首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In situ Sr-isotope data by microdrilling, coupled with major and trace element analyses, have been performed on plagioclase and clinopyroxene from seven samