首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The results of the study of clay mineral alterations in Upper Pleistocene sediments of the southern trough in the Guaymas Basin (Gulf of California) due to the influence of hydrothermal solutions and heat produced by sill intrusions are discussed. Core samples from DSDP Holes 477 and 477A were taken for the analysis of clay minerals. Application of the method of modeling X-ray diffraction patterns of oriented specimens of the finely dispersed particles made it possible to establish the phase composition of clay minerals, determine their structural parameters, and obtain reliable quantitative estimates of their contents in natural mixtures. The modeling data allowed us to characterize reliably the transformation of clay minerals in sediments of the hydrothermally active southern trough in the Guaymas Basin. In Upper Pleistocene sandy–clayey sediments of the southern trough, changes in the composition of clay minerals occurred under the influence of a long-living hydrothermal system. Its lower part (interval 170.0–257.5 m) with maximum temperatures (~300°C) was marked by the formation of chlorite. Terrigenous clay minerals are not preserved here. Saponite appears at a depth of 248 m in the chlorite formation zone. Higher in the sedimentary section, the interval 146–170 m is also barren of terrigenous clay minerals. Sediments of this interval yielded two newly formed clay minerals (chlorite and illite), which were formed at lower temperatures (above 180°C and below 300°C, approximately up to ~250°C), while the relatively low-temperature upper part (110–146 m) of the hydrothermal system (from ~140°C to ~180°C) includes the mixture of terrigenous and newly formed clay minerals. Terrigenous illite is preserved here. Illitization of the mixed-layer illite–smectite was subjected to illitization. The terrigenous montmorillonite disappeared, and chlorite–smectite with 5–10% of smectite layers were formed. In the upper interval (down to approximately 110 mbsf), the composition of terrigenous clay minerals remains unchanged. They are composed of the predominant mixed-layer illite–smectite and montmorillonite, the subordinate illite, mixed-layer chlorite–smectite with 5% of smectite layers, mixed-layer kaolinite–smectite with 30% of smectite layers, and kaolinite. This composition of clay minerals changed under the influence of sill intrusions into the sedimentary cover at 58–105 m in the section of Hole 477. The most significant changes are noted in the 8-m-thick member above the sill at 50–58 m. The upper part of this interval is barren of the terrigenous mixed-layer illite–smectite, which is replaced by the newly formed trioctahedral smectite (saponite). At the same time, the terrigenous dioctahedral smectite (montmorillonite) is preserved. The composition of terrigenous clay minerals remains unchanged at the top of the unit underlying the sill base.  相似文献   

2.
The El Berrocal granite/U-bearing quartz vein system has been studied as a natural analogue of a high-level radioactive waste repository. The main objective is to understand the geochemical behaviour of natural radionuclides occurring under natural conditions. In this framework, the carbonatation processes have been studied from a mineralogical and isotopic ( and ) point of view, since carbonate anions are powerful complexing agents for U(VI) under both low-temperature hydrothermal and environmental conditions. The carbonatation processes in the system are identified by the presence of secondary ankerite, with minor calcite, scattered in the hydrothermally altered granite, and Mn calcite in fracture filling materials. The isotopic signatures of these carbonates lead us to conclude that ankerite and calcite from the former were formed at the end of the same hydrothermal process that altered the granite, at a temperature range of between 72° and 61°C for ankerite, and between 52° and 35°C for calcite. The effect of edaphic CO2 on both carbonates, greater on calcite than on ankerite, is demonstrated. Calcites from fracture fillings are, at least, binary mixtures, in different proportions, of hydrothermal calcite, formed between 25° and <100°C, and supergenic calcite, formed at ≤25°C. According to their signatures, the effect of edaphic CO2 in both calcites is also evident. It is assumed that: (i) hydrothermal calcite from fracture fillings and ankerite from the hydrothermally altered granite are the result of the same hydrothermal process, their chemical differences being due to the intensity of the water/rock interaction which was stronger in the altered granite than in the fractures; and (ii) all of these carbonatation processes are responsible for ancient and recent migration/retention of uranium observed in the hydrothermally altered granite and fracture fillings.  相似文献   

