首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
鄂尔多斯盆地是我国CO2地下埋藏的潜在目标区,位于伊金霍洛旗附近的中神监X井与CO2地下注入井中神注1井相邻,两者钻遇地层系统和岩石组合一致。为对示范区储层的固碳潜力和泥岩改造状况做出预测,为CO2地质储存的数值模拟研究提供基础地质信息和相关数据,通过偏光显微镜、扫描电镜、X射线衍射、X射线荧光等多种技术手段,开展了中神监X井石千峰组的岩石学和地球化学特征研究。结果表明石千峰组的砂岩岩石类型主要为长石岩屑砂岩和岩屑长石砂岩;泥岩主要由石英、粘土矿物和长石组成,其中,粘土矿物主要为伊利石,其次为蒙皂石、高岭石和绿泥石。预测在CO2注入后的流体-砂岩长期相互作用过程中,石千峰组砂岩可以通过形成片钠铝石、方解石、铁白云石和菱铁矿等固碳矿物,形成对CO2泄露而言的矿物圈闭,进而实现CO2的长期和安全封存;红色泥岩夹层将发生金属离子活化,导致泥岩褪色。  相似文献   

2.
The mineralogy of the high-volatile bituminous coals and associated strata from the Greta seam, Sydney Basin, Australia, has been evaluated in this study. Although the seam is not immediately overlain by marine strata, percolation of marine water into the original peat bed is indicated by the petrological, mineralogical and geochemical characteristics, which resemble those of coals with marine roof strata. The upper and lower sections of the seam have contrasting mineralogy. Pyrite typically comprises 40 to 56 wt% of the mineral assemblage in the marine-influenced upper part of the seam section. The lower part contains much less pyrite (typically <5 wt%, organic-free basis), and also relatively abundant dawsonite (up to 14 wt%, organic-free basis). The minerals within most coal plies are largely of authigenic origin. These include pyrite, siderite, clay minerals (mainly kaolinite and Na-rich mixed-layer illite/smectite), and quartz, most of which have a relatively early, syngenetic origin. Minor Ti-bearing minerals, anatase or rutile, and phosphate minerals, fluorapatite and goyazite, were probably also formed during early diagenesis. Other minerals have features that indicate late-stage precipitation. These include abundant cleat- and fracture-filling dawsonite, which may be the result of reactions between earlier-precipitated kaolinite and Na2CO3- or NaHCO3-bearing fluids. Minor albite may also be epigenetic, possibly precipitated from the same Ca–Al bearing fluids that formed the dawsonite. The most abundant detrital minerals in the Greta coals are quartz, poorly ordered kaolinite, illite and mixed-layer illite/smectite (I/S). These occur mainly in the floor, roof and other epiclastic horizons of the seam, reflecting periods of greater clastic influx into those parts of the original peat-forming environment. Detrital minerals are rare in the coals away from the epiclastic horizons, probably owing to almost complete sediment bypassing in the depositional system. Alternatively, any detrital minerals that were originally present may have been leached from the peat bed by diagenetic or post-diagenetic processes.  相似文献   

3.
We determined the rock types, the authigenic minerals, the paragenetic sequence, and the origin of dawsonite in pyroclastic rocks from the Yimin Formation of Beier Sag in the Hailar Basin, China. Dawsonite, a diagenetic mineral, is thought to result from a large influx of CO2 and, therefore, this system represents a natural analogue for in-situ mineral carbon storage. The studied host rocks are mainly tuffs/tuffaceous sandstones which now contain up to 70 vol% authigenic carbonates, including dawsonite, ankerite, and siderite. The initial alteration of the tuffs yielded minor siderite. Kaolinite, illite and mixed illite/smectite then formed as product phases. Dawsonite and quartz subsequently precipitated in response to CO2 influx apparently coupled to feldspar and perhaps kaolinte dissolution. Dawsonite reaches a maximum 25 vol% of the bulk rock. Mass balance suggests that this CO2 influx was coupled to the external import of sodium and export of SiO2. Ankerite and additional siderite precipitated during the late-stage alkaline diagenesis. The carbon isotope values of the dawsonite are in the range −4.1‰ to −2.2‰, indicating the magmatic origin of the CO2. Vitrinite reflectance and thermal gradient constraints suggest that the dawsonite at this location formed at a temperature of ∼75 °C.  相似文献   

