首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Carbon dioxide enhanced oil recovery (CO2-EOR) has been widely applied to the process of carbon capture, utilization, and storage (CCUS). Here, we investigate CO2–oil–water–rock interactions under reservoir conditions (100 °C and 24 MPa) in order to understand the fluid–rock interactions following termination of a CO2-EOR project. Our experimental results show that CO2-rich fluid remained the active fluid controlling the dissolution–precipitation processes in an oil-undersaturated sandstone reservoir; e.g., the dissolution of feldspar and calcite, and the precipitation of kaolinite as well as solid phases comprising O, Si, Al, Na, C, and Ti. Mineral dissolution rates were reduced in the case that mineral surfaces were coated by oil. Mineral wettability and composition, and oil saturation were the main controls on the exposed surface area of grains, and mineral wettability in particular led to selective dissolution. In addition, the permeability of the reservoir decreased substantially due to the precipitation of kaolinite and solid-phase particles, and due to the clogging of less soluble mineral particles released by the dissolution of K-feldspar and carbonate cement, whereas porosity increased. The results provide insight into potential formation damage resulting from CO2-EOR projects.  相似文献   

2.
To understand the initial reactions of granite in a CO2-saturated hydrothermal system, experiments were conducted using a batch-type autoclave over a temperature range of 100–350 °C at up to 250 bar and numerical computations of phase equilibria based on the experimental results were carried out. The experiments showed that the dissolution of granite and the deposition of secondary minerals were encouraged by the addition of CO2. Solution chemistry and examination of the granite’s surface texture suggested that its initial dissolution is characterized by the release of Na and Ca (from the dissolution of plagioclase) and that initial precipitation occurs by deposition of some secondary minerals on to plagioclase and/or biotite in the CO2-saturated system. However, the effect of CO2 was small at 350 °C owing to the low activity of H2CO3. According to EDX analysis and numerical phase equilibrium calculations, the secondary minerals formed might be kaolinite, muscovite, smectite and calcite. That is, the granite as a whole might have the potential to take-up dissolved CO2. The results suggest that the alteration of granite under CO2-saturated hydrothermal conditions has the potential to capture CO2 when it is injected at moderate temperatures (150–250 °C) into granite-hosted rock masses.  相似文献   

3.
A prognosis of the geochemical effects of CO2 storage induced by the injection of CO2 into geologic reservoirs or by CO2 leakage into the overlaying formations can be performed by numerical modelling (non-invasive) and field experiments. Until now the research has been focused on the geochemical processes of the CO2 reacting with the minerals of the storage formation, which mostly consists of quartzitic sandstones. Regarding the safety assessment the reactions between the CO2 and the overlaying formations in the case of a CO2 leakage are of equal importance as the reactions in the storage formation. In particular, limestone formations can react very sensitively to CO2 intrusion. The thermodynamic parameters necessary to model these reactions are not determined explicitly through experiments at the total range of temperature and pressure conditions and are thus extrapolated by the simulation code. The differences in the calculated results lead to different calcite and CO2 solubilities and can influence the safety issues.This uncertainty study is performed by comparing the computed results, applying the geochemical modelling software codes The Geochemist’s Workbench, EQ3/6, PHREEQC and FactSage/ChemApp and their thermodynamic databases. The input parameters (1) total concentration of the solution, (2) temperature and (3) fugacity are varied within typical values for CO2 reservoirs, overlaying formations and close-to-surface aquifers. The most sensitive input parameter in the system H2O–CO2–NaCl–CaCO3 for the calculated range of dissolved calcite and CO2 is the fugacity of CO2. Hence, the largest range of dissolved calcite is calculated at high fugacities and is 210 mmol/kgw. The average deviation of the results using the databases phreeqc.dat and wateq4f.dat in combination with the code PHREEQC is lowest in comparison to the results of the specific model of Duan and Li, which represents the experimental values at best. Still, the solubility of CO2 is overestimated in the formation water using these two databases. Therefore, the model results calculate a larger retention capacity, defined as the quantity of CO2 dissolved in the formation water, than the Duan and Li model would do.  相似文献   