3.
Abstract: Characterization of Neogene magmatism in the Ryuo mine area in the Kitami metallogenic province was carried out on the basis of K-Ar data for felsic–to–mafic terrestrial extrusive and intrusive volcanism from Late Miocene to Early Pliocene. The Ryuo epithermal gold-silver deposit occurs primarily in the felsic volcaniclastic rocks of the Ikutahara Formation and in Ryuo Rhyolite. The Ryuo mineralization age of 7. 7 – 8. 1 Ma coincides well with the hydrothermal alteration age (7. 7 Ma) of Ryuo Rhyolite hosting ore veins. It is concluded that the Ryuo mineralization was essentially accompanied by felsic volcanic activity during the sedimentation of the Ikutahara Formation, and was closely related both temporally and spatially to the intrusive activity of Ryuo Rhyolite. Hydrothermal alteration related to the epithermal gold-silver mineralization of the Ryuo deposit is primarily characterized by early regional and vein-related alterations, and late steam-heated alteration. Early regional alteration consists of a smectite halo (smectite+pyrite±quartz±opal–CT±mordenite°Clinoptilolite–heulandite series mineral). Early vein-related alteration is primarily marked by potassic alteration. This alteration halo can be subdivided into a K-feldspar halo (quartz+adular–ia+pyrite±illite±interstratified illite/smectite±smectite), an illite halo (quartz+illite + chlorite + pyrite ± interstratified illite/smec–tite±smectite) and an interstratified illite/smectite halo (quartz + interstratified illite/smectite+pyrite±smectite). Late steam-heated alteration characterized by kaolinite or alunite locally overprints the early K-feldspar halo. The style of the Ryuo gold-silver deposit is a low-sulfidation epithermal type. The gold–silver–bearing quartz vein precipitates during boiling of ore fluid. The origin of the ore fluid might be meteoric water. The temperature and sulfur fugacity conditions during precipitation of electrum and acanthite are estimated to be 206°– 238°C and 10-13.5 – 10-11.6 atm, respectively.  相似文献   

4.
Gouges formed in north-northeast-striking fault zones of the Sydney region and associated host-rocks were investigated by XRD, SEM, TEM and optical microscopy in order to determine their mineralogy. XRD studies reveal that illite, illite–smectite, kaolinite, quartz and dickite are present in varying proportions. Kübler Indices (0.54–0.71) and low smectite contents in illite–smectite (<10% smectite) in most gouges and host-rocks, indicate the assemblages formed at temperatures between 120 and 150°C. Those at the Heathcote Road, Lucas Heights location formed at lower temperatures (<100°C). SEM images of the clays in host sublitharenites and gouges show a variety of sizes and habits that reflect variations in fluid temperature and rate of crystallisation. SEM studies also reveal that detrital quartz grains exhibit overgrowths and etch pits of varying density, size and shape that are more strongly developed in the gouges than in the host-rocks. These features are thought to be related to higher fluid/rock ratios brought about by major ingress of fluids into the fault zones. The mineral assemblage present and the features exhibited are believed to have formed in response to a thermal event associated with the early stages of the breakup of Gondwana.  相似文献   

5.
The vein system in the Arinem area is a gold‐silver‐base metal deposit of Late Miocene (8.8–9.4 Ma) age located in the southwestern part of Java Island, Indonesia. The mineralization in the area is represented by the Arinem vein with a total length of about 5900 m, with a vertical extent up to 575 m, with other associated veins such as Bantarhuni and Halimun. The Arinem vein is hosted by andesitic tuff, breccia, and lava of the Oligocene–Middle Miocene Jampang Formation (23–11.6 Ma) and overlain unconformably by Pliocene–Pleistocene volcanic rocks composed of andesitic‐basaltic tuff, tuff breccia and lavas. The inferred reserve is approximately 2 million tons at 5.7 g t?1 gold and 41.5 g t?1 silver at a cut‐off of 4 g t?1 Au, which equates to approximately 12.5t of Au and 91.4t of Ag. The ore mineral assemblage of the Arinem vein consists of sphalerite, galena, chalcopyrite, pyrite, marcasite, and arsenopyrite with small amounts of pyrrhotite, argentite, electrum, bornite, hessite, tetradymite, altaite, petzite, stutzite, hematite, enargite, tennantite, chalcocite, and covellite. These ore minerals occur in quartz with colloform, crustiform, comb, vuggy, massive, brecciated, bladed and calcedonic textures and sulfide veins. A pervasive quartz–illite–pyrite alteration zone encloses the quartz and sulfide veins and is associated with veinlets of quartz–calcite–pyrite. This alteration zone is enveloped by smectite–illite–kaolinite–quartz–pyrite alteration, which grades into a chlorite–smectite–kaolinite–calcite–pyrite zone. Early stage mineralization (stage I) of vuggy–massive–banded crystalline quartz‐sulfide was followed by middle stage (stage II) of banded–brecciated–massive sulfide‐quartz and then by last stage (stage III) of massive‐crystalline barren quartz. The temperature of the mineralization, estimated from fluid inclusion microthermometry in quartz ranges from 157 to 325°C, whereas the temperatures indicated by fluid inclusions from sphalerite and calcite range from 153 to 218 and 140 to 217°C, respectively. The mineralizing fluid is dilute, with a salinity <4.3 wt% NaCl equiv. The ore‐mineral assemblage and paragenesis of the Arinem vein is characteristically of a low sulfidation epithermal system with indication of high sulfidation overprinted at stage II. Boiling is probably the main control for the gold solubility and precipitation of gold occurred during cooling in stage I mineralization.  相似文献   