4.
This study focused on the target injection layers of deep saline aquifers in the Shiqianfeng Fm. in the Carbon Capture and Sequestration (CCS) Demonstration Projects in the Ordos Basin, northwestern China. The study employed a combination method of experiments and numerical simulation to investigate the dissolution mechanism and impact factors of CO2 in these saline aquifers. The results showed (1) CO2 solubility in different types of water chemistry were shown in ascending order: MgCl2-type water < CaCl2-type water < Na2SO4-type water < NaCl-type water < Na2CO3-type water < distilled water. These results were consistent with the calculated results undertaken by TOUGHREACT with about 5% margin of error. CO2 solubility of Shiqianfeng Fm. saline was 1.05 mol/L; (2) compared with distilled water, the more complex the water’s chemical composition, the greater the increase in HCO3 ?concentration. While the water’s composition was relatively simple, the tested water’s HCO3 ?concentrations were in close accord with the calculated value undertaken by the TOUGHREACT code, and the more complex the water’s composition, the poorer the agreement was, probably due to the complex and unstable HCO3 ? complicating matters when in an aqueous solution system including both tested HCO3 ?concentration and calculated HCO3 ?concentration; (3) the CO2 solubility in the saline at the temperature conditions of 55 °C and 70 °C were 1.17 and 1.02 mol/L. When compared with the calculated value of 1.20 and 1.05 mol/L, they were almost the same with only 1 and 3% margin of error; concentrations of HCO3 ? were 402.73 mg/L (0.007 mol/L) and 385.65 mg/L (0.006 mol/L), while the simulation results were 132.16 mg/L (0.002 mol/L) and 128.52 mg/L (0.002 mol/L). From the contrast between the tested data and the calculated data undertaken by the TOUGHREACT code, it was shown that TOUGHRACT code could better simulate the interaction between saline and CO2 in the dissolution sequestration capacity. Therefore, TOUGHREACT code could be used for the inter-process prediction of CO2 long-term geological storage of CO2; (4) The Ca2+ concentration and SO4 2?concentration in saline water had less effect on the solubility of CO2 and HCO3 ?concentration. In addition, TDS and pH values of saline affected not only the solubility of CO2, but also the conversion of CO2 to HCO3 ? due to that they can affect the activity and acid-base balance. So in fact, we just need to consider that the TDS and pH values are main impact factors in the dissolution sequestration capacity of CO2 geological sequestration in deep saline aquifers.  相似文献   

5.
《International Geology Review》2012,54(14):1792-1812
Abundant crude oil and CO2 gas coexist in the fourth member of the Upper Cretaceous Quantou reservoir in the Huazijing Step of the southern Songliao Basin, China. Here, we present results of a petrographic characterization of this reservoir based on polarizing microscope, X-ray diffraction, fluid inclusion, and carbon–oxygen isotopic data. These data were used to identify whether CO2 might be trapped in minerals after the termination of a CO2-enhanced oil recovery (EOR) project, and to determine what effects might the presence of CO2 have on the properties of crude oil in the reservoir. The crude oil reservoir in the study area, which coexists with mantle-derived CO2, is hosted by dawsonite-bearing lithic arkoses and feldspathic litharenites. These sediments are characterized by a paragenetic sequence of clay, quartz overgrowth, first-generation calcite, dawsonite, second-generation calcite, and ankerite. The dawsonite analysed during this study exhibits δ13 C (Peedee Belemnite, PDB) values of ?4.97‰ to 0.67‰, which is indicative for the formation of magmatic–mantle CO2. The paragenesis and compositions of fluid inclusions in the dawsonite-bearing sandstones record a sequence of two separate filling events, the first involving crude oil and the second involving magmatic–mantle CO2. The presence of prolate primary hydrocarbon inclusions within the dawsonite indicates that these minerals precipitated from oil-bearing pore fluids at temperatures of 94–97°C, in turn suggesting that CO2 could be stored as carbonate minerals after the termination of a CO2-EOR project. In addition, the crude oil in the basin would become less dense after deposition of bitumen by deasphalting the injection of CO2 gas into the oil pool.  相似文献   