4.
The Precambrian Egersund anorthosites exhibit a wide range of groundwater chemical composition (pH 5.40-9.93, Ca2+ 1.5-41 mg/L, Na+ 12.3-103 mg/L). They also exhibit an evolutionary trend, culminating in high pH, Na-rich, low-Ca groundwaters, that is broadly representative of Norwegian crystalline bedrock aquifers in general. Simple PHREEQC modelling of monomineralic plagioclase-CO2-H2O systems demonstrates that the evolution of such waters can be explained solely by plagioclase weathering, coupled with calcite precipitation, without invoking cation exchange. Some degree of reaction in open CO2 systems seems necessary to generate the observed maximum solute concentrations, while subsequent system closure can be invoked to explain high observed pH values. Empirical data provide observations required or predicted by such a model: (i) the presence of secondary calcite in silicate aquifer systems, (ii) the buffering of pH at around 8.0-8.3 by calcite precipitation, (iii) significant soil gas CO2 concentrations (PCO2 > 10−2 atm) even in poorly vegetated sub-arctic catchments, and (iv) the eventual re-accumulation of calcium in highly evolved, high pH waters.  相似文献   

5.
富CO_2流体-砂岩相互作用是砂岩储层次生孔隙的重要形成机制。苏北黄桥地区作为中国重要的CO_2气产区,富CO_2流体对上二叠统龙潭组砂岩储层的改造问题备受关注。为揭示富CO_2流体的作用特征及其对储层的影响,对黄桥地区典型钻井开展了系统的岩心描述和岩矿鉴定,并进行了微区原位观测和相关地球化学分析。结果表明,在靠近CO_2流体活动强烈的断裂带部位(特别是断层上盘),砂岩中碳酸盐胶结物基本溶蚀殆尽,仅存少量交代成因菱铁矿,同时钾长石类碎屑溶蚀非常强烈,并伴随高岭石等矿物沉淀,以及石英次生加大,还发育片钠铝石等指示高浓度CO_2作用的特征矿物,形成与CO_2流体作用相关的特征矿物组合(片钠铝石+高岭石+次生石英+菱铁矿);而在远离断裂的部位,受CO_2流体影响较弱,溶蚀作用也较弱,有较多的次生方解石沉淀,形成了以方解石+菱铁矿为主的自生矿物组合。前者次生孔隙发育,后者则更加致密。据此提出了深源断裂主控下与富CO_2流体作用相关的储层发育模式,为油气勘探和开发提供了新的思路。  相似文献   

6.
A model is developed for the calculation of coupled phase and aqueous species equilibrium in the H2O-CO2-NaCl-CaCO3 system from 0 to 250 °C, 1 to 1000 bar with NaCl concentrations up to saturation of halite. The vapor-liquid-solid (calcite, halite) equilibrium together with the chemical equilibrium of H+, Na+, Ca2+, , Ca(OH)+, OH, Cl, , , CO2(aq) and CaCO3(aq) in the aqueous liquid phase as a function of temperature, pressure, NaCl concentrations, CO2(aq) concentrations can be calculated, with accuracy close to those of experiments in the stated T-P-m range, hence calcite solubility, CO2 gas solubility, alkalinity and pH values can be accurately calculated. The merit and advantage of this model is its predictability, the model was generally not constructed by fitting experimental data.One of the focuses of this study is to predict calcite solubility, with accuracy consistent with the works in previous experimental studies. The resulted model reproduces the following: (1) as temperature increases, the calcite solubility decreases. For example, when temperature increases from 273 to 373 K, calcite solubility decreases by about 50%; (2) with the increase of pressure, calcite solubility increases. For example, at 373 K changing pressure from 10 to 500 bar may increase calcite solubility by as much as 30%; (3) dissolved CO2 can increase calcite solubility substantially; (4) increasing concentration of NaCl up to 2 m will increase calcite solubility, but further increasing NaCl solubility beyond 2 m will decrease its solubility.The functionality of pH value, alkalinity, CO2 gas solubility, and the concentrations of many aqueous species with temperature, pressure and NaCl(aq) concentrations can be found from the application of this model. Online calculation is made available on www.geochem-model.org/models/h2o_co2_nacl_caco3/calc.php.  相似文献   