6.
The Pongkor gold–silver mine is situated at the northeastern flank of the Bayah dome, which is a product of volcanism in the Sunda–Banda Arc. The hydrothermal alteration minerals in the Ciurug–Cikoret area are typical of those formed from acid to near‐neutral pH thermal waters. On the surface, illite/smectite mixed layer mineral (I/Sm), smectite and kaolinite, and spotting illite, I/Sm and K‐feldspar alteration occur at the top of the mineralized zone. Silicification, K‐feldspar and I/Sm zones are commonly formed in the wall rock, and gradually grade outwards into a propylitic zone. The mineralization of precious metal ore zone is constrained by fluid temperatures between 180 and 220°C, and with low salinity (<0.2 wt% NaCl equivalent) and boiling condition. The minimum depth of vein formation below the paleo‐water table is approximately 90–130 m for the hydrostatic column. Hydrogen and oxygen isotope data for quartz and calcite show relatively homogeneous fluid composition (?53 to ?68‰δD and ?5.7 to +0.3‰δ18O H2O). There is no specific trend in the data with respect to the mineralization stages and elevation, which suggests that the ore‐forming fluids did not significantly change spatially during the vein formation. The stable isotope data indicate mixing between the hydrothermal fluids and meteoric water and interaction between the hydrothermal fluids and the host rock.  相似文献   

7.
《Applied Geochemistry》1998,13(1):95-104
X-ray diffraction, scanning electron microscopy and O-isotope geochemistry have been used to investigate the origin and possible controls on polymorphic transformation of kaolin minerals filling veins in Cretaceous shales from the Gibraltar Strait area (southern Spain).The mineralogy of the enclosing shales indicates that kaolin minerals formed from smectite dissolution, a process that silmultaneously originated I/S mixed-layers and quartz. Kaolinite and dickite δ18O values suggest that an increase in the water isotopic composition, from Cretaceous sea water values (−1%) to values of about 3%, occurred parallel to smectite dissolution, the intensity of this process being the main factor controlling the isotopic composition of kaolin minerals. The minimum formation temperature ranges from 62°C for kaolinite to 86–96°C for dickite, indicating that the depth of burial was the main control on polymorph formation. This temperature range agrees with that deduced for illite/smectite ordering. The passage from kaolinite- to dickite-rich veins was accompanied, as deduced from SEM examination, by a morphologic evolution characterized by the division of large vermiculae, dominant in kaolinite samples, and the formation of short stacks and platy crystals, which are predominant in dickite. The mechanism of dickite formation, however, remains uncertain.  相似文献   

8.
Burial Metamorphism of the Ordos Basin in Northern Shaanxi   总被引:1,自引:0,他引:1  
Burial metamorphism has been found in the Ordos basin of northern Shaanxi. On the basis of a rather intensive study of burial metamorphism of sandstone, it has been shown that the evolution from diagenesis to metamorphism involves four stages: cementation of clay minerals, regrowth of pressolved quartz and feldspar, cementation of carbonates and formation of laumontite. On that basis it has been put forward that the laumontite is formed by burial metamorphism of clay and carbonate minerals. According to the thermodynamic data of minerals, the conditions under which laumontite is formed are T<250℃ and X_(CO_2)<0.17. High-resolution SEM and TEM studies of clay minerals in mudstone show that there occur a mixed layer assemblage of bertherine and illite/chlorite and transformation from bertherine to chlorite. On that basis coupled by the X-ray diffraction analysis the author suggests the following transformation of clay minerals during burial metamorphism: the earliest smectite-kaolinite assemblage changes into the bertherine-illite mixture with increasing depth, then into the illite/chlorite mixed layer assemblage and finally into dispersed individual illite and chlorite. The reaction of the transformation is:smectite+kaolinite+K~+=illite+chlorite+quartz According to the study of the oxygen isotope thermometry of the coexisting illitequartz pair, the temperature of the above transformation is lower than 180℃.  相似文献   

