/or terrestrial runoff produce an immediate increase in the N:P ratio of bay waters up to values of 48 and drive phytoplankton biomass growth. Rapid uptake of such nutrient subsidies by phytoplankton causes rapid declines of N levels, return to N-limited conditions, and subsequent decline of phytoplankton biomass over timescales ranging from a few days to several weeks, depending on conditions and proximity to the sources of runoff. The enhanced productivity may promote the drawing down of pCO2 and lowering of surface water column carbonate saturation states, and in some events, a temporary shift from N to P limitation. The productivity-driven CO2 drawdown may temporarily lead to air-to-sea transfer of atmospheric CO2 in a system that is on an annual basis a source of CO2 to the atmosphere due to calcification and perhaps heterotrophy. Storms may also strongly affect proximal coastal zone pCO2 and hence carbonate saturation state due to river runoff flushing out high pCO2 soil and ground waters. Mixing of the CO2-charged water with seawater causes a salting out effect that releases CO2 to the atmosphere. Many subtropical and tropical systems throughout the Pacific region are similar to Kaneohe Bay, and our work provides an important indication of the variability and range of CO2 dynamics that are likely to exist elsewhere. Such variability must be taken into account in any analysis of the direction and magnitude of the air?Csea CO2 exchange for the integrated coastal ocean, proximal and distal. It cannot be overemphasized that this research illustrates several examples of how high frequency sampling by a moored autonomous system can provide details about ecosystem responses to stochastic atmospheric forcing that are commonly missed by traditional synoptic observational approaches. Finally, the work exemplifies the utility of combining synoptic sampling and real-time autonomous observations to elucidate the biogeochemical and physical responses of coastal subtropical/tropical coral reef ecosystems to climatic perturbations.  相似文献   

11.
Soil nutrient dynamics, potential biological nitrogen fixation (BNF) changes, and their relations were studied using four land use types. Further, we investigated BNF changes in the presence of biochar in soils. Soil samples were collected from arable, vineyard, grassland, and forest soils during four seasons, and analyzed for abiotic contents of total nitrogen, NH4+-N, NO3?-N, ammonium lactate (AL)-soluble K2O, P2O5, and soil organic carbon (SOC) concentrations. Potential N2 fixation was measured as ethylene (C2H4) production from acetylene (C2H2) reduction (ARA). The study focused on the changes in ARA when different types of biochars (T600, T650, and T700) were applied to soil samples in different amounts (0, 0.5, 2.5, and 5.0% wt wt?1) under laboratory conditions. We found strong correlations between soil chemical parameters and ARA values, especially in the case of soil pH, total N, SOC, and P2O5 contents. In the case of arable soil, the ARA measurements were up to 227 times higher compared to grassland and forest samples. Biochar application affected N2-fixing microbial responses among land use types, most notably decreases in arable lands and forest soils. We found that a high amount of biochar added to the soils can greatly suppress N2-fixing activities. Our results highlight the strong relationship between soil nutrient changes and the intensity of anthropogenic influence.  相似文献   

12.
Surveys were conducted in April and June 1995 to quantify the uptake of dissolved nutrients in a highly turbid estuary (the Humber, United Kingdom) and to determine the factors controlling nutrient uptake rates. A combination of isotope labelling methods were used in conjunction with on-deck incubation techniques to estimate the uptake of dissolved nutrients (PO4 3?, NH4 +, NO3 ?, and urea) in surface samples collected from coastal waters. Similarly, isotope labelling and laboratory incubgation techniques were employed to estimate dissolved nitrogen uptake (NH4 +, NO3 ?, and urea) in surface samples collected from the estuary mouth. Nutrient uptake rates were at the low end of ranges for coastal and estuarine environments reported in the literature. Concentrations of chlorophyll and the availability of photosynthetically active radiation were identified as potentially important factors controlling the uptake rates of nutrients. Uptake rates of dissolved nitrogen in the Humber mouth appeared to be related to the location of smapling sites. Depletion rates of dissolved nutrients in situ were estimated on the basis of integrated water column nutrient uptake rates and indicated assimilation of up to 16% of nutrients in the entire water column. Estimated depletion rates did not indicate preferential loss of any of the nutrient species investigated.  相似文献   

13.
Populations of suspension feeding bivalves constitute a metabolically important component of the benthos in Colorado Lagoon, Long Beach, California. Oxygen and nutrient flux were measuredin situ at monthly intervals over a two-year period. Estimates of bivalve metabolism were based on regressions of oxygen and ammonium flux on a measure of clam biomass adjusted allometrically. The introduced bivalve,Mercenaria mercenaria, occurs at maximum densities exceeding 400 per m2. Based on mean densities (143 per m2), bivalves contributed more than 50% of the 77 mg O2 per m2 per hr mean annual oxygen uptake and the 191 μM per m2 per hr mean ammonium release. Although bivalve biomass was not correlated with other inorganic nutrient flux, on an annual basis the sediments were a source of phosphate (26 μM per m2 per hr annual average, range 5 to 50) and a small sink for nitrate and nitrite. Net primary production, ammonium flux, and phosphate flux showed great annual variability while respiration was relatively constant. Total community oxygen uptake was not correlated with temperature. Long term incubations revealed no obvious rhythms having a period between four hours and four days. The benthic flux of ammonium and phosphate was calculated to supply more than the annual requirement of Lagoon phytoplankton.  相似文献   

