首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
《Applied Geochemistry》2000,15(3):385-401
The distribution of Se in cultivated topsoils, grains, human hair and drinking water has been studied in 15 villages from a Keshan disease area of the People's Republic of China, villages being classified into 3 groups according to the Keshan disease incidence in the local population. In grain, hair and water the total Se follows expected trends; i.e. the highest concentrations are found in the villages where there is no incidence of Keshan disease. However, the soils from the high-incidence Keshan disease villages have the highest total Se content, an apparent contradiction, as Keshan disease is a response to a Se deficient environment. Soil analyses suggest that the organic content of the soils is a major factor in controlling the availability of Se and it is the high-incidence Keshan disease villages that have the most organic-rich soils. Although higher in total Se, the organic-rich soils have little bioavailable Se resulting in a Se deficient food chain. Soil pH is also seen to be a related factor in restricting the availability of Se and all the grain samples collected on soils with a pH <7.6 had a total Se content of less than 10% of the total soil Se. In an environment that can be classified as Se deficient small changes in the soil organic content and pH can have a critical affect on the Keshan disease status of a village.  相似文献   

2.
Selenium (Se) is one of the key trace elements required by all animal and most plant life, and Se deficiencies in the food chain cause pathologies or death. Here we show from new geochemical analyses of trace elements in Phanerozoic marine pyrite that sustained periods of severe Se depletion in the past oceans correlate closely with three major mass extinction events, at the end of the Ordovician, Devonian and Triassic periods. These represent periods of Se depletion > 1.5–2 orders of magnitude lower than current ocean abundances, being within the range to cause severe pathological damage in extant Se-reliant organisms. Se depletion may have been one of several factors in these complex extinction scenarios. Recovery from the depletion/extinction events is likely part of a natural marine cycle, although rapid rises in global oxygen from sudden major increases in marine productivity and plant biomass after each extinction event may also have played a crucial role.  相似文献   

3.
To understand the impact of Selenium (Se) into the biogeochemical cycle and implications for palaeo-redox environment, a sequential extraction method was utilized for samples including black shales, cherts, a Ni-Mo-Se sulfide layer, K-bentonite and phosphorite from Lower Cambrian Se-enriched strata in southern China. Seven species (water-soluble, phosphate exchangeable, base-soluble, acetic acid-soluble, sulfide/selenide associated, residual Se) and different oxidation states (selenate Se(VI), selenite Se(IV), organic Se, Se (0) and mineral Se(-II)) were determinated in this study. We found that the Ni-Mo-Se sulfide layer contained a significantly greater amount of Se(-II) associated with sulfides/selenides than those in host black shales and cherts. Furthermore, a positive correlation between the degree of sulfidation of iron (DOS) and the percentage of the sulfide/selenide-associated Se(-II) was observed for samples, which suggests the proportion of sulfide/selenide-associated Se(-II) could serve as a proxy for palaeo-redox conditions. In addition, the higher percentage of Se(IV) in K-bentonite and phosphorite was found and possibly attributed to the adsorption of Se by clay minerals, iron hydroxide surfaces and organic particles. Based on the negative correlations between the percentage of Se(IV) and that of Se(-II) in samples, we propose that the K-bentonite has been altered under the acid oxic conditions, and the most of black shale (and cherts) and the Ni-Mo-Se sulfide layer formed under the anoxic and euxinic environments, respectively. Concerning Se accumulation in the Ni-Mo-Se sulfide layer, the major mechanism can be described by (1) biotic and abiotic adsorption and further dissimilatory reduction from oxidized Se(VI) and Se(IV) to Se(-II), through elemental Se, (2) contribution of hydrothermal fluid with mineral Se(-II).  相似文献   