6.
Formation of dawsonite mineralization at the Zaozernyi deposit,Belarus   总被引:2,自引:0,他引:2  
Systems of silty sand-water and clayey rock-water were simulated under open-system conditions with respect to CO2 and oxygen at 25°C. It was shown that the dawsonite(+ quartz)+kaolinite assemblage at the Zaozernyi deposit was formed by interaction of terrigenous sediments with chloride-sodium solutions containing NaCl >100 g/kg H2O and saturated in carbonic acid (a partial pressure of CO2 > 0.5 bar). The modeling results do not confirm the possibility of dawsonite formation after primary bauxites (products of kaolinite weathering crusts), which is presumably related to the inconsistent formation parameters of these minerals during weathering of aluminosilciate rocks.  相似文献   

7.
The Holocene lacustrine diatomaceous earth of Fayium,South West of Cairo,has been studied to define its minerals,chemistry,petrography and physical properties.Minerals were processed by way of calcination at 550℃ ,followed by acid leaching to reduce levels of mineral impurities.The diatomite is of biogenic opal A.with calcite as the main ganue mineral,quartz and clay minerals(smectite followed by kaolinite in abundance and a trace amount of illite).Silica in the diatomaceous earth accounts for about 63% on average.Positive correlation between CaO and CO2 indicates that Ca is present mainly as calcite.Al2O3,Fe2O3,MgO and K2O are attributed mainly to clay minerals.However,the physical properties of the diatomaceous earth as filter-aids and filler for paints and plastics are poor because of general high levels of impurities.The technological performances of the diatomaceous earth have been significantly improved owing to upgrading of diatoms through mineral processing trical.  相似文献   

8.
Carbon dioxide sequestration in deep aquifers and depleted oilfields is a potential technical solution for reducing green-house gas release to the atmosphere: the gas containment relies on several trapping mechanisms (supercritical CO2, CO2(sc), dissolution together with slow water flows, mineral trapping) and on a low permeability cap-rock to prevent CO2(sc), which is less dense than the formation water, from leaking upwards. A leakproof cap-rock is thus essential to ensure the sequestration efficiency. It is also crucial for safety assessment to identify and assess potential alteration processes that may damage the cap-rock properties: chemical alteration, fracture reactivation, degradation of injection borehole seals, etc. The reactivity of the host-rock minerals with the supercritical CO2 fluid is one of the potential mechanisms, but it is altogether unknown. Reactivity tests have been carried out under such conditions, consisting of batch reactions between pure minerals and anhydrous supercritical CO2, or a two-phase CO2/H2O fluid at 200?°C and 105/160 bar. After 45 to 60 days, evidence of appreciable mineral-fluid reactivity was identified, including in the water-free experiments. For the mixed H2O/CO2 experiments, portlandite was totally transformed into calcite; anorthite displayed many dissolution patterns associated with calcite, aragonite, tridymite and smectite precipitations. For the anhydrous CO2 experiments, portlandite was totally carbonated to form calcite and aragonite; anorthite also displayed surface alteration patterns with secondary precipitation of fibrous calcite. To cite this article: O. Regnault et al., C. R. Geoscience 337 (2005).  相似文献   

