首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
An integrated biostratigraphic (foraminifera, calcareous nannofossils, crinoids), chemostratigraphic (stable carbon isotopes) and magnetostratigraphic study of the Bocieniec section (southern Poland) is presented here. The section presents a continuous and lithologically monotonous sedimentary record across the Santonian–Campanian boundary transition. A large number of macrofossil, foraminiferal and calcareous nannofossil bioevents along with several well-identified carbon-isotope excursions of the upper Santonian and lowermost Campanian are documented. The base of the Campanian is well-constrained by the last occurrence (LO) of the crinoid Marsupites testudinarius, and correlates to the onset of the first δ13C positive peak of the Santonian–Campanian Boundary Event (SCBE peak a). A presumable primary Cretaceous paleomagnetic signal highlights the potential presence of the C34N/C33R magnetic reversal although its exact position remains uncertain between peaks a and b of the SCBE. The planktic foraminifer Dicarinella asymetrica is very rare at Bocieniec but a potential LO of this important marker may be recorded in coincidence with peak b of the SCBE. The first occurrence (FO) of calcareous nannofossil Broinsonia parca parca coincides with the lower part of chron C33R and with the early Campanian pilula zone event. A large set of additional nannofossil events and benthic foraminifer events further constrain the stratigraphy of the section and along with the carbon isotopes, allows for correlation with other important sections of the Boreal realm. Although the Bocieniec section is relatively thin and condensed (5.5 m), the successive order of events and presence of all past proposed stratigraphic criteria for the Santonian-Campanian boundary makes it the most complete reference section for this interval at the European and at the global scale. Moreover, this section allows for a precise correlation of the Tethyan and Boreal domains. The Bocieniec section fulfils the geological criteria to be a potential boundary stratotype candidate for the base of the Campanian Stage.  相似文献   

2.
In this study, we describe a new stratigraphy of three exposed sections in central Tunisia, integrating Coniacian and Santonian planktic foraminifera and calcareous nannoplankton, supported by ammonite and inoceramid bioevents. In the three sections, the Coniacian/Santonian (C/S) boundary lies slightly above the lowest occurrence (LO) of the calcareous nannofossil Lucianorhabdus cayeuxii, which marks nannofossil Zone CC16 and matches well with the LO of the planktic foraminifera Dicarinella asymetrica. It also lies ∼4–7 m below the LO of the inoceramid Platyceramus cycloides and the ammonite Texanites (Texanites) sp. Comparing these marker C/S bioevents with the global stratotype section, the Olazagutia section (Spain) shows that the stratigraphic range of the bioevents are variable. This observation must be taken into consideration when making regional chronostratigraphic correlations.  相似文献   

3.
Comparison between the planktonic foraminiferal bioevents from different palaeolatitudes suggests that the biostratigraphic criteria used to identify the Maastrichtian stage boundaries are problematic. A new high-resolution calibration of planktonic foraminiferal biostratigraphic, carbon-isotope, and sequence-stratigraphic criteria has been recorded for the first time from the Maastrichtian Sudr Formation at Gebel Matulla, west-central Sinai. The sedimentary successions allow the identification of prominent long-term carbon isotope events in the Maastrichtian, namely the negative excursion of the Campanian–Maastrichtian Boundary Event (CMBE), the positive excursion of the mid-Maastrichtian Event (MME), and the decline towards the Cretaceous-Palaeogene transition (KPgE). Termination of these well known δ13C events is associated with unconformities, created by eustatic sea-level changes, although the long duration argues for superimposed local tectonic control.  相似文献   

4.
The Campanian of the eastern Koppeh-Dagh Basin (NE Iran) is generally considered to be represented by the upper part of the Abderaz and the Abtalkh formations. The Abtalkh Formation, which is studied here, reaches thicknesses of up to 1750 m in the area. The formation is characterized by abundant, diverse, and poor to moderately well preserved calcareous nannofossil assemblages of Tethyan affinity. The assemblages were studied in detail in two sections in eastern Koppeh-Dagh, allowing construction of a precise biozonation for this stage. The Abtalkh Formation at sections in Abtalkh village and Padeha spans biozones CC20 to CC23a (UC15bTP to UC16). The results of this study indicate a late early to late Campanian age for the formation in the area. The most complete Campanian sequence is in the southeast, where the Padeha section is located. Nannofossil abundance and diversity decreases upwards, showing a trend from the base to top of the formation. Dominance of warm water taxa, and low abundance of high latitude taxa, confirm placement of the basin in low to mid palaeolatitudes during deposition of the formation.  相似文献   