4.
Groundwater at the southern and eastern edges of France’s Paris Basin has a selenium content that at times exceeds the European Framework Directive’s drinking-water limit value of 10 μg/L. To better understand the dynamics of the Chalk groundwater being tapped to supply the city of Lille and the Se origins, we used a combination of geochemical and isotopic tools. Strontium isotopes, coupled with Ca/Sr, Mg/Sr and Se/Sr ratios, were used to identify the main groundwater bodies and their mixings, with the Mg/Sr and Se/Sr ratios constraining a ternary system. Groundwater in the agricultural aquifer-recharge zone represents a first end-member and displays the youngest water ages of the catchment along with the highest Sr isotopic signature (0.70842) and low Se contents. Anaerobic groundwater constitutes a second major end-member affected by water-rock interactions over a long residence time, with the lowest Sr isotopic signature (0.70789) and the lowest Se content, its low SF6 content confirming the contribution of old water. Se-rich groundwater containing up to 30 μg/L of Se represents a third major end-member, with an intermediate Sr isotopic ratio (0.70826), and is mainly constrained by the clayey Se-rich formation overlying the Chalk aquifer. The spatial and temporal Se variability in the groundwater is clearly linked to the presence of this formation identified as Tertiary and also to the hydrological conditions; saturation of the Se-rich clays by oxygenated groundwater enhances Se mobility and also Sr adsorption onto the clays. This multi-tool study including Sr isotopes successfully identified the Se origins in the aquifer and has led to a better understanding of the regional mixing and processes affecting the Chalk groundwater.  相似文献   

5.
Promising methods have been developed recently for the determination of selenium (Se) and tellurium (Te) in geological materials at ng g−1 and lower levels, using hydride generation-inductively coupled plasma-mass spectrometry. Here we report on a new isotope dilution-hydride generation-inductively coupled plasma-mass spectrometry (ID-HG-ICP-MS) method for the simultaneous determination of Se and Te, which is applied to basalts, and modified compared to previous work. The basalts were attacked and dissolved with hydrofluoric and nitric acid, spiked with enriched isotopes, and passed through a cation exchange column (AG 50-X8 100–200 mesh) to separate the major cations that interfere with Se and Te detection (e.g., Fe). The detection limits of this method were 0.010 ng g−1 for Se and 0.0030 ng g−1 for Te, well below the concentrations of Se and Te expected in basalts. The precision of the method for Se was 12.2 to 15.1% and for Te was 4.6 to 7.2% RSD from replicate analyses of basalt reference samples. The accuracy for Se determinations was 61 to 94% and for Te 28 to 100% of values previously reported in the literature for selected USGS reference materials.  相似文献   

6.
基于黑龙江省1:5万富硒土地专项调查取得的7701个高精度土壤数据,分析了硒、有机碳(TOC)、pH等理化指标,运用统计分析、相关分析研究了绥棱县农田土壤硒空间分布特征,并探讨硒与土壤性质的关系.结果表明,土壤硒含量在0.05×10-6~0.87×10-6之间,平均硒含量0.27×10-6;农田土壤以足硒为主,足硒土壤占比88.00%,富硒土壤占比3.90%,硒潜在不足土壤占比7.24%,缺硒土壤占比0.86%.不同土壤类型硒平均含量由高到低依次为黑土 > 草甸土 > 暗棕壤 > 白浆土 > 风沙土.相关分析结果表明,TOC是影响土壤Se含量的主要因素,pH对土壤Se含量影响不明显.  相似文献   

7.
尽管硒(Se)是一种重要的生命元素,但是即使浓度很低,也有可能会造成危害。在美国西部,包括犹他州中部GreenRiver流域斯图尔特湖水鸟管理区,大面积的农业排水区中都存在硒。为了对该场地进行地球化学研究和进行修复,取未受扰动的岩芯分析了硒的形态、浓度和迁移。用酸消解进行前处理对土壤和曼柯斯页岩风化壳进行了分析,结果表明,硒的最高浓度为3ppm,采用连续萃取法的分析结果表明,有19%~79%的硒是以有机物形式存在的,有17%~67%的硒是以元素形式存在的。柱实验研究结果表明,硒可以从深部土壤迅速淋出,可溶性硒的质量分数很高,达到了292×10-9。表层土壤中硒的淋出速度最初很慢,但是非常稳定,最终淋出速度会超过深部土壤。当对岩心通过放射灭菌后,表层土壤和深部土壤的淋出速度都会加快。计算结果表明,在修复富含硒的土壤时,所需的水量很大,每kg土壤需要约500L的水量。  相似文献   