9.
Deep saline aquifers in sedimentary basins are considered to have the greatest potential for CO2 geological storage in order to reduce carbon emissions. CO2 injected into a saline sandstone aquifer tends to migrate upwards toward the caprock because the density of the supercritical CO2 phase is lower than that of formation water. The accumulated CO2 in the upper portions of the reservoir gradually dissolves into brine, lowers pH and changes the aqueous complexation, whereby induces mineral alteration. In turn, the mineralogical composition could impose significant effects on the evolution of solution, further on the mineralized CO2. The high density of aqueous phase will then move downward due to gravity, give rise to “convective mixing,” which facilitate the transformation of CO2 from the supercritical phase to the aqueous phase and then to the solid phase. In order to determine the impacts of mineralogical compositions on trapping amounts in different mechanisms for CO2 geological storage, a 2D radial model was developed. The mineralogical composition for the base case was taken from a deep saline formation of the Ordos Basin, China. Three additional models with varying mineralogical compositions were carried out. Results indicate that the mineralogical composition had very obvious effects on different CO2 trapping mechanisms. Specific to our cases, the dissolution of chlorite provided Mg2+ and Fe2+ for the formation of secondary carbonate minerals (ankerite, siderite and magnesite). When chlorite was absent in the saline aquifer, the dominant secondary carbon sequestration mineral was dawsonite, and the amount of CO2 mineral trapping increased with an increase in the concentration of chlorite. After 3000 years, 69.08, 76.93, 83.52 and 87.24 % of the injected CO2 can be trapped in the solid (mineral) phase, 16.05, 11.86, 8.82 and 6.99 % in the aqueous phase, and 14.87, 11.21, 7.66 and 5.77 % in the gas phase for Case 1 through 4, respectively.  相似文献   

10.
Capturing CO2 from point sources and storing it in geologic formations is a potential option for allaying the CO2 level in the atmosphere. In order to evaluate the effect of geological storage of CO2 on rock-water interaction, batch experiments were performed on sandstone samples taken from the Altmark reservoir, Germany, under in situ conditions of 125 °C and 50 bar CO2 partial pressure. Two sets of experiments were performed on pulverized sample material placed inside a closed batch reactor in (a) CO2 saturated and (b) CO2 free environment for 5, 9 and 14 days. A 3M NaCl brine was used in both cases to mimic the reservoir formation water. For the “CO2 free” environment, Ar was used as a pressure medium. The sandstone was mainly composed of quartz, feldspars, anhydrite, calcite, illite and chlorite minerals. Chemical analyses of the liquid phase suggested dissolution of both calcite and anhydrite in both cases. However, dissolution of calcite was more pronounced in the presence of CO2. In addition, the presence of CO2 enhanced dissolution of feldspar minerals. Solid phase analysis by X-ray diffraction and Mössbauer spectroscopy did not show any secondary mineral precipitation. Moreover, Mössbauer analysis did not show any evidence of significant changes in redox conditions. Calculations of total dissolved solids’ concentrations indicated that the extent of mineral dissolution was enhanced by a factor of approximately 1.5 during the injection of CO2, which might improve the injectivity and storage capacity of the targeted reservoir. The experimental data provide a basis for numerical simulations to evaluate the effect of injected CO2 on long-term geochemical alteration at reservoir scale.  相似文献   

11.
The Chatree deposit is located in the Loei‐Phetchabun‐Nakhon Nayok volcanic belt that extends from Laos in the north through central and eastern Thailand into Cambodia. Gold‐bearing quartz veins at the Q prospect of the Chatree deposit are hosted within polymictic andesitic breccia and volcanic sedimentary breccia. The orebodies of the Chatree deposit consist of veins, veinlets and stockwork. Gold‐bearing quartz veins are composed mainly of quartz, calcite and illite with small amounts of adularia, chlorite and sulfide minerals. The gold‐bearing quartz veins were divided into five stages based on the cross‐cutting relationship and mineral assemblage. Intense gold mineralization occurred in Stages I and IV. The mineral assemblage of Stages I and IV is characterized by quartz–calcite–illite–laumontite–adularia–chlorite–sulfide minerals and electrum. Quartz textures of Stages I and IV are also characterized by microcrystalline and flamboyant textures, respectively. Coexistence of laumontite, illite and chlorite in the gold‐bearing quartz vein of Stage IV suggests that the gold‐bearing quartz veins were formed at approximately 200°C. The flamboyant and brecciated textures of the gold‐bearing quartz vein of Stage IV suggest that gold precipitated with silica minerals from a hydrothermal solution that was supersaturated by boiling. The δ18O values of quartz in Stages I to V range from +10.4 to +11.6‰ except for the δ18O value of quartz in Stage IV (+15.0‰). The increase in δ18O values of quartz at Stage IV is explained by boiling. PH2O is estimated to be 16 bars at 200°C. The fCO2 value is estimated to be 1 bar based on the presence of calcite in the mineral assemblage of Stage IV. The total pressure of the hydrothermal solution is approximately 20 bars at 200°C, suggesting that the gold‐bearing quartz veins of the Q prospect formed about 200 m below the paleosurface.  相似文献   