9.
The metamorphic conditions of the Upper Permian Yangjiagou Formation in eastern Changchun, China, were evaluated based on the mineral assemblage, illite crystallinity, illite polytypism,the b dimension of illite, and the chemical composition of chlorite. The pelitic rocks in the Yangjiagou Formation are characterized by illite + kaolinite + chlorite ± mixed-layer chlorite/smectite and detrital quartz + plagioclase. Illite in the formation has a crystallinity of 0.38-0.55 and comprises mixed 2 M_1 and1 M_d polytypes, indicating a metamorphic temperature of 200℃. Based on the chemical composition of chlorite and the chlorite geothermometer, we estimated diagenetic to very low-grade metamorphic conditions with temperatures of 185℃~204℃. The b dimension of illite varies from 8.992 A to 9.005 A.We used a mathematical algorithm to extend Guidotti and Sassi's(1986) diagram relating illite b dimension with temperature and pressure, and used this diagram, together with illite crystallinity and chlorite chemical composition, to semi-quantitatively estimate the formation pressure at1.2 kbar. These reveal that the Yangjiagou Formation has experienced very low-grade metamorphism.  相似文献   

10.
This study focused on typical injection layers of deep saline aquifers in the Shiqianfeng Formation used in the Carbon Capture and Sequestration Demonstration Projects in the Ordos Basin, Northwest China. The study employed experiments and numerical simulations to investigate the mechanism of CO2 mineral sequestration in these deep saline aquifers. The experimental results showed that the dissolved minerals are plagioclase, hematite, illite–smectite mixed layer clay and illite, whereas the precipitated minerals are quartz (at 55, and 70 °C) and kaolinite (at 70 °C). There are rare carbonate mineral precipitations at the experimental time scale, while the precipitation of quartz as a product of the dissolution of silicate minerals and some intermediate minerals rich in K and Mg that transform to clay minerals, reveals the possibility of carbonate precipitation at the longer time scale. These results are consistent with some results previously reported in the literature. We calibrated the kinetic parameters of mineral dissolution and precipitation by these experimental results and then simulated the CO2 mineral sequestration under deep saline aquifer conditions. The simulation results showed that the dissolved minerals are albite, anorthite and minor hematite, whereas the precipitated minerals are calcite, kaolinite and smectite at 55 and 70 °C. The geochemical reaction of illite is more complex. At 55 °C, illite is dissolved at the relatively lag time and transformed to dawsonite; at 70 °C, illite is precipitated in the early reaction period and then transformed to kaolinite. Based on this research, sequestrated CO2 minerals, which are mainly related to the temperature of deep saline aquifers in Shiqianfeng Fm., are calcite and dawsonite at lower temperature, and calcite at higher temperature. The simulation results also establish that calcite could precipitate over a time scale of thousands of years, and the higher the temperature the sooner such a process would occur due to increased reaction rates. These characteristics are conducive, not only to the earlier occurrence of mineral sequestration, but also increase the sequestration capacity of the same mineral components. For a sequestration period of 10,000 years, we determined that the mineral sequestration capacity is 0.786 kg/m3 at 55 °C, and 2.180 kg/m3 at 70 °C. Furthermore, the occurrence of mineral sequestration indirectly increases the solubility of CO2 in the early reaction period, but this decreases with the increase in temperature.  相似文献   

11.
The cereal soils of the Northwest of Tunisia derive most of the time, from alluvial deposits or altered remains of carbonated and clayey rocks. Extraction of the clayey fraction permitted to reveal the presence of the following clayey minerals: kaolinite, illite, smectite, chlorite, as well as an illite–smectite interstratified layer, which is present in the deep horizons of the vertisol and in the isohumic soil. The presence of such types of clays shows that the evolution mechanism of soils is weathering of primary minerals inherited from the sedimentary rocks of the Northwest of Tunisia. These clays ensure to soils most of their cationic exchange capacity. Thanks to these clays, which have Ca++, Mg++ and K+ as exchangeable cations, the chemical fertility of these soils is ensured. It may be improved by increasing contents of organic matter, which is naturally few abundant in these soils. To cite this article: H. Ben Hassine, C. R. Geoscience 338 (2006).  相似文献   