8.
西南寒武、二叠系富硒碳质岩中硒结合态的比较研究   总被引:6,自引:0,他引:6  
使用硒的7步连续化学提取技术,对采自贵州寒武纪牛蹄塘组和湖北恩施二叠纪茅口组富硒碳质岩中的水溶态、可交换态、有机态、元素态、酸性提取态、硫化物/硒化物态和残渣态硒进行了比较研究,应用氢化物-原子荧光法测定了岩石总硒和各结合态硒。结果表明,恩施二叠纪沙地新鲜富硒碳质硅质岩和碳质页岩中的硒主要以有机结合态和硫化物/硒化物态硒为主,残渣态硒较低;遵义松林早寒武世碳质硅质岩中的硒主要以有机结合态和硫化物态硒为主,碳质页岩与镍钼矿层中则以有机结合态、残渣态和硫化物态硒为主,斑脱岩中主要以有机结合态、元素态和可交换态硒为主。根据硒结合态的这种分布特征,推测二叠纪、寒武纪富硒碳质岩中硒初始富集的生物地球化学过程略有差异:前者碳质硅质岩中主要以微生物还原为主,碳质页岩中则是微生物还原作用和生物同化吸收或吸附兼而有之;后者主要以生物同化吸收或吸附为主,微生物还原次之。  相似文献   

9.
We analyzed the Se isotopic composition of black shales and related kerogen and sulfide fractions from the Zunyi Ni-Mo-Se deposit, the La’erma Se-Au deposit and the Yutangba Se deposit in southern China to constrain metal sources and accumulation processes, both subjects of disagreement in the scientific community. Se at the Zunyi Ni-Mo-Se polymetallic deposit displayed a restricted range of δ82Se values (−1.6‰ to 2.4‰ with a mean of 0.6‰) suggesting a major hydrothermal origin where aqueous Se was probably transported as H2Se, along with H2S, and precipitated directly as selenides or in sulfides. Se at the La’erma Se-Au deposit covers a larger range in δ82Se values (−3.8‰ to 5.4‰ with a mean of 0.3‰), suggesting Se redistribution following redox transformations, leading to kinetic isotopic fractionation. The largest Se isotopic variation so far in natural terrestrial samples was found in the Yutangba Se deposit, with δ82Se values varying from −12.77‰ to 4.93‰. On the basis of variations in Se isotopes in the deposit, along with other geological and geochemical evidence, the “redox model” (supergene alteration) explains the occurrence of native Se in the deposit. Overall, hydrothermal systems may be a potentially important Se source to form economic deposits in comparison to seawater sources. Significantly, our study indicates that either secondary hydrothermal or supergene alteration is a key factor in Se enrichment in black shales. Redistribution of Se, and probably other redox-sensitive metals like Mo, Cr and V, leads to isotopic fractionation which may be used to fingerprint such alteration/precipitation processes.  相似文献   

10.
广东省普宁市土壤硒的分布特征及影响因素研究   总被引:2,自引:0,他引:2  
开展了广东省普宁市区域土壤硒调查研究,采集了413个表层土壤样品(0~20 cm)和103个深层土壤样品(> 150 cm),测定了土壤全硒含量,据此研究土壤硒分布特征及其影响因素。结果表明,普宁市土壤全硒含量变化于0. 16~2. 01 mg/kg,平均值为0. 63 mg/kg,总体上处于中硒及高硒水平,不存在缺硒和硒过剩土壤。砂页岩风化形成的赤红壤全硒含量较高,平均值达0. 86 mg/kg,以侏罗系页岩母质发育的土壤全硒含量最高,平均值达0. 89 mg/kg;三角洲第四系沉积物发育形成的水稻土全硒含量最低,平均值为0. 41 mg/kg。回归分析表明,土壤全硒含量与铁铝含量、有机碳含量具有极显著正相关,与p H呈极显著负相关。影响普宁市土壤硒含量的主要因素是成土母质,土壤p H、有机碳和铁铝含量及土地利用方式对土壤全硒含量分布与富集也有一定的影响。  相似文献   