12.
Authigenic minerals and the diagenetic sequence of the dawsonite-bearing sandstones from the Binnan Region of the Dongying Sag, Bohai Bay Basin, China were studied to understand the formation of dawsonite, as a possible mechanism for mineral trapping of CO2 in carbon capture and storage (CCS) programmes. Authigenic minerals include quartz overgrowth, dawsonite (5–15 vol%), calcite, ferrocalcite and ankerite. The major rock types are medium- to fine-grained arkose, feldspathic litharenite and lithic arkose. Quantitative analysis suggests that the burial depth and feldspar content are the two dominant controlling factors of the growth of dawsonite. The dawsonite content increases initially before decreasing with burial depth, with the peak dawsonite content occurring at approximately 1500 m depth. This trend is probably due to increases in temperature and pCO2 with the burial depth and contributes to the formation of dawsonite. However, the pCO2 content and stability of dawsonite decrease with increasing distance from the centre of the gas reservoir. When the formation temperature exceeds the upper limit of the preservation temperature of dawsonite, the dawsonite is suppressed, while the dissolution of dawsonite is promoted. Overall, the dawsonite content exhibits a positive correlation with the feldspar content. The dissolution of feldspar makes both Na+ and Al3+ available and creates the accommodation space necessary for dawsonite growth. In addition, feldspar dissolution also neutralises the acidity of the thermal fluid present, which again facilitates the growth and preservation of the dawsonite.  相似文献   

13.
The injection of CO2 into deep saline aquifers is being considered as an option for greenhouse gas mitigation. However, the response of an aquifer to the injected CO2 is largely unknown. Experiments involving the reaction of Navajo Sandstone with acidic brine were conducted at 200°C and 25 or 30 MPa to evaluate the extent of fluid–rock interactions. The first experiment examined sandstone interaction with CO2-impregnated brine; the second experiment examined sandstone dissolution in CO2-free acidic brine; the third one is carried out in a mixed-flow reactor and designed to measure sandstone dissolution rates based on time-series Si concentrations. The solution chemistry data indicate that the SiO2(aq) increases gradually and pH increases slowly with reaction progress. Silicate minerals in the sandstone display textures (dissolution features, secondary mineralization), indicating that these phases are reacting strongly with the fluid. Dissolution of feldspars and conversion of smectite to illite are likely to be the two reactions that contribute to the release of SiO2(aq). The product minerals present at the end of the experiments are illite, illite/smectite, allophane, and carbonate minerals (for the CO2-charged system). Dissolved CO2 is likely to acidify the brine and to provide a source of carbon for the precipitation of carbonate minerals. Mineral trapping through the precipitation of carbonate minerals is favored thermodynamically and was observed in the experiments. The chemical reactions likely increase the bulk porosity of the sandstone due to dissolution of silicate minerals. However, allophane and illite/smectite fill voids in sandstone grains. There is no evidence for the removal of clay coatings due to chemical reactions. It is uncertain whether the mechanical forces near an injection well would mobilize the smectite and allophane and clog pore throats. Trace amounts of metals, including Cu, Zn, and Ba, were mobilized.  相似文献   