5.
Dinoflagellate cyst assemblages from a well-exposed uppermost Cretaceous section at Zumaia (northern Spain) provide a basis for comparison with previous biostratigraphic and magnetostratigraphic studies on the problematic location of the Campanian-Maastrichtian boundary in the section. The position of the last occurrence of Corradinisphaeridium horridum and first common occurrence of Alterbidinium acutulum, correspond well with the bioevents defining the Campanian-Maastrichtian boundary in the Global boundary Stratotype Section and Point of Tercis les Bains (130 km to the North). Together with other age-diagnostic dinoflagellate cyst bioevents, we suggest that the boundary should be placed between 239.75 and 224.75 m below the Cretaceous-Palaeogene boundary, about 46 m lower than an interpretation based on the first occurrence of the planktonic foraminifer Pseudoguembelina palpebra and the last occurrence of the nannofossil Broinsonia parca subsp. constricta. A conspicuous acme of the dinoflagellate cyst Thalassiphora cf. delicata is encountered around the lower-upper Maastrichtian boundary (calibrated by foraminiferal, calcareous nannoplankton and magnetic polarity data), which may prove to be a useful correlatable event.  相似文献   

6.
Calcareous nannoplankton biostratigraphy has been performed on five sedimentary sections through the marine Akveren Formation from the Bartin region of northern Turkey, on the southern Black Sea coast. This new biostratigraphy provides an age for the formation of the Early Campanian (nannofossil zone UC15aTP) to Early Selandian (nannofossil zone NP5), and highlights the presence of the Campanian/Maastrichtian, Cretaceous/Tertiary (K/T), and Danian/Selandian boundaries in this intermediate palaeolatitude location. Micula murus was identified below the K/T boundary, but Micula prinsii and Nephrolithus frequens were not, which implies that the K/T boundary interval is not complete in the study area. These dates are in agreement with previous micropaleontological studies.  相似文献   

7.
One hundred and thirty nine samples have been studied from the Late Campanian–Early Maastrichtian of three deep wells drilled in Jiza’-Qamar Basin, Eastern Yemen to determine the calcareous nannofossil zones and the age of the sediments. Forty-seven calcareous nannofossil species were identified and four biozones were determined in the present study (CC21–CC24). These biozones are assigned to the Late Campanian–Early Maastrichtian ages. Most of the studied species in this work refer to tropical–subtropical environment. The Campanian–Maastrichtian Boundary was determined in Al-Fatk well based on the last occurrence of Eiffelithus eximus and the last occurrences of Uniplanarius sissinghii and Uniplanarius trifidus.  相似文献   

8.
An abundant and diverse nannoflora occurs across the Cenomanian/Turonian (C/T) boundary at Tazra in the Tarfaya Basin of southern Morocco. The nannoflora of this sequence permits recognition of three biozones (CC10-CC12), three subzones (CC10a, CC10b and CC10c), and thirteen important nannolith bioevents previously reported from this interval elsewhere. The floral record shows erratic species abundance fluctuations that clearly vary with lithology and reflect at least in part preservational bias and diagenetic processes. In general, four dissolution resistant taxa are dominant: Watznaueria barnesae, Eiffellithus turriseiffelii, Eprolithus floralis, and Zeugrhabdotus spp. The late Cenomanian Zone CC10 marks a rapid excursion in ∂13C and is characterized by the successive extinction of four taxa, which are widely recognized as reliable biomarkers: Corollithion kennedyi, Axopodorhabdus albianus, Lithraphidites acutus, and Helenea chiastia. This interval is also marked by high species richness and high abundance of the tropical species Watznaueria barnesae, suggesting warm tropical waters. The subsequent ∂13C plateau and organic carbon-rich black shale deposition of the oceanic anoxic event (OAE2) is characterized by low species richness, but high nannofossil abundance, and peak abundance of the cool water and high productivity indicator Zeugrhabdotus spp., followed by the first peak abundance of cool water Eprolithus floralis. This interval correlates with the planktic foraminiferal diversity minimum and the Heterohelix shift, which marks the expansion of the oxygen minimum zone (OMZ). The C/T boundary is identified based on the FO of Quadrum gartneri, which is <1 m below the FO of the planktic foraminifer C/T marker Helvetoglobotruncana helvetica. In the early and middle Turonian, the two dominant species, tropical W. barnesae and cool water E. floralis, alternate in abundance and suggest fluctuating climatic conditions.  相似文献   