7.
The aim of this experimental study was to evaluate and compare the geochemical impact of pure and impure CO2 on rock forming minerals of possible CO2 storage reservoirs. This geochemical approach takes into account the incomplete purification of industrial captured CO2 and the related effects during injection, and provides relevant data for long-term storage simulations of this specific greenhouse gas. Batch experiments were conducted to investigate the interactions of supercritical CO2, brine and rock-forming mineral concentrates (albite, microcline, kaolinite, biotite, muscovite, calcite, dolomite and anhydrite) using a newly developed experimental setup. After up to 42 day (1000 h) experiments using pure and impure supercritical CO2 the dissolution and solution characteristics were examined by XRD, XRF, SEM and EDS for the solid, and ICP–MS and IC for the fluid reactants, respectively. Experiments with mixtures of supercritical CO2 (99.5 vol.%) and SO2 or NO2 impurities (0.5 vol.%) suggest the formation of H2SO4 and HNO3, reflected in pH values between 1 and 4 for experiments with silicates and anhydrite and between 5 and 6 for experiments with carbonates. These acids should be responsible for the general larger amount of cations dissolved from the mineral phases compared to experiments using pure CO2. For pure CO2 a pH of around 4 was obtained using silicates and anhydrite, and 7–8 for carbonates. Dissolution of carbonates was observed after both pure and impure CO2 experiments. Anhydrite was corroded by approximately 50 wt.% and gypsum precipitated during experiments with supercritical CO2 + NO2. Silicates do not exhibit visible alterations during all experiments but released an increasing amount of cations in the reaction fluid during experiments with impure CO2. Nonetheless, precipitated secondary carbonates could not be identified.  相似文献   

8.
The geochemical effects of brine and supercritical CO2 (SCCO2) on reservoir rocks from deep (1500–2000 m) saline aquifers were examined via experimental simulation at in situ conditions. Dry sandstone samples were mounted in a triaxial cell and autoclave system, evacuated, and saturated with 1 M NaCl solution. The brine-rock system was allowed to react at 30 MPa confining pressure, 15 MPa pore fluid pressure, and 60 °C while SCCO2 was injected at a pressure gradient of 1–2 MPa. The experiment was conducted for a period of 1496 h, during which fluids were periodically sampled and analyzed. The pH measured in partially degassed fluid samples at 25 °C decreased from a starting value of 7.0–4.3 (9 days) and finally 5.1 after saturation with SCCO2.  相似文献   

9.
10.
We use a reactive diffusion model to investigate what happens to CO2 injected into a subsurface sandstone reservoir capped by a chlorite- and illite-containing shale seal. The calculations simulate reaction and transport of supercritical (SC) CO2 at 348.15 K and 30 MPa up to 20,000 a. Given the low shale porosity (5%), chemical reactions mostly occurred in the sandstone for the first 2000 a with some precipitation at the ss/sh interface. From 2000 to 4000 a, ankerite, dolomite and illite began replacing Mg–Fe chlorite at the sandstone/shale interface. Transformation of chlorite to ankerite is the dominant reaction occluding the shale porosity in most simulations: from 4000 to 7500 a, this carbonation seals the reservoir and terminates reaction. Overall, the carbonates (calcite, ankerite, dolomite), chlorite and goethite all remain close to local chemical equilibrium with brine. Quartz is almost inert from the point of its dissolution/precipitation. However, the rate of quartz reaction controls the long-term decline in aqueous silica activity and its evolution toward equilibrium. The reactions of feldspars and clays depend strongly on their reaction rate constants (microcline is closer to local equilibrium than albite). The timing of porosity occlusion mostly therefore depends on the kinetic constants of kaolinite and illite. For example, an increase in the kaolinite kinetic constant by 0.25 logarithmic units hastened porosity closure by 4300 a. The earliest simulated closure of porosity occurred at approximately 108 a for simulations designed as sensitivity tests for the rate constants.These simulations also emphasize that the rate of CO2 immobilization as aqueous bicarbonate (solubility trapping) or as carbonate minerals (mineral trapping) in sandstone reservoirs depends upon reaction kinetics – but the relative fraction of each trapped CO2 species only depends upon the initial chemical composition of the host sandstone. For example, at the point of porosity occlusion the fraction of bicarbonate remaining in solution depends upon the initial Na and K content in the host rock but the fraction of carbonate mineralization depends only on the Ca, Mg, Fe content. Since ankerite is the dominant mineral that occludes porosity, the dissolved concentration of ferrous iron is also an important parameter. Future efforts should focus on cross-comparisons and ground-truthing of simulations made for standard case studies as well as laboratory measurements of the reactivities of clay minerals.  相似文献   