14.
《Applied Geochemistry》2000,15(8):1085-1095
The pore space of deep saline aquifers in the Alberta (sedimentary) Basin offers a significant volume for waste storage by “hydrodynamic trapping”. Furthermore, given the slow regional fluid flow in these deep saline aquifers, ample time exists for waste-water/rock chemical reactions to take place. A geochemical computer model (PATHARC) was used to compute the interaction of industrial waste streams comprising CO2, H2SO4 and H2S with the minerals in typical carbonate and sandstone aquifers from the Alberta Basin. The results support the idea that these acids can be neutralized by such reactions and that new mineral products are formed, such as calcite, siderite, anhydrite/gypsum and pyrrhotite, thereby trapping the CO3, SO4 and S ions that are formed when the acid gases dissolve in the formation water. Siliciclastic aquifers appear to be a better host for “mineral trapping” than carbonate aquifers, especially with regard to CO2. Carbonate aquifers may be more prone to leakage due to high CO2 pressures generated by reaction with H2SO4 and H2S. Even though permeability decreases are expected due to this “mineral trapping”, they can be partially controlled so that plugging of the aquifer does not occur.  相似文献   

15.
西藏羊八井地热田水热蚀变   总被引:5,自引:1,他引:5       下载免费PDF全文
朱梅湘  徐勇 《地质科学》1989,(2):162-175
本文对羊八井地热田钻扎ZK-201、ZK-301和ZK-308的岩心进行了较系统的蚀变矿物学、岩石学和流体包体研究。划分出6个蚀变矿物共生组合及蚀变分带,讨论了蚀变过程中岩石化学变化的特点,并推测了蚀变的温度和酸碱度条件。研究表明,热田曾处于极度的活动状态,最高温度达220-240℃,由于冷水的入侵,热田在目前钻探所及范围已冷却了50-70℃。蚀变矿物分布模式表明,目前热田流体主通道位于北部,热田进一步的开发应以寻找北部深部高温流体为主。  相似文献   

16.
To evaluate mineralogical-geochemical changes within the reservoir of the Ketzin pilot CO2 storage site in Brandenburg, Germany, two sets of laboratory experiments on sandstone and siltstone samples from the Stuttgart Formation have been performed. Samples were exposed to synthetic brine and pure CO2 at experimental conditions and run durations of 5.5 MPa/40 °C/40 months for sandstone and 7.5 MPa/40 °C/6 months for siltstone samples, respectively. Mineralogical changes in both sets of experiments are generally minor making it difficult to differentiate natural variability of the whole rock samples from CO2-induced alterations. Results of sandstone experiments suggest dissolution of the anorthite component of plagioclase, anhydrite, K-feldspar, analcime, hematite and chlorite + biotite. Dissolution of the anorthite component of plagioclase, anhydrite and K-feldspars is also observed in siltstone experiments. In an inverse modeling approach, an extensive set of equilibrium simulations was set up in order to reproduce the experimental observations of the sandstone experiments. Simulations generally show fairly good matches with the experimental observations. Best matches with measured brine data are obtained from mineral combinations of albite, analcime, anhydrite, dolomite, hematite, illite, and kaolinite. The major discrepancies during equilibrium modeling, however, are reactions involving Fe2+ and Al3+. The best matching subsets of the equilibrium models were finally run including kinetic rate laws. These simulations reveal that experimentally determined brine data was well matched, but reactions involving K+ and Fe2+ are not fully covered. The modeling results identified key primary minerals as well as key chemical processes, but also showed that the models are not capable of covering all possible contingencies.  相似文献   