9.
The Transylvanian region of Romania preserves some of the most unusual and iconic dinosaurs in the global fossil record, including dwarfed herbivores and aberrant carnivores that lived during the very latest Cretaceous (Maastrichtian) in an ancient island ecosystem (the Haţeg Island). A series of artificial outcrops recently exposed during a hydroelectric project, the Petreşti-Arini section near Sebeş in the Transylvanian Basin, records a 400+ meter sequence documenting the transition from fully marine to terrestrial environments during the Campanian–Maastrichtian. Calcareous nannofossil biostratigraphy indicates that the lower marine beds in this section, part of the uppermost Bozeş Formation, can be assigned to the CC22 biozone, corresponding to the lower–mid upper Campanian. These beds smoothly transition, via a brackish-water unit, into the fully continental Maastrichtian Sebeş Formation. Dinosaur and pterosaur fossils from the uppermost Bozeş Formation can be assigned a late Campanian age making them the oldest well-dated terrestrial fossils from the Haţeg Island, and indicating that the classic Haţeg dinosaur fauna was becoming established by this time, coincident with the first emergence of widespread land areas. Vertebrate fossils occur throughout the overlying Sebeş Formation at the site and are dominated by the small-bodied herbivorous dinosaur Zalmoxes. The dominance of Zalmoxes, and the absence of many taxa commonly seen elsewhere in Maastrichtian sites in Romania, suggests the possibility that either the Petreşti-Arini section preserves a somewhat unusual near-shore environment, or the earliest Haţeg Island dinosaur communities were structured differently from the more diverse communities later in the Maastrichtian. Alternatively, due to the limited sample size available from the studied succession, it is also conceivable that sampling biases give an incomplete portrayal of the Petreşti-Arini local fauna. Support for any one of these alternative hypotheses requires further data from Petreşti-Arini as well as from the larger Transylvania area.  相似文献   

10.
One of the most expanded upper Campanian–Maastrichtian successions worldwide has been cored in a series of boreholes in eastern Denmark. A high-resolution holostratigraphic analysis of this part of the Chalk Group has been undertaken on these cores, notably Stevns-1, in order to provide a record of changes in chalk facies, water depths and sea-water temperatures. Combined lithological data, a suite of petrophysical logs including gamma ray (GR) logs, nannofossil and dinoflagellate palaeontology, stable carbon isotopes, seismic reflection and refraction sections form the basis for the definition of two new formations and six members, three of which are new, and for recognition of Boreal nannofossil subzones UC15eBP to UC20dBP. The upper Campanian–lowermost Maastrichtian Mandehoved Formation is subdivided into the Flagbanke and Boesdal Members and the Maastrichtian Møns Klint Formation is subdivided into the Hvidskud, Rørdal, Sigerslev, Kjølby Gaard Marl and Højerup Members. The Boesdal and Rørdal Members show high GR values and a pronounced chalk-marl cyclicity. The Rørdal and the thin Kjølby Gaard Marl Members have a regional distribution and can be traced over most of the Danish Basin, whereas the Højerup Member is restricted to the easternmost part of Sjælland. The other members consist of rather featureless white chalk.  相似文献   

11.
The first data on the distribution of calcareous nannofossils in the Behbehan section, the Kuh-e-Rish, are considered. According to the distribution of nannofossils, the Upper Cretaceous deposits of the section are subdivided into nine biostratigraphic zones. CC17 (Calculites obscurus zone) indicate the Late Santonian. Biozones CC18 (Aspidolithus parcus zone), CC19 (Calculites ovalis zone), CC20 (Ceratolithoides aculeus zone), CC21 (Quadrum sissinghii zone), and CC22 (Quadrum trifidum zone) represent the Campanian. Biozone CC23 (Tranolithus phacelosus zone) indicate the Late Campanian–Early Maastrichtian. Biozones CC24 (Reinhardtites levis zone) and CC25 (Arkhangelskiella cymbiformis zone) suggest the Middle and Late Maastrichtian, respectively. In the late Late Maastrichtian, due to decreasing in water depth at the study area, Nephrolithus frequens zone (CC26) defined in Tethysian domain was not recognized. The boundary between Gurpi–Pabdeh Formations represented a non-depositional period from the late Late Maastrichtian to the end of Early Paleocene. Also, it seems that predominant conditions of the sedimentary environment of Neotethys basin with the presence of index species calcareous nannofossils specified, which itself indicates that the warm climate and high depth of the basin in Late Santonian to Late Maastrichtian, in low latitudes has been prevalent.  相似文献   