11.
The well-defined and intensively studied episode of Se contamination at Kesterson Reservoir (Merced County, California, U.S.A.) provided a unique opportunity to describe the distribution, speciation and geochemical transformations of Se in a variety of geochemical and ecological settings, ranging from permanent ponds to semi-arid grasslands and salt flats. Kesterson Reservoir comprises 500 ha of land contaminated with Se from agricultural drain water. In most places. Se was concentrated in surficial organic detritus and the surficial decimeter of mineral soil. At dry sites, selenate ion predominated below 20 cm depth. Elemental selenium (Se0) also was prominent. The amount of zero-valent Se increased slowly with time. Although selenate is thermodynamically stable in the vadose zone in the presence of oxygen, Se0 is an additional, metastable product of the mineralization of organic selenium. Thiols and inorganic sulfides dramatically increase the solubility of Se0. Decreasing pH inhibits the reaction, explaining the observed decrease in solubility and biological availability of Se in soil and aquatic systems at low pH. Adding thiols or methionine to soil increases the emission of volatile Se compounds several-fold, suggesting that thiols play a major role in the microbial cycling of Se in soil.  相似文献   

12.
贵州开阳白马洞铀矿化岩层地球化学特征   总被引:2,自引:0,他引:2  
贵州开阳白马洞铀矿是重要的蚀变型铀矿,通过对白马洞清虚洞组黑色蚀变岩及白云岩风化红粘土和寒武系牛蹄塘组黑色页岩的常量元素、微量元素和稀土元素组成的分析研究,发现铀元素含量与Re、Se、Pb、Cu、As、Sb、Tl、Zn、Ni、Mo、Co、S含量为正相关关系,铀含量高,则Re、Se、Pb、Cu、As、Sb、Tl、Zn、Ni、Mo、Co、S含量也高,其中As、Co、Mo、Ni、Re、Tl、Zn、S具有显著的正相关性,而且地表土壤中Se、V、Mo 等元素的富集是铀矿找矿的主要标志之一。根据白马洞清虚洞组、寒武系牛蹄塘组黑色页岩、灯影组硅化白云岩的稀土元素配分模式分析,硒富集和铀矿化矿源层不仅是牛蹄塘组黑色页岩,可能有更深部的矿源存在。认为硒富集区是铀矿找矿远景区域;古代炼汞矿渣富集铀矿,值得开发利用和治理。  相似文献   

13.
The potential toxicity of elevated selenium (Se) concentrations in aquatic ecosystems has stimulated efforts to measure Se concentrations in benthos, nekton, and waterfowl in San Francisco Bay (SF Bay). In September 1998, we initiated a 14 mo field study to determine the concentration of Se in SF Bay zooplankton, which play a major role in the Bay food web, but which have not previously been studied with respect to Se. Monthly vertical plankton tows were collected at several stations throughout SF Bay, and zooplankton were separated into two operationally defined size classes for Se analyses: 73–2,000 μm, and ≥2,000 μm. Selenium values ranged 1.02–6.07 μg Se g?1 dry weight. No spatial differences in zooplankton Se concentrations were found. However, there were inter- and intra-annual differences. Zooplankton Se concentrations were enriched in the North Bay in Fall 1999 when compared to other seasons and locations within and outside SF Bay. The abundance and biovolume of the zooplankton community varied spatially between stations, but not seasonally within each station. Smaller herbivorous-omnivorous zooplankton had higher Se concentrations than larger omnivorous-carnivorous zooplankton. Selenium concentrations in zooplankton were negatively correlated with the proportion of total copepod biovolume comprising the large carnivorous copepodTortanus dextrilobatus, but positively correlatid with the proportion of copepod biovolume comprising smaller copepods of the family Oithonidae, suggesting an important role of trophic level and size in regulating zooplankton Se concentrations.  相似文献   

14.
The Ziyang area is one of the two major regions of central China subjected to selenium (Se) poisoning. Systematic studies of Se contents of different lithologies from this area indicate that Lower Cambrian, carbonaceous, and siliceous strata host the highest Se contents (with Se contents of up to 278 ppm). We have investigated their geochemical characteristics (major and trace elements, and Si and O isotopes), origin, and sedimentary environment of formation. The siliceous rocks are characterized by a wide range in major elements, and are enriched in Se, Ba, Cu, Ni, V, As, Sb, and U relative to average continental crust. They are also enriched in light rare earth elements relative to heavy rare earth elements (LaN/YbN?=?1.64–35.7) and show weak or moderate negative Ce anomalies and strong positive Eu anomalies. δ30SiNBS-28 and δ18OV-SMOW values range from –0.3‰ to 0.6‰ and 16.1‰ to 21.7‰, respectively. The homogenization temperatures of inclusions within the studied samples range from 113°C to 319°C, and their salinities from 1.2 to 13.7 wt.% NaCl equivalent. Our results suggest that the studied siliceous rocks resulted from hydrothermal sedimentation in a relatively anoxic semi-deep sea sedimentary environment. The hydrothermal fluid responsible for Se-mineralization involved the mixing of low-temperature high-salinity fluid, low-temperature low-salinity fluid, and a high-temperature low-salinity basinal fluid in the NaCl–(KCl)–H2O system.  相似文献   