11.
The high As and F groundwaters from Datong Basin are mostly soda waters with a Na/(Cl+SO4) (meq) ratio greater than unity, As and F up to 1550 μg/L and 10.4 mg/L, respectively, and with pH between 7.6 and 9.1. Geochemical modeling indicates that the waters are oversaturated with respect to calcite and clay minerals such as kaolinite, and undersaturated with respect to primary rock-forming minerals such as anorthite and albite. The water chemistry also is affected by evapotranspiration. The degree of evaporative enrichment is up to 85 in terms of Cl. Results of the hydrogeochemical studies indicate that the occurrence of soda water at Datong is the result of incongruent dissolution of aluminosilicates at one stage of their interaction with groundwater when the water is oversaturated with respect to calcite and evapotranspiration-related salt accumulation is not too strong. Studying the genesis of soda waters provides new insights into mechanism of As and F enrichment in the aquifer system. Due to CaF2 solubility control and OH–F exchange reactions, F can be enriched in soda water. And the high pH condition of soda water favors As desorption from oxyhydroxide surfaces, thereby increasing the concentration of As in the aqueous phase.  相似文献   

12.
This study used batch reactors to quantify the mechanisms and rates of calcite dissolution in the presence and absence of a single heterotrophic bacterial species (Burkholderia fungorum). Experiments were conducted at T = 28°C and ambient pCO2 over time periods spanning either 21 or 35 days. Bacteria were supplied with minimal growth media containing either glucose or lactate as a C source, NH4+ as an N source, and H2PO4 as a P source. Combining stoichiometric equations for microbial growth with an equilibrium mass-balance model of the H2O-CO2-CaCO3 system demonstrates that B. fungorum affected calcite dissolution by modifying pH and alkalinity during utilization of ionic N and C species. Uptake of NH4+ decreased pH and alkalinity, whereas utilization of lactate, a negatively charged organic anion, increased pH and alkalinity. Calcite in biotic glucose-bearing reactors dissolved by simultaneous reaction with H2CO3 generated by dissolution of atmospheric CO2 (H2CO3 + CaCO3 → Ca2+ + 2HCO3) and H+ released during NH4+ uptake (H+ + CaCO3 → Ca2+ + HCO3). Reaction with H2CO3 and H+ supplied ∼45% and 55% of the total Ca2+ and ∼60% and 40% of the total HCO3, respectively. The net rate of microbial calcite dissolution in the presence of glucose and NH4+ was ∼2-fold higher than that observed for abiotic control experiments where calcite dissolved only by reaction with H2CO3. In lactate bearing reactors, most H+ generated by NH4+ uptake reacted with HCO3 produced by lactate oxidation to yield CO2 and H2O. Hence, calcite in biotic lactate-bearing reactors dissolved by reaction with H2CO3 at a net rate equivalent to that calculated for abiotic control experiments. This study suggests that conventional carbonate equilibria models can satisfactorily predict the bulk fluid chemistry resulting from microbe-calcite interactions, provided that the ionic forms and extent of utilization of N and C sources can be constrained. Because the solubility and dissolution rate of calcite inversely correlate with pH, heterotrophic microbial growth in the presence of nonionic organic matter and NH4+ appears to have the greatest potential for enhancing calcite weathering relative to abiotic conditions.  相似文献   