12.
High-resolution carbon isotope stratigraphy of the upper Campanian-Maastrichtian is recorded in the Boreal Realm from a total of 1968 bulk chalk samples of the Stevns-1 core, eastern Denmark. Isotopic trends are calibrated by calcareous nannofossil bio-events and are correlated with a lower-resolution δ13C profile from Rørdal, northwestern Denmark. A quantitative approach is used to test the reliability of Upper Cretaceous nannofossil bio-events and provides accurate biohorizons for the correlation of δ13C profiles. The Campanian-Maastrichtian boundary (CMB) is identified through the correlation of dinoflagellate biostratigraphy and δ13C stratigraphy between Stevns-1 and the Global boundary Standard Stratotype-section and Point at Tercis les Bains (SW France), allowing the identification of new chemical and biostratigraphic markers that provide a precise placement of the stage boundary on a regional scale. The boundary interval corresponds to the third phase of a stepwise 0.8‰ negative δ13C excursion, lies in calcareous nannofossil subzone UC16dBP, and encompasses the last occurrence of nannofossil Tranolithus stemmerikii and first occurrence of nannofossil Prediscosphaera mgayae. Fifteen δ13C events are defined and correlated to sixteen reliable nannofossil biohorizons, thus providing a well-calibrated standard high-resolution δ13C curve for the Boreal Realm.  相似文献   

13.
The early Albian Oceanic Anoxic Event (OAE), i.e., OAE1b, is well documented in western Tethys and in the primary North Atlantic Ocean, but has not yet been reported from eastern Tethys. In this paper, we present bulk carbon isotope data of hemipelagites to examine if it was recorded in eastern Tethys. Samples were taken from the upper Chuangdepu Member (nannofossil zone CC8) of the lower Gyabula (former Shadui) Formation at the Bangbu section, Qonggyai, southern Tibet of China. The δ13C values mainly range from −0.6‰ to 1.8‰ with a maximum of 1.87‰ and a minimum of −0.69‰. Three stages of carbon isotope evolution were distinguished with three boundaries. By the constraint of the stratigraphic sequence and nannofossil biostratigraphic zone CC8, the rapid δ13C change and correlation with western Tethys and Atlantic Ocean together suggest that these three boundaries of the carbon isotope evolution probably correspond to three subevents of the early Albian OAE1b, and the subevent levels of upper Kilian, Paquier, and Leenhardt are recorded in eastern Tethys (southern Tibet). The fact that the amount of δ13C shift is less by ∼1.5–2.0‰ in eastern Tethys than in western Tethys and Atlantic Ocean is interpreted as a result of possible cool sea surface (∼14–16 °C) of the southeastern Tethys (northern Indian passive margin of Greater India), which was probably located in a medium–high latitude during the Albian, leading to low primary productivity. The recognition of OAE-1b from Tethys Himalaya can improve our understanding of the Tethys and global paleoclimatic and paleoceanographic changes during the mid-Cretaceous.  相似文献   

14.
In 140 metres of Maastrichtian White Chalk (nannofossil chalk) exposed near Hemmoor, NW Germany, values of 87Sr/86Sr increase from 0.707760 in the Belemnella sumensis Zone (Lower Maastrichtian) at the base of the section (-54.5 m; referred to 0 m at a prominent marl, M900) to 0.707821 in the Belemnella baltica/danica Zone (Upper Maastrichtian) at the top of the section (+84.5 m). A plateau in 87Sr/86Sr occurs between -5m and +50m in the section, probably as a result of a very high rate of sedimentation in this interval. A belemnite and associated nannofossil chalk have similar 87Sr/86Sr values, suggesting that there has been little diagenetic alteration of the 87Sr/86Sr ratios in the chalk, which therefore preserves its original 87Sr/86Sr. Comparison of 87Sr/86Sr and nannofossil zonations for sequences at Bidart, France, and DSDP Sites reveals discordance and so possible diachronism of the basal boundaries of nannofossil Zones CC25B and CC25C.  相似文献   