14.
The sandy beachface at Cape Henlopen, Delaware, receives dissolved nutrient inputs from fresh upland groundwater and estuarine seawater and exports nutrients through intertidal and submarine groundwater discharge. The discharge of brackish beachface waters indicates that there must be additional diagenetic nutrient sources and sinks within the porous beachface aquifer. At some times of the year, diagenetic processes within the beachface remove nitrate from waters draining the beachface consistent with the stoichiometry of either denitrification or dissimilatory nitrate reduction to ammonium. Up to 50–100% of the nitrate load from the upland groundwaters is apparently reduced to N2O/N2 gas or ammonium during these periods. At other times, ammonium and nitrate are added to beachface waters consistent with the stoichiometry of organic matter remineralization and nitrification. Dissolved reactive phosphorus and silica are similarly consumed and produced by beachface processes at different times of the year, presumably by adsorption or desorption. Infiltration of reactive estuarine particles may be an additional source of nutrients and carbon that supports the diagenetic activity in the beachface aquifer. These observations suggest that sandy beachfaces are biogeochemically reactive systems that can serve as sources, sinks, and temporary reservoirs of nutrients to support the primary and secondary production of the adjacent intertidal zone.  相似文献   

15.
The effect of nutrient enrichments on natural phytoplankton assemblages was examined in six experiments conducted from June to October 1992. Short-term (4 d to 7 d) nutrient enrichment bioassays were incubated in situ in Padilla Bay, a slough-fed estuary in northern Puget Sound, Washington. Ammonium additions (15 μM) significantly (p<0.001) stimulated phytoplankton biomass accumulation during all six experiments. In two experiments, nitrate additions (15 μM) significantly stimulated accumulation of phytoplankton biomass during October, but not September. Addition of phosphate (1.0 μM) or silicate (15 μM) alone did not stimulate phytoplankton biomass accumulation during any of the experiments. In most experiments, phytoplankton response was greatest in combination treatments of ammonium and phosphate. Dissolved inorganic nutrient concentrations in the containers decreased during all incubations, but showed the greatest reduction in treatments receiving nitrogen. Dissolved inorganic nitrogen (DIN) to phosphate (PO4 3?) ratios were below 16∶1 during all experiments, suggesting the potential for nitrogen limitation. In three experiments, the response of photosynthetic nanoplankton (<20 μm) to ammonium additions was compared to that of the total phytoplankton assemblages. Accumulation of nanoplankton biomass exceeded that of the total phytoplankton during two experiments in August but showed no significant response to ammonium additions in October. Results from the bioassays, the low DIN∶PO4 3? ratios, and the reduction in nutrient concentrations in the containers provide evidence for potential nitrogen limitation of phytoplankton production during summer in Padilla Bay.  相似文献   

16.
Submersed macrophytes are important in nutrient cycling in marine and lacustrine systems, although their in nutrient exchange in tidally-influenced riverine systems is not well studied. In the laboratory, plants significantly lowered porewater nutrient pools of riverine sediments compared with bare controls. Deep-rootedVallisneria americana lowered the porewater nutrients to a greater extent than the shallow-rootedPotamogeton pectinatus. V. americana showed significantly higher tissue nutrient content (N in roots, P in leaves) thanP. pectinatus. porewater nutrients in the river increased from spring to summer (1995) when vegetation was at its peak (for porewater PO4-P, p<0.05). In 1996, porewater nutrients were higher during peak plant biomass in the summer than in the fall (for porewater PO4-P, p<0.05). In the summer (1995) vegetated patches had significantly greater porewater PO4-P than bare patches. We hypothesize that the concentrating of particulates in riverine grassbeds and subsequent microbial processing may provide an indirect source of nutrients for submersed macrophytes. In tidally-influenced riverine systems, biological mechanisms such as root uptake of nutrients and lateral oxygen release may be masked by the interaction of physical forces (i.e., tides, currents) with the structure of the grassbeds.  相似文献   