13.
This study focused on typical injection layers of deep saline aquifers in the Shiqianfeng Formation used in the Carbon Capture and Sequestration Demonstration Projects in the Ordos Basin, Northwest China. The study employed experiments and numerical simulations to investigate the mechanism of CO2 mineral sequestration in these deep saline aquifers. The experimental results showed that the dissolved minerals are plagioclase, hematite, illite–smectite mixed layer clay and illite, whereas the precipitated minerals are quartz (at 55, and 70 °C) and kaolinite (at 70 °C). There are rare carbonate mineral precipitations at the experimental time scale, while the precipitation of quartz as a product of the dissolution of silicate minerals and some intermediate minerals rich in K and Mg that transform to clay minerals, reveals the possibility of carbonate precipitation at the longer time scale. These results are consistent with some results previously reported in the literature. We calibrated the kinetic parameters of mineral dissolution and precipitation by these experimental results and then simulated the CO2 mineral sequestration under deep saline aquifer conditions. The simulation results showed that the dissolved minerals are albite, anorthite and minor hematite, whereas the precipitated minerals are calcite, kaolinite and smectite at 55 and 70 °C. The geochemical reaction of illite is more complex. At 55 °C, illite is dissolved at the relatively lag time and transformed to dawsonite; at 70 °C, illite is precipitated in the early reaction period and then transformed to kaolinite. Based on this research, sequestrated CO2 minerals, which are mainly related to the temperature of deep saline aquifers in Shiqianfeng Fm., are calcite and dawsonite at lower temperature, and calcite at higher temperature. The simulation results also establish that calcite could precipitate over a time scale of thousands of years, and the higher the temperature the sooner such a process would occur due to increased reaction rates. These characteristics are conducive, not only to the earlier occurrence of mineral sequestration, but also increase the sequestration capacity of the same mineral components. For a sequestration period of 10,000 years, we determined that the mineral sequestration capacity is 0.786 kg/m3 at 55 °C, and 2.180 kg/m3 at 70 °C. Furthermore, the occurrence of mineral sequestration indirectly increases the solubility of CO2 in the early reaction period, but this decreases with the increase in temperature.  相似文献   

14.
Determinations of the aqueous solubilities of kaolinite at pH 4, and of five smectite minerals in suspensions set between pH 5 and 8, were undertaken with mineral suspensions adjusted to approach equilibrium from over- and undersaturation. After 1,237 days, Dry Branch, Georgia kaolinite suspensions attained equilibrium solubility with respect to the kaolinite, for which Keq = (2.72 ± 0.35) × 107. The experimentally determined Gibbs free energy of formation (ΔGf,2980) for the kaolinite is −3,789.51 ± 6.60 kj mol−1. Equilibrium solubilities could not be determined for the smectites because the composition of the solution phase in the smectite suspensions appeared to be controlled by the formation of gibbsite or amorphous aluminum hydroxide and not by the smectites, preventing attempts to determine valid ΔGf0 values for these complex aluminosilicate clay minerals. Reported solubility-based ΔGf0 determinations for smectites and other variable composition aluminosilicate clay minerals are shown to be invalid because of experimental deficiencies and of conceptual flaws arising from the nature of the minerals themselves. Because of the variable composition of smectites and similar minerals, it is concluded that reliable equilibrium solubilities and solubility-derived ΔGf0 values can neither be rigorously determined by conventional experimental procedures, nor applied in equilibriabased models of smectite-water interactions.  相似文献   

15.
《International Geology Review》2012,54(14):1792-1812
Abundant crude oil and CO2 gas coexist in the fourth member of the Upper Cretaceous Quantou reservoir in the Huazijing Step of the southern Songliao Basin, China. Here, we present results of a petrographic characterization of this reservoir based on polarizing microscope, X-ray diffraction, fluid inclusion, and carbon–oxygen isotopic data. These data were used to identify whether CO2 might be trapped in minerals after the termination of a CO2-enhanced oil recovery (EOR) project, and to determine what effects might the presence of CO2 have on the properties of crude oil in the reservoir. The crude oil reservoir in the study area, which coexists with mantle-derived CO2, is hosted by dawsonite-bearing lithic arkoses and feldspathic litharenites. These sediments are characterized by a paragenetic sequence of clay, quartz overgrowth, first-generation calcite, dawsonite, second-generation calcite, and ankerite. The dawsonite analysed during this study exhibits δ13 C (Peedee Belemnite, PDB) values of ?4.97‰ to 0.67‰, which is indicative for the formation of magmatic–mantle CO2. The paragenesis and compositions of fluid inclusions in the dawsonite-bearing sandstones record a sequence of two separate filling events, the first involving crude oil and the second involving magmatic–mantle CO2. The presence of prolate primary hydrocarbon inclusions within the dawsonite indicates that these minerals precipitated from oil-bearing pore fluids at temperatures of 94–97°C, in turn suggesting that CO2 could be stored as carbonate minerals after the termination of a CO2-EOR project. In addition, the crude oil in the basin would become less dense after deposition of bitumen by deasphalting the injection of CO2 gas into the oil pool.  相似文献   