15.
目前土壤中Se主要采用原子荧光光谱法测定,存在用酸量大、前处理相对复杂等缺点,对于高含量Se的测定则需要高倍稀释,无疑会扩大分析误差.本文采用粉末压片波谱-能谱复合X射线荧光光谱法测定湖北富硒土壤样品中的Se等17个主次量元素,波谱分析10个元素的同时,能谱分析As、Cu、Rb、Sr、Zr、Ba、Ni等7个元素,大幅节...  相似文献   

16.
The unintended release of coal ash to the environment is a concern due to the enrichment of contaminants such as arsenic (As) and selenium (Se) in this solid waste material. Current risk assessments of coal ash disposal focus on pH as the primary driver of leaching from coal ash. However, redox speciation of As and Se is a major factor for their mobilization potential and has received much less attention for risk assessments, particularly in disposal scenarios where coal ash will likely be exposed to microbially-driven redox gradients. The aim of this study was to demonstrate the differences of aerobic and anaerobic conditions for the leaching of As and Se from coal ash. Batch sediment-ash slurry microcosms were performed to mimic an ash spill scenario and were monitored for changes in As and Se speciation and mobilization potential. The results showed that the dissolved As concentrations were up to 50 times greater in the anaerobic microcosms relative to the aerobic microcosms during the two week incubation. This trend was consistent with As redox speciation determined by X-ray absorption spectroscopy, which indicated that 55% of the As in the solid phase at the end of the experiment was present as As(III) (a more leachable form of arsenic relative to As(V)). In the aerobic microcosms, only 13% of the As was As(III) and the rest was As(V). More than half of the Se was present as Se(IV) in the original fly ash and in the aerobic microcosms, while in the anaerobic microcosms Se was gradually transformed to less soluble Se(0) species. Likewise, dissolved Se concentrations were up to 25 times greater in the aerobic microcosms relative to anaerobic conditions. While the overall observations of As and Se mobilization potential from coal ash were consistent with expectations for aqueous and solid phase speciation of these elements, the findings directly show the relevance of these processes for coal ash disposal. These results highlight the need to select appropriate environmental parameters to include in risk assessments as well as provide potential geochemical monitoring tools through the use of dissolved Se/As ratios to determine the redox conditions of ash storage and spill sites.  相似文献   

17.
《Applied Geochemistry》1993,8(2):115-126
The major tributaries draining the Kendrick Reclamation Project (KRP) account for an average of 52% of the total Se load measured in the North Platte River downstream from Casper, Wyoming. The Casper Creek drainage basin contributed the largest Se load of the five tributary sites to the North Platte River. The 4-d average Se concentration in water samples from one site in the part of the North Platte River that receives irrigation return flows exceeded the 5 μg/l U.S. Environmental Protection Agency's aquatic life criterion five time during a 50-d monitoring period in 1989. In agreement with the water-quality data, muscle and liver tissue rom rainbow trout collected from the same part of the North Platte River had Se concentrations exceeding levels known to cause reproductive failure and chronic Se poisoning. On the basis of Se: Cl, 18O/16O and D/H ratios in water from Goose and Rasmus Lee Lakes (closed-basin systems), the large Se concentrations in those lakes were derived by natural evaporation of irrigation water without leaching of soluble forms of Se from soil or rocks. Water samples from Thirtythree Mile Reservoir and Illco Pond (flow-through systems) showed considerable enrichment in Se over evaporative concentration, presumably due to leaching and desorption of Se from soil and rock. The Se: Cl ratios of irrigation drain water collected from the KRP indicate that leaching and desorption of soluble forms of Se from soils and rocks are the dominant processes in drain water. Results of a Wilcoxon matched-pairs test for 43 paired drain-water samples collected during June and August 1988, indicated there is a statistically larger concentration of Se (0.01 significance level) during the June sampling period. The larger concentrations of Se and other chemical constitutents during the early part of the irrigation season probably were due to dissolution of seleniferous salts that have accumulated in soils within the KRP since the last irrigation season. The large Se concentrations in water samples from wetland sites in the KRP were reflected in the aquatic-bird food chain. Most waterfowl and shorebirds nesting at the KRP showed Se concentrations in livers and eggs greater than levels suspected of causing adverse reproductive effects.  相似文献   