17.
The vegetation community succession influences soil nutrient cycling, and this process is mediated by soil microorganisms in the forest ecosystem. A degraded succession series of karst forests were chosen in which vegetation community changed from deciduous broadleaved trees (FO) toward shrubs (SH), and shrubs–grasses (SHG) in the southwest China. Soil organic carbon (SOC), total nitrogen (TN), labile organic carbon (LOC), water extractable organic matter (WEOM), microbial biomass carbon and nitrogen (MBC and MBN), bacterial and fungal diversity, as well as soil enzyme activities were tested. The results showed that SOC, LOC, MBC, MBN, and enzyme activities declined with vegetation succession, with the relatively stronger decrease of microbial biomass and functions, whereas WEOM was higher in SHG than in other systems. In addition, soil bacterial and fungal composition in FO was different from both SH and SHG. Despite positive relationship with SOC, LOC, and TN (p < 0.01), MBC, MBN appeared to be more significantly correlated to LOC than to SOC. It suggested that vegetation conversion resulted in significant changes in carbon fractions and bioavailability, furthermore, caused the change in soil microbial community and function in the forest ecosystem.  相似文献   

18.
The Hauver Branch and Hunting Creek watersheds in Catoctin Mountain, Maryland, USA, are small rural watersheds that receive road salt during the winter. Base cation evidence of road salt application in stream water disappears by approximately September for Hauver Branch, but never disappears for Hunting Creek. The fraction of the precipitation-corrected watershed fluxes of both Mg2+ and Ca2+ attributable to cation exchange associated with road salt Na+ inputs are 14 and 19 % for Hauver Branch and Hunting Creek, respectively. The percentage of divalent cations in stream waters resulting from road salt application is calculated using the watershed chemical weathering Na+/SiO2 molar ratio. Calculation of a representative chemical weathering Na+/SiO2 molar ratio may be problematic with spatially variable bedrock, and/or inputs from water softeners, septic systems, and wastewater treatment plants. Therefore, investigations of small forested rural watersheds offer insights into road salt dynamics that may be lost at larger scales and/or with increased urbanization. The quantities of road salt application to the Hauver Branch and Hunting Creek watersheds are 3.3 and 11 t km?2 year?1, respectively. The per-lane-length-normalized road salt application rates for the Hauver Branch and Hunting Creek watersheds are 10 and 22 t lane?1 km?1 year?1, respectively. These per-lane-length-normalized road salt application rates are relatively large compared to more urbanized watersheds located north of the study site where the application rates are reported by municipalities. These findings may indicate that road and highway administrations may underestimate their rates of road salt application.  相似文献   

19.
Phytoplankton uptake rates of ammonium (NH4 +), nitrate (NO3 ), and urea were measured at various depths (light levels) in Hong Kong waters during the summer of 2008 using 15N tracer techniques in order to determine which form of nitrogen (N) supported algal growth. Four regions were sampled, two differentially impacted by Pearl River discharge, one impacted by Hong Kong sewage discharge, and a site beyond these influences. Spatial differences in nutrient concentrations, ratios, and phytoplankton biomass were large. Dissolved nutrient ratios suggested phosphorus (P) limitation throughout the region, largely driven by high N loading from the Pearl River in summer. NH4 + and urea made up generally ≥50% of the total N taken up and the f ratio averaged 0.26. Even at the river-impacted site where concentrations of NO3 were >20 μM N, NH4 + comprised >60% of the total N uptake. Inhibition experiments demonstrated that NO3 uptake rates were reduced by 40% when NH4 + was >5 μM N. The relationship between the total specific uptake rates of N (sum of all measured substrates, V, per hour) and the chlorophyll a-specific rates (micromolars of N per microgram of Chl a per hour) varied spatially with phytoplankton biomass. Highest uptake rates and biomass were observed in southern waters, suggesting that P limitation and other factors (i.e., flushing rate) controlled production inshore and that the unincorporated N (mainly NO3 ) was transported offshore. These results suggest that, at the beginning of summer, inshore algal blooms are fueled primarily by NH4 + and urea, rather than NO3 , from the Pearl River discharge. When NH4 + and urea are depleted, then NO3 is taken up and can increase the magnitude of the bloom.  相似文献   

20.
Forest stand biomass serves as an effective indicator for monitoring REDD (reducing emissions from deforestation and forest degradation). Optical remote sensing data have been widely used to derive forest biophysical parameters inspite of their poor sensitivity towards the forest properties. Microwave remote sensing provides a better alternative owing to its inherent ability to penetrate the forest vegetation. This study aims at developing optimal regression models for retrieving forest above-ground bole biomass (AGBB) utilising optical data from Landsat TM and microwave data from L-band of ALOS PALSAR data over Indian subcontinental tropical deciduous mixed forests located in Munger (Bihar, India). Spatial biomass models were developed. The results using Landsat TM showed poor correlation (R2 = 0.295 and RMSE = 35 t/ha) when compared to HH polarized L-band SAR (R2 = 0.868 and RMSE = 16.06 t/ha). However, the prediction model performed even better when both the optical and SAR were used simultaneously (R2 = 0.892 and RMSE = 14.08 t/ha). The addition of TM metrics has positively contributed in improving PALSAR estimates of forest biomass. Hence, the study recommends the combined use of both optical and SAR sensors for better assessment of stand biomass with significant contribution towards operational forestry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号