15.
A moderately various calcareous nannofossil assemblage of 44 species assigned to 24 genera is identified in samples collected from the Shahdar section and 18 genera and 43 species in Namazgah section. Testing of calcareous nannofossil has permitted recognition of few important coccolith events in stratigraphic interval occupied by the uppermost layers of Cretaceous in the Shahdar and Namazgah sections. These events are correlated to the CC24–CC26 of Sissingh (Geol Minjbouw 56: 37–65, 1977) in two sections. According to these biozones, the age of the studied sections in Shahdar and Namazgah is Early Maastrichtian–Late Maastrichtian. On the basis of paleoecological interpretation, the last layers related to the Cretaceous deposits in two sections were deposited in shallow marine environment in relatively low latitude, and the depth of the basin from the Cretaceous deposits toward Fajan Formation is minimized.  相似文献   

16.
The calcareous nannofossil genus Eiffellithus is an important taxon of mid- to Upper Cretaceous marine sediments in biostratigraphy and paleoceanography. The definition of species within Eiffellithus have been both broadly interpreted and variably applied by nannofossil workers. This is particularly true for the Eiffellithus eximius plexus. While the taxonomy of mid-Cretaceous Eiffellithus species has recently been well-defined, the remaining 35 m.y. history of the genus has not been closely examined. Our investigation of Cenomanian to Maastrichtian sediments from the Western Interior Seaway, Gulf of Mexico, and Western Atlantic gives rise to six new species of Eiffellithus that can be reliably differentiated. In this paper the hitherto used biostratigraphic markers (E. turriseiffelii and E. eximius) have been redefined in a more restricted sense to increase their utility. These refinements in taxonomy reveal an obvious shift in abundance both within the genus and within the nannofossil assemblage as a whole through the Late Cretaceous. In the Cenomanian and Maastrichtian the genus is composed exclusively of coccoliths bearing an X-shaped central cross, such as E. turriseiffelii, while in the Coniacian through Campanian axial-cross forms such as E. eximius comprise more than 60% of the genus. Within the nannofossil assemblage the genus has low abundances in the Cenomanian but increases to >15% of the assemblage in well-preserved samples in the Santonian. In addition, the pattern of diversification of this genus, whereby a x-shaped, diagonal cross repeatedly gives rise to an axial cross by rotation about the central axis, is an excellent example of iterative evolution that may be related to repetitive shifts in Late Cretaceous climatic and paleoceanographic regimes.  相似文献   

17.
《Cretaceous Research》2008,29(1):131-167
The spillway of Lake Waxahachie, Ellis County (Texas), exposes a >17 m section of the Hutchins Member of the Austin Chalk Group, unconformably overlain by Taylor Clay. The Austin sequence was regarded as a potential Global Stratotype Section for the base of the Campanian Stage at the 1995 Brussels meeting on Cretaceous Stage boundaries, with the last occurrence of the crinoid Marsupites testudinarius (von Schlotheim, 1820) as the potential boundary marker. An integrated study of the geochemistry, stable carbon and oxgen isotopes, nannofossils, planktonic foraminifera, inoceramid bivalves, ammonites and crinoids of this section place the last occurrence of M. testudinarius in a matrix of eighteen ancillary biostratigraphic markers, while the boundary can also be recognised on the basis of a δ13C excursion that can, in principle, be detected globally in marine sediments. A new forma of the crinoid Marsupites testudinarius is introduced. The Waxahachie section fulfils sufficient geological criteria as to be an excellent candidate GSSP for the base of the Campanian Stage, if problems of ownership and access to the section can be resolved.  相似文献   