17.
兰州市取暖期可吸入颗粒物中单颗粒矿物组成特征   总被引:1,自引:1,他引:1  
为研究兰州市2005年冬季大气可吸入颗粒物(PM10)中单颗粒的矿物组成,用能谱扫描电镜识别和统计了兰州市区(东方红广场)和郊区(榆中县)两个采样点的单矿物颗粒。结果在市区样品中识别出方解石、伊/蒙混层、石英、斜长石、伊利石、石膏、绿泥石、高岭石、浊沸石和钾长石等21种矿物,前7种占统计总量的75%以上;郊区样品中识别出20种矿物,以方解石、石英、伊利石、绿泥石、斜长石和伊/蒙混层为主(占70%以上),与市区相比缺少钾石膏、金红石和水铝酸钙而增加了硫酸镁和磷灰石。总体来看,大气PM10中的矿物颗粒可分为粘土类、长石类、碳酸盐类、硫酸盐类、氧化物类和其他六类,以粘土类和碳酸盐类矿物为主(约占60%);冬季市区颗粒物表面的“硫化”现象较郊区严重;这些矿物颗粒主要来自地表土,人为排放和大气中二次化学反应生成的矿物的贡献较小。  相似文献   

18.
The results of the study of clay mineral alterations in Upper Pleistocene sediments of the southern trough in the Guaymas Basin (Gulf of California) due to the influence of hydrothermal solutions and heat produced by sill intrusions are discussed. Core samples from DSDP Holes 477 and 477A were taken for the analysis of clay minerals. Application of the method of modeling X-ray diffraction patterns of oriented specimens of the finely dispersed particles made it possible to establish the phase composition of clay minerals, determine their structural parameters, and obtain reliable quantitative estimates of their contents in natural mixtures. The modeling data allowed us to characterize reliably the transformation of clay minerals in sediments of the hydrothermally active southern trough in the Guaymas Basin. In Upper Pleistocene sandy–clayey sediments of the southern trough, changes in the composition of clay minerals occurred under the influence of a long-living hydrothermal system. Its lower part (interval 170.0–257.5 m) with maximum temperatures (~300°C) was marked by the formation of chlorite. Terrigenous clay minerals are not preserved here. Saponite appears at a depth of 248 m in the chlorite formation zone. Higher in the sedimentary section, the interval 146–170 m is also barren of terrigenous clay minerals. Sediments of this interval yielded two newly formed clay minerals (chlorite and illite), which were formed at lower temperatures (above 180°C and below 300°C, approximately up to ~250°C), while the relatively low-temperature upper part (110–146 m) of the hydrothermal system (from ~140°C to ~180°C) includes the mixture of terrigenous and newly formed clay minerals. Terrigenous illite is preserved here. Illitization of the mixed-layer illite–smectite was subjected to illitization. The terrigenous montmorillonite disappeared, and chlorite–smectite with 5–10% of smectite layers were formed. In the upper interval (down to approximately 110 mbsf), the composition of terrigenous clay minerals remains unchanged. They are composed of the predominant mixed-layer illite–smectite and montmorillonite, the subordinate illite, mixed-layer chlorite–smectite with 5% of smectite layers, mixed-layer kaolinite–smectite with 30% of smectite layers, and kaolinite. This composition of clay minerals changed under the influence of sill intrusions into the sedimentary cover at 58–105 m in the section of Hole 477. The most significant changes are noted in the 8-m-thick member above the sill at 50–58 m. The upper part of this interval is barren of the terrigenous mixed-layer illite–smectite, which is replaced by the newly formed trioctahedral smectite (saponite). At the same time, the terrigenous dioctahedral smectite (montmorillonite) is preserved. The composition of terrigenous clay minerals remains unchanged at the top of the unit underlying the sill base.  相似文献   