12.
The influence of the intrusion of basaltic dykes and sills was investigated on sandstones and siltstones of the Atane Formation (Turonian-Coniacian) from the Sarqaq area (Nûgssuaq peninsula, central West Greenland).In the unaltered rock sequence, the siltstones are dominated by kaolinite, quartz and feldspar. No cementation was observed. The sandstones which are prevalent in this formation are arkoses and lithic arkoses with quartz/feldspar ratios of about 1, with variable contents of rock fragments and with minor amounts of matrix. The matrix consists mainly of kaolinite, less frequently of illite-muscovite and smectite or interstratified illite-smectite. Cement minerals include calcite, Fe-calcite, both mainly in concretions, and subordinate Fe-oxide hydrates.The porosity of the sandstones and siltstones indicates a former maximum depth of burial of 1000 m in the Sarqaq region.Adjacent to thin dykes and sills (1–2 m) the above-described rocks are altered as follows. In sandstones albite (fibrous), quartzine, smectite, goethite were all formed at the expense of kaolinitic matrix, and aragonite cement. In siltstones, interstratified illite-smectite, illite, smectite and low-cristobalite replaced kaolinite. These minerals, especially smectite, exclude temperatures above 200°C; they were probably formed during a cooling period.Adjacent to thicker basalt intrusions—only sills, over 5 m thick, and no dykes are known from this area—the following alterations are observed. In sandstones two textural types of albite were formed in addition to: (1) fibrous albite mentioned above; (2) undulose lath-shaped albite; (3) coarse-twinned non-undulose replacement albite. Moreover, brownish luminescing undulose quartz, muscovite, chlorite, epidote, nontronite and anatase occur. In siltstones the mineral association muscovite-chlorite-pyrophyllite-albite occurs, suggesting temperatures in the range of 250–500°C. Additionally a 22–26 Å mixed-layer mineral (chlorite-muscovite?) formed. At the contacts of thick as well as thin basalt intrusions the detrital grains directly adjoining the basalt are partly fractured; potassium feldspar grains show also a chemical disintegration.The temperatures calculated by application of a cooling model are higher than those indicated by the mineral alterations observed. Convective heat transfer by pore water is suggested as an explanation.  相似文献   

13.
In this paper, sediment texture, clay mineral composition, and δ 18O data on Globigerinoides ruber of a sediment core collected from a water depth of 250 m near Landfall Island, Bay of Bengal, is presented to understand paleoenvironmental shifts during the Mid–Late Holocene period. From the sediment core, five organic carbon-rich samples were radiocarbon dated and the reservoir-corrected ages range from 6,078 to 1,658 years BP. The marine sediment core is represented dominantly by clayey silt with incursions of coarser components that occur around 6,000, 5,400, and 3,400 years BP. The sedimentation of the coarser detritus is due to strengthened southwest monsoon (SWM) since 6,500 to 5,400 years BP. Clay minerals are represented by smectite, illite, kaolinite, and chlorite in varying amounts. High kaolinite content and K/C ratio indicate intense SWM and strong bedrock weathering from the hinterland (~6,500–5,400 years BP). Incidence of smectite (48.82 to 25.09 %) and chlorite/illite (C/I) ratio (0.56 to 0.28) indicate an overall weakened southwest monsoon since 6,000 to 2,000 years BP with a brief incursion of extremely reduced SWM around 4,400 to 4,200 years BP. This is corroborated with the oxygen isotope on G. ruber that reveals a significant shift in the isotopic values ~4,300 years BP (?3.39?‰), indicating weakening in SWM. Subsequently, fluctuations in the intensity of SWM are observed since 2,000 years to present.  相似文献   