18.
Fifteen samples from three study areas (the Bancun diabase dykes, the Bali hornblende gabbro dykes, the Linzifen gabbro-diabase dykes) were collected and analyzed for selenium (Se), sulfur (S), copper (Cu), major and trace elements. In general, Se, S and Cu do positively correlate to each other. The concentration of S and Se and the S/Se ratio are higher than the corresponding value of primitive mantle (PM), and the Cu/S ratio falls in a narrow range (0.04-0.29), which is consistent with that of primitive mantle (0.05-0.20). The Bancun diabase dykes and the Bali hornblende gabbro dykes were located in an intraplate environment during the Late Mesozoic. Oceanic subduction was closely related to magmatic activities. The magmatic activities play an important role in the transportation mechanism of Se and S. Because those two groups were closer to fault zones, which may affect the distribution of S and Se and other elements. In the two groups, no crustal contamination was observed, indicating that all analyzed elements may come from enriched mantle metasomtism associated with slab subduction. However, the Linzifen gabbro-diabase dykes were located in an intraplate rift environment, and its invading age is older than the other two groups, the primitive magma comes from mantle, and there is an anomalous relation between S, Se and Al2O3, (La/Sm)N, and all these factors could result in higher S and Se concentration.  相似文献   

19.
Seleniferous agricultural drainage wastewater has become a new major source of pollution in the world. In the USA, large areas of farmland in 17 western states, generate contaminated salinized drainage with Se concentrations much higher than 5 μg/I, the US Environmental Protection Agency water-quality criterion for the protection of aquatic life; Se values locally reach 4200 wg/1 in western San Joaquin Valley, California. Wetland habitats receiving this drainage have generally shown Se toxicosis in aquatic birds causing high rates of embryonic deformity and mortality, or have indicated potential ecological damage.Results of our laboratory flow experiments indicate that nanofiltration, the latest membrane separation technology, can selectively remove > 95% of Se and other multivalent anions from > 90% of highly contaminated water from the San Joaquin Valley, California. Such membranes yield greater water output and require lower pressures and less pretreatment, and therefore, are more cost effective than traditional reverse osmosis membranes. Nanofiltration membranes offer a potential breakthrough for the management of Se contaminated wastes not only from agricultural drainage, but from other sources also.  相似文献   

20.
The concentration, distribution and modes of occurrence of trace elements in thirty coals, four floors and two roofs from Northern China were studied. The samples were collected from the major coalfields of Shanxi Province, Shaanxi Province, Inner Mongolian Autonomous Region, and Ningxia Hui Autonomous Region. The concentrations of seventeen potential hazardous trace elements, including Hg, As, Se, Pb, Cd, Br, Ni, Cr, Co, Mo, Mn, Be, Sb, Th, V, U, Zn, and five major elements P, Na, Fe, Al, and Ca in coals were determined.Compared with average concentration of trace elements in Chinese coal, the coals from Northern China contain a higher concentration of Hg, Se, Cd, Mn, and Zn. They may be harmful to the environment in the process of combustion and utilization. Vertical variations of trace elements in three coal seams indicated the distributions of most elements in coal seam are heterogeneous. Based on statistical analyses, trace elements including Mo, Cr, Se, Th, Pb, Sb, V, Be and major elements including Al, P shows an affinity to ash content. In contrast, Br is generally associated with organic matter. Elements As, Ni, Be, Mo, and Fe appear to be associated with pyrite. The concentrations of trace elements weakly correlate either to coal rank or to maceral compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号