19.
Diagenetic transformation of clay minerals, zeolites and silica minerals in Cretaceous and Tertiary argillaceous rocks from deeply drilled wells in Japan were studied. Transformations of these minerals during diagenesis were as follows: in clay minerals, montmorillonite → montmorillonite-illite mixed-layer mineral → illite; in zeolites, volcanic glass → clinoptilolite → heulandite and/or analcite → laumontite and/or albite; in silica minerals, amorphous silica → low-cristobalite → low-quartz. Maximum overburden pressures and geothermal temperatures corresponding to these transformations in each well studied were calculated. For clay minerals, a pressure of approximately 900 kg cm?2 and a temperature of about 100°C are necessary for the transformation from montmorillonite to mixed-layer mineral and 920 kg cm?2 and 140°C for mixed-layer mineral to illite. Transformation from kaolinite to other minerals requires much higher pressures and temperatures than from montmorillonite to mixed-layer mineral. For zeolites, 330 kg cm?2 and 60°C are required for the transformation from volcanic glass to clinoptilolite, 860 kg cm?2 and 120°C for clinoptilolite to heulandite and/or analcite, and 930 kg cm?2 and 140°C for heulandite and/or analcite to laumontite and/or albite. For silica minerals, 250 kg cm?2 and 50°C are necessary for the transformation from amorphous silica to low-cristobalite and 660 kg cm?2 and 70°C for low-cristobalite to low-quartz. Based on these diagenetic mineral transformations, seven mineral zones are recognized in argillaceous sediments. On the other hand, from the porosity studies of argillaceous sediments in Japan, the process of diagenesis is classified into the following three stages. The early compaction stage is marked by shallow burial and viscous rocks with more than 30% porosity. The late compaction stage is characterized by intermediate burial and plastic rocks with 30-10% porosities. The transformation stage is marked by deep burial and elastic rocks with less than 10% porosity.  相似文献   

20.
《Chemical Geology》2003,193(3-4):273-293
The El Berrocal granite/U-bearing quartz vein (UQV) system has been studied as a natural analogue of a high-level radioactive waste repository. The main objective was to understand the geochemical behaviour of natural nuclides under different physicochemical conditions. Within this framework, the argillization processes related to fracturing and formation of the uranium–quartz vein were studied from a mineralogical and isotopic standpoint in order to establish their temperatures of formation and thus complete the geothermal history of the system. For this purpose, δ18O values were determined for pure mineral from the unaltered granite and quartz from the uranium–quartz vein, as well as for mixture samples from the hydrothermally altered granite (sericitised granite) and clayey samples from fracture fillings, including the clayey walls of the uranium–quartz vein. The isotopic signature of quartz from the uranium–quartz vein and the monophasic nature of its fluid inclusions led us to conclude that the isotopic signature of water in equilibrium with quartz was approximately in the range from −8.3‰ to −5.7‰ V-SMOV, its temperature of formation being around 85–120 °C. The δ18O values of pure sericite from the hydrothermally altered granite, calculated by means of the oxygen fraction molar method, indicate that its temperature of formation, in equilibrium with the aforementioned waters, is also in the range from 70 °C to approximately 120 °C. Clays from fracture fillings and clayey walls of the uranium–quartz vein are usually mixtures, in different proportions, of illite, approximately formed between 70 and 125 °C; two generations of kaolinite formed at approximately 90–130 °C and at around 25 °C, respectively; smectite, formed at ≤25 °C; and occasionally palygorskite, formed either between 30 and 45 °C or 19 and 32 °C, depending on the fractionation equation used. These data suggest that sericite from the hydrothermally altered granite, quartz from the uranium–quartz vein, illite and the first generation of kaolinite from the fracture fillings resulted from the same hydrothermal process affecting the El Berrocal granite in relation to fracturing. Under certain physicochemical conditions (T≈100 °C, pH≈8 and log [H4SiO4] between −4 and −3), illite and kaolinite can be paragenetic. As a result of weathering processes, smectite was formed from hydrothermal illite and inherited albite under alkaline weathering, while the second generation of kaolinite was formed from smectite, under acid conditions and close to the sulphide-rich uranium–quartz vein. Palygorskite is an occasional mineral formed probably either during the thermal tail of the above-described hydrothermal process or during weathering processes. In both cases, palygorskite must have formed from alkaline Si–Mg-rich solutions. Finally, these data and processes are discussed in terms of natural analogue processes, drawing some implications for the performance assessment of a deep geological radwaste repository (DGRR).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号