14.
The Mangabeira deposit is the only known Brazilian tin mineralization with indium. It is hosted in the Paleo- to Mesoproterozoic Mangabeira within-plate granitic massif, which has geochemical characteristics of NYF fertile granites. The granitic massif is hosted in Archean to Paleoproterozoic metasedimentary rocks (Ticunzal formation), Paleoproterozoic peraluminous granites (Aurumina suite) and a granite–gneiss complex. The mineralized area comprises evolved Li-siderophyllite granite, topaz–albite granite, Li–F-rich mica greisens and a quartz–topaz rock, similar to topazite. Two types of greisens are recognized in the mineralized area: zinnwaldite greisen and Li-rich muscovite greisen, formed by metasomatism of topaz–albite granite and Li-siderophyllite granite, respectively. Cassiterite occurs in the quartz–topaz rock and in the greisens. Indium minerals, such as roquesite (CuInS2), yanomamite (InAsO4·2H2O) and dzhalindite (In(OH3)), and In-rich cassiterite, sphalerite, stannite group minerals and scorodite are more abundant in the quartz–topaz rock, and are also recognized in albitized biotite granite and in Li-rich muscovite greisen. The host rocks and mineralized zones were subsequently overprinted by the Brasiliano orogenic event.Primary widespread two-phase aqueous and rare coeval aqueous-carbonic fluid inclusions are preserved in quartz from the topaz–albite granite, in quartz and topaz from the quartz–topaz rock and in cassiterite from the Li-rich muscovite greisen. Eutectic temperatures are − 25 °C to − 23 °C, allowing modeling of the aqueous fluids in the system H2O–NaCl(–KCl). Rare three-phase H2O–NaCl fluid inclusions (45–50 wt.% NaCl equiv.) are restricted to the topaz–albite granite. Salinities and homogenization temperatures of the aqueous and aqueous-carbonic fluid inclusions decrease from the topaz–albite granite (15–20 wt.% NaCl equiv.; 400 °C–450 °C), to the quartz–topaz rock (10–15 wt.% NaCl equiv.; 250 °C–350 °C) and to the greisen (0–5 wt.% NaCl equiv.; 200 °C–250 °C). Secondary fluid inclusions have the same range of salinities as the primary fluid inclusions, and homogenize between 150 and 210 °C.The estimated equilibrium temperatures based on δ18O of quartz–mica pairs are 610–680 °C for the topaz–albite granite and 285–370 °C for the Li-rich muscovite greisens. These data are coherent with measured fluid inclusion homogenization temperatures. Temperatures estimated using arsenopyrite geothermometry yield crystallization temperatures of 490–530 °C for the quartz–topaz rock and 415–505 °C for the zinnwaldite greisens. The fluids in equilibrium with the topaz–albite granite have calculated δ18O and δD values of 5.6–7.5‰ and − 67 to − 58‰, respectively. Estimated δ18O and δD values are mainly 4.8–7.9‰ and − 60 to − 30‰, respectively, for the fluids in equilibrium with the quartz–topaz rock and zinnwaldite greisen; and 3.4–3.9‰ and − 25 to − 17‰, respectively, for the Li-rich muscovite greisen fluid. δ34S data on arsenopyrite from the quartz–topaz rock vary from − 1.74 to − 0.74‰, consistent with a magmatic origin for the sulfur. The integration of fluid inclusion with oxygen isotopic data allows for estimation of the minimum crystallization pressure at ca. 770 bar for the host topaz–albite granite, which is consistent with its evolved signature.Based on petrological, fluid inclusion and isotope data it is proposed that the greisens and related Mangabeira Sn–In mineralization had a similar hydrothermal genesis, which involved exsolution of F-rich, Sn–In-bearing magmatic fluids from the topaz–albite granite, early formation of the quartz–topaz rock and zinnwaldite greisen, progressive cooling and Li-rich muscovite greisen formation due to interaction with meteoric water. The quartz–topaz rock is considered to have formed in the magmatic-hydrothermal transition. The mineralizing saline and CO2-bearing fluids are interpreted to be of magmatic origin, based on the isotopic data and paragenesis, which has been documented as characteristic of the tin mineralization genetically related to Proterozoic within-plate granitic magmatism in the Goias Tin Province, Central Brazil.  相似文献   

15.
The Murgul (Artvin, NE Turkey) massive sulfide deposit is hosted dominantly by Late Cretaceous calc-alkaline to transitional felsic volcanics. The footwall rocks are represented by dacitic flows and pyroclastics, whereas the hanging wall rocks consist of epiclastic rocks, chemical exhalative rocks, gypsum-bearing vitric tuff, purple vitric tuff and dacitic flows. Multi-element variation diagrams of the hanging wall and footwall rocks exhibit similar patterns with considerable enrichment in K, Rb and Ba and depletion in Nb, Sr, Ti and P. The chondrite-normalized rare earth element (REEs) patterns of all the rocks are characterized by pronounced positive/negative Eu anomalies as a result of different degrees of hydrothermal alteration and the semi-protected effects of plagioclase fractionation.Mineralogical results suggest illite, illite/smectite + chlorite ± kaolinite and chlorite in the footwall rocks and illite ± smectite ± kaolinite and chlorite ± illite in the hanging wall rocks. Overall, the alteration pattern is represented by silica, sericite, chlorite and chlorite–carbonate–epidote–sericite and quartz/albite zones. Increments of Ishikawa alteration indexes, resulting from gains in K2O and losses in Na2O and the chlorite–carbonate–pyrite index towards to the center of the stringer zone, indicate the inner parts of the alteration zones. Calculations of the changes in the chemical mass imply a general volume increase in the footwall rocks. Abnormal volume increases are explained by silica and iron enrichments and a total depletion of alkalis in silica zone. Relative K increments are linked to the sericitization of plagioclase and glass shards and the formation of illite/smectite in the sericite zone. In addition, Fe enrichment is always met by pyrite formation accompanied by quartz and chlorite. Illite is favored over chlorite, smectite and kaolinite in the central part of the ore body due to the increase in the (Al + K)/(Na + Ca) ratio. Although the REEs were enriched in the silicification zone, light REEs show depletion in the silicification zone and enrichment in the other zones in contrast to the heavy REEs' behavior. Hydrothermal alteration within the hanging wall rocks, apart from the gypsum-bearing vitric tuffs, is primarily controlled by chloritization with proportional Fe and Mg enrichments and sericitization.The δ18O and δD values of clay minerals systematically change with increasing formation temperature from 6.6 to 8.7‰ and − 42 to − 50‰ for illites, and 8.6 and − 52‰ for chlorite, respectively. The O- and H-stable isotopic data imply that hydrothermal-alteration processes occurred at 253–332 °C for illites and 136 °C for chlorite with a temperature decrease outward from the center of the deposit. The positive δ34S values (20.3 to 20.4‰) for gypsum suggest contributions from seawater sulfate reduced by Fe-oxide/-hydroxide phases within altered volcanic units. Thus, the hydrothermal alteration possibly formed via a dissolution–precipitation mechanism that operated under acidic conditions. The K–Ar dating (73–62 Ma) of the illites indicates an illitization process from the Maastrichtian to Early Danian period.  相似文献   