18.
This study of the upper Maastrichtian to Danian sedimentary succession from the northern part of the Romanian Eastern Carpathians (Varniţa section) aims to establish an integrated biostratigraphy based on calcareous nannofossils, organic-walled dinoflagellate cysts (dinocysts) and foraminiferal assemblages, and to reconstruct the depositional environments of the interval. The stratigraphic record across the studied section is incomplete, considering that an approximately 16 m thick strata interval from the top of the Maastrichtian to lowermost Danian cannot be analyzed due to a landslide covering the outcrop. The upper Maastrichtian is marked by a succession of biostratigraphic events, such as the First Appearance Datum (FAD) of the nannoplankton taxon Nephrolithus frequens and FAD of the dinocyst species Deflandrea galeata and Disphaerogena carposphaeropsis, and the Last Appearance Datum (LAD) of Isabelidinium cooksoniae in the lower part of the section. These bioevents are followed by the LAD of the Dinogymnium spp. and Palynodinium grallator dinocyst markers in the top of the Maastrichtian deposits analyzed. In terms of foraminiferal biostratigraphy, the upper Maastrichtian Abathomphalus mayaroensis Zone is documented in the lower part of the studied section. Some bioevents, such as the bloom of the calcareous dinoflagellate genus Thoracosphaera and the FAD of the organic-walled dinocysts Damassadinium californicum, Senoniasphaera inornata, Xenicodinium lubricum and X. reticulatum suggest an early Danian age for the middle part of the section. From the Danian deposits in the Varniţa section, we describe a new organic-walled dinocyst species, Pentadinium darmirae sp. nov., which is until now the only species of the Pentadinium genus discovered in the Paleocene. The occurrence of the global Danian dinocyst marker Senoniasphaera inornata in the top of the section, suggests an age not younger than middle Danian (62.6 Ma) for the analyzed deposits.The palynofacies constituents, as well as the agglutinated foraminiferal morphogroups, used to reconstruct the depositional environments, show that the late Maastrichtian sediments were deposited in an outer shelf to distal (bathyal) environment, followed by a marine transgression during the Danian.  相似文献   

19.
For the first time, the calcareous nannofossils of marly deposits near Kerman (Bardsir area) have been studied. This study presents the integrated (calcareous nannofossils) biostratigraphy of the Bardsir section in the Kerman basin, Central Iran. In most parts of Central Iran, the Upper Cretaceous sequence is complete and continuous and is divided into two groups: Cenomanian–Touronian flysch and Campanian–Maastrichtian flysch. Flyschs composed of sets of green marl sequences (Coniacian–Santonian) have been separated to reduce the basin depth and refer to the relative calm. Bardsir is located 57.6 km from Kerman (Central Iran). The lithology of this area includes light green marl with layers of calcareous siltstone, limestone, and flysch rocks. In this study, 24 samples were taken and prepared with smear slide. Most species were photographed with a light microscope. As a result of this study, 30 genera and 42 species of nannofossils have been identified. A high-resolution calcareous nannofossil biostratigraphic study has been carried out, allowing the division of the studied section into eight biozones of Late Santonian to Early Maastrichtian age (CC17–CC24).  相似文献   

20.
Shallow-water carbonates are invaluable archives of past global change. They hold the record of how neritic biologic communities reacted to palaeoenvironmental changes. However, attempts to decipher these geological archives are often severely hampered by the low stratigraphic resolution attained by biostratigraphy. This is particularly the case for the Upper Cretaceous carbonate platforms of the central Tethyan realm: their biostratigraphy suffers from very low resolution and poor correlation with the standard biochronologic scales based on ammonites, planktic foraminifers and calcareous nannoplankton.In this paper we show how this problem can be tackled by integrating biostratigraphy with isotope stratigraphy. We present a detailed record of the benthic foraminiferal biostratigraphy and carbon and strontium isotope stratigraphy of three upper Cenomanian-middle Campanian sections belonging to the Apennine Carbonate Platform of southern Italy. For the upper Cenomanian-Turonian interval, the carbon isotope curves of the studied sections are easily correlated to the reference curve of the English Chalk. The correlation is facilitated by the matching of the prominent positive excursion corresponding to the Oceanic Anoxic Event 2. For the Coniacian-middle Campanian interval, the correlation is mainly based on strontium isotope stratigraphy. We use the 87Sr/86Sr ratios of the low-Mg calcite of well preserved rudist shells to obtain accurate chronostratigraphic ages for many levels of the three studied sections. The ages obtained by Sr isotope stratigraphy are then used to better constrain the matching of the carbon isotope curves.From the high-resolution chronostratigraphic age-model stablished by isotope stratigraphy, we derive the chronostratigraphic calibration of benthic foraminiferal biostratigraphic events. For the first time the benthic foraminiferal biozones of the Apennine Carbonate Platform can be accurately correlated to the standard ammonite biozonation. This result is of great relevance because the biostratigraphic schemes of other carbonate platforms in the central and southern Tethyan realm are largely based on the same biostratigraphic events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号