16.
Phosphoric acid digestion has been used for oxygen- and carbon-isotope analysis of carbonate minerals since 1950, and was recently established as a method for carbonate ‘clumped isotope’ analysis. The CO2 recovered from this reaction has an oxygen isotope composition substantially different from reactant carbonate, by an amount that varies with temperature of reaction and carbonate chemistry. Here, we present a theoretical model of the kinetic isotope effects associated with phosphoric acid digestion of carbonates, based on structural arguments that the key step in the reaction is disproportionation of H2CO3 reaction intermediary. We test that model against previous experimental constraints on the magnitudes and temperature dependences of these oxygen isotope fractionations, and against new experimental determinations of the fractionation of 13C-18O-containing isotopologues (‘clumped’ isotopic species). Our model predicts that the isotope fractionations associated with phosphoric acid digestion of carbonates at 25 °C are 10.72‰, 0.220‰, 0.137‰, 0.593‰ for, respectively, 18O/16O ratios (1000 lnα) and three indices that measure proportions of multiply-substituted isotopologues . We also predict that oxygen isotope fractionations follow the mass dependence exponent, λ of 0.5281 (where ). These predictions compare favorably to independent experimental constraints for phosphoric acid digestion of calcite, including our new data for fractionations of 13C-18O bonds (the measured change in Δ47 = 0.23‰) during phosphoric acid digestion of calcite at 25 °C.We have also attempted to evaluate the effect of carbonate cation compositions on phosphoric acid digestion fractionations using cluster models in which disproportionating H2CO3 interacts with adjacent cations. These models underestimate the magnitude of isotope fractionations and so must be regarded as unsucsessful, but do reproduce the general trend of variations and temperature dependences of oxygen isotope acid digestion fractionations among different carbonate minerals. We suggest these results present a useful starting point for future, more sophisticated models of the reacting carbonate/acid interface. Examinations of these theoretical predictions and available experimental data suggest cation radius is the most important factor governing the variations of isotope fractionation among different carbonate minerals. We predict a negative correlation between acid digestion fractionation of oxygen isotopes and of 13C-18O doubly-substituted isotopologues, and use this relationship to estimate the acid digestion fractionation of for different carbonate minerals. Combined with previous theoretical evaluations of 13C-18O clumping effects in carbonate minerals, this enables us to predict the temperature calibration relationship for different carbonate clumped isotope thermometers (witherite, calcite, aragonite, dolomite and magnesite), and to compare these predictions with available experimental determinations. The success of our models in capturing several of the features of isotope fractionation during acid digestion supports our hypothesis that phosphoric acid digestion of carbonate minerals involves disproportionation of transition state structures containing H2CO3.  相似文献   

17.
A thermodynamic model is developed for the calculation of both phase and speciation equilibrium in the H2O-CO2-NaCl-CaCO3-CaSO4 system from 0 to 250 °C, and from 1 to 1000 bar with NaCl concentrations up to the saturation of halite. The vapor-liquid-solid (calcite, gypsum, anhydrite and halite) equilibrium together with the chemical equilibrium of H+,Na+,Ca2+, , , and CaSO4(aq) in the aqueous liquid phase as a function of temperature, pressure and salt concentrations can be calculated with accuracy close to the experimental results.Based on this model validated from experimental data, it can be seen that temperature, pressure and salinity all have significant effects on pH, alkalinity and speciations of aqueous solutions and on the solubility of calcite, halite, anhydrite and gypsum. The solubility of anhydrite and gypsum will decrease as temperature increases (e.g. the solubility will decrease by 90% from 360 K to 460 K). The increase of pressure may increase the solubility of sulphate minerals (e.g. gypsum solubility increases by about 20-40% from vapor pressure to 600 bar). Addition of NaCl to the solution may increase mineral solubility up to about 3 molality of NaCl, adding more NaCl beyond that may slightly decrease its solubility. Dissolved CO2 in solution may decrease the solubility of minerals. The influence of dissolved calcite on the solubility of gypsum and anhydrite can be ignored, but dissolved gypsum or anhydrite has a big influence on the calcite solubility. Online calculation is made available on www.geochem-model.org/model.  相似文献   