16.
Episodic and localized illite mineralization is documented in the hydrothermally altered Soultz-sous-Forêts granite (Upper Rhine Graben, France). Separated grain-size fractions of altered granite and argillite vein samples contain mixtures of 2M1 and 1M trans-vacant illite varieties. The platy pseudohexagonal 2M1 illite phases dominate the vein fillings, whereas the 1M illite occurs largely as a fibrous pore-filling variety, which is particularly abundant in the granite matrix. Multiple phases of fluid injections into the granite body have resulted in different illite assemblages, each sample containing a mixture of polytype generations formed during different crystal growth events. On the basis of mineralogical and K–Ar isotopic constraints, the ages of these vein-mineralizing events are determined by plotting the K–Ar values of the various grain-size fractions against polytype abundance and the fitted volume-weighted crystallite thickness distributions. The results suggest a Permian age for the formation of the studied argillite veins, characterized by successive injections of hydrothermal fluids. Secondary episodes of illite crystallization occurred during Jurassic and Cretaceous (or even younger times) in both the veins and the granite matrix. There are indications that the polytype structure and composition of illite were strongly influenced by variations in fluid chemistry and the degree of fluid–rock interaction as the granite was progressively sealed during post-Variscan, episodic hydrothermal activity.  相似文献   

17.
Gold mineralization in the Velvet District occurs in an eastward dipping sequence of late Tertiary rhyolitic ash-flow tuffs, flows, and tuffaceous sediments in northwestern Nevada. Minor gold and silver concentrations are associated with irregular zones of brecciation, argillic alteration, and quartz veining along north-northeast trending normal faults. Reaction of mineralizing fluids with wallrock produced an argillic alteration assemblage of illite, mixed-layer clays, smectite, and kaolinite. Illite alteration and highest gold concentrations appear to be associated with zones of high water/rock ratios. Kaolinite, smectite, alunite, and opal are postulated to have formed during a steam-dominated episode of alteration.Fluid inclusion studies indicate that the quartz veins were deposited in the temperature range 230 to 280°C from fluids which had salinities equivalent to 0.2–0.8 weight percent NaCl. δ 18O of quartz veins varies from ?2.5 to +6.7 ‰ and indicates that the ore fluid must have been Tertiary meteroric water. Stable isotope data appear to define a zone of concentrated fluid flow and potential subsurface mineralization in the southeastern part of the district. Fluid inclusion and isotope studies can be used in combination with more standard geochemical, geophysical, and geological information to provide site-specific targets for epithermal metal concentrations.  相似文献   

18.
The San José district is located in the northwest part of the Deseado massif and hosts a number of epithermal Ag–Au quartz veins of intermediate sulfidation style, including the Huevos Verdes vein system. Veins are hosted by andesitic rocks of the Bajo Pobre Formation and locally by rhyodacitic pyroclastic rocks of the Chon Aike Formation. New 40Ar/39Ar constraints on the age of host rocks and mineralization define Late Jurassic ages of 151.3 ± 0.7 Ma to 144.7 ± 0.1 Ma for volcanic rocks of the Bajo Pobre Formation and of 147.6 ± 1.1 Ma for the Chon Aike Formation. Illite ages of the Huevos Verdes vein system of 140.8 ± 0.2 and 140.5 ± 0.3 Ma are 4 m.y. younger than the volcanic host rock unit. These age dates are among the youngest reported for Jurassic volcanism in the Deseado massif and correlate well with the regional context of magmatic and hydrothermal activity. The Huevos Verdes vein system has a strike length of 2,000 m, with several ore shoots along strike. The vein consists of a pre-ore stage and three main ore stages. Early barren quartz and chalcedony are followed by a mottled quartz stage of coarse saccharoidal quartz with irregular streaks and discontinuous bands of sulfide-rich material. The banded quartz–sulfide stage consists of sulfide-rich bands alternating with bands of quartz and bands of chlorite ± illite. Late-stage sulfide-rich veinlets are associated with kaolinite gangue. Ore minerals are argentite and electrum, together with pyrite, sphalerite, galena, chalcopyrite, minor bornite, covellite, and ruby silver. Wall rock alteration is characterized by narrow (< 3 m) halos of illite and illite/smectite next to veins, grading outward into propylitic alteration. Gangue minerals are dominantly massive quartz intergrown with minor to accessory adularia. Epidote, illite, illite/smectite, and, preferentially at deeper levels, Fe-chlorite gangue indicate near-neutral pH hydrothermal fluids at temperatures of >220°C. Kaolinite occurring with the late sulfide-rich veinlet stage indicates pH < 4 and a temperature of <200°C. The Huevos Verdes system has an overall strike of 325°, dipping on average 65° NE. The orientations of individual ore shoots are controlled by vein strike and intersecting north-northwest-striking faults. We propose a structural model for the time of mineralization of the San José district, consisting of a conjugate shear pair of sinistral north-northwest- and dextral west-northwest-striking faults that correspond to R and R′ in the Riedel shear model and that are related to master faults (M) of north-northeast-strike. Veins of 315° strike can be interpreted as nearly pure extensional fractures (T). Variations in vein strike predict an induced sinistral shear component for strike directions of >315°, whereas strike directions of <315° are predicted with an induced dextral strike–slip movement. The components of the structural model appear to be present on a regional scale and are not restricted to the San José district.  相似文献   