18.
Time-dependent sorption and desorption of Cd on calcite was studied over 210 days utilizing 109Cd as a tracer to distinguish between ‘labile’ and ‘non-labile’ forms of sorbed Cd. Stabilizing the calcite suspensions for 12 months under atmospheric PCO2 and controlled temperature was necessary to reliably follow Cd dynamics following initial sorption. Results revealed time-dependant Cd sorption and marked desorption hysteresis by calcite under environmentally relevant conditions. Data obtained were fitted to a first-order kinetic model and a concentric shell diffusion model. Both models described the progressive transfer of Cd2+ to a less reactive form within calcite and subsequent desorption of Cd subject to different initial contact times. The kinetic model provided a better fit to the combined sorption and desorption data (R2 = 0.992). It differentiates between two ‘pools’ of sorbed Cd2+ on calcite, ‘labile’ and ‘non-labile’, in which labile sorbed Cd is in immediate equilibrium with the free Cd2+ ion activity in solution whereas non-labile Cd is kinetically restricted. For the diffusion model (R2 = 0.959), the rate constants describing Cd dynamics in calcite produced a half-life for Cd desorption of ∼175 d, for release to a ‘zero-sink’ solution. Results from this study allow comment on the likely mechanisms occurring at the calcite surface following long-term Cd sorption.  相似文献   

19.
Batch experiments were conducted to study the sorption of uranium on selected clay minerals (KGa-1b and KGa-2 reference kaolinite, SWy-2 and STx-1b reference montmorillonite, and IBECO natural bentonite) as a function of pH (4–9) and 0.001, 0.01, and 0.025 M NaCl in equilibrium with the CO2 partial pressure of the atmosphere. Uranium concentrations were kept below 100 μg L−1 to avoid precipitation of amorphous Uranium-hydroxides. Solely PTFE containers and materials were used, because experiments showed significant sorption at higher pH on glass ware. All batch experiments were performed over a period of 24 h, since kinetic experiments proved that the common 10 or 15 min are in many cases by far not sufficient to reach equilibrium. Kaolinite showed much greater uranium sorption than the other clay minerals due to the more aluminol sites available. Sorption on the poorly crystallized KGa-2 was higher than on the well-crystallized KGa-1b. Uranium sorption on STx-1b and IBECO exhibited parabolic behavior with a sorption maximum around pH 6.5. Sorption of uranium on montmorillonites showed a distinct dependency on sodium concentrations because of the effective competition between uranyl and sodium ions, whereas less significant differences in sorption were found for kaolinite. The presence of anatase as impurity in kaolinite enhanced the binding of uranyl-carbonate complexes with surface sites. The kinetic of uranium sorption behavior was primarily dependent on the clay minerals and pH. A multisite surface complexation model without assuming exchange is based on the binding of the most dominant uranium species to aluminol and silanol edge sites of montmorillonite, respectively to aluminol and titanol surface sites of kaolinite. For eight surface species, the log_k was determined from the experimental data using the parameter estimation code PEST together with PHREEQC.  相似文献   

20.
Miller field of the North Sea has had high concentrations of natural CO2 for ~70 Ma. It is an ideal analog for the long-term fate of CO2 during engineered storage, particularly for formation of carbonate minerals that permanently lock up CO2 in solid form. The Brae Formation reservoir sandstone contains an unusually high quantity of calcite concretions; however, C and O stable isotopic signatures suggest that these are not related to the present-day CO2 charge. Margins of the concretions are corroded, probably because of reduced pH due to CO2 influx. Dispersed calcite cements are also present, some of which postdate the CO2 charge and, therefore, are the products of mineral trapping. It is calculated that only a minority of the reservoired CO2 in Miller (6–24%) has been sequestrated in carbonates, even after 70 Ma of CO2 emplacement. Most of the CO2 accumulation is dissolved in pore fluids. Therefore, in a reservoir similar to the Brae Formation, engineered CO2 storage must rely on physical retention mechanisms because mineral trapping is both incomplete and slow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号