19.
The Chatree deposit is located in the Loei‐Phetchabun‐Nakhon Nayok volcanic belt that extends from Laos in the north through central and eastern Thailand into Cambodia. Gold‐bearing quartz veins at the Q prospect of the Chatree deposit are hosted within polymictic andesitic breccia and volcanic sedimentary breccia. The orebodies of the Chatree deposit consist of veins, veinlets and stockwork. Gold‐bearing quartz veins are composed mainly of quartz, calcite and illite with small amounts of adularia, chlorite and sulfide minerals. The gold‐bearing quartz veins were divided into five stages based on the cross‐cutting relationship and mineral assemblage. Intense gold mineralization occurred in Stages I and IV. The mineral assemblage of Stages I and IV is characterized by quartz–calcite–illite–laumontite–adularia–chlorite–sulfide minerals and electrum. Quartz textures of Stages I and IV are also characterized by microcrystalline and flamboyant textures, respectively. Coexistence of laumontite, illite and chlorite in the gold‐bearing quartz vein of Stage IV suggests that the gold‐bearing quartz veins were formed at approximately 200°C. The flamboyant and brecciated textures of the gold‐bearing quartz vein of Stage IV suggest that gold precipitated with silica minerals from a hydrothermal solution that was supersaturated by boiling. The δ18O values of quartz in Stages I to V range from +10.4 to +11.6‰ except for the δ18O value of quartz in Stage IV (+15.0‰). The increase in δ18O values of quartz at Stage IV is explained by boiling. PH2O is estimated to be 16 bars at 200°C. The fCO2 value is estimated to be 1 bar based on the presence of calcite in the mineral assemblage of Stage IV. The total pressure of the hydrothermal solution is approximately 20 bars at 200°C, suggesting that the gold‐bearing quartz veins of the Q prospect formed about 200 m below the paleosurface.  相似文献   

20.
Abstract

The characteristics and distribution of clay minerals and their effects on reservoir quality in the Huagang sandstones in the Xihu Sag, East China Sea Basin were studied by using X-ray diffraction, casting thin-sections, scanning electron microscopy, electron microprobe analysis, fluid inclusion analysis, constant-rate mercury injection and nuclear magnetic resonance. Clay minerals consist of kaolinite, chlorite, illite and illite–smectite mixed layer (I/S); kaolinite forms from dissolved feldspars, chlorite occurs as clay coatings that are transformed from clay precursors owing to the flocculation of suspended detrital clays or the crystallisation of pore fluids, and illite forms from the illitisation of detrital smectite, authigenic kaolinite and K-feldspars. Clay distribution is controlled by sedimentary environments, burial history and lithologies. Typical reservoirs in the western sub-sag are thin and developed in braided river facies at relatively shallow burial depths with clays dominated by kaolinite. However, typical reservoirs in the central inversion tectonic zone are thicker and developed in a braided delta front facies at deeper burial depths with clays mainly consisting of chlorite, illite and I/S. High-quality reservoirs are characterised by coarse granularity, high quartz content and low clay content with widespread development of chlorite coatings that inhibit quartz cements at low temperatures. At higher temperatures, the high-quality reservoirs develop more pores providing growth space for quartz cements and result in the coexistence of chlorite coatings and quartz cements. The high-quality reservoirs are controlled by their lithological characteristics rather than chlorite coatings. Illite and I/S clays create severe damage to reservoirs by reducing the size and connectivity of pore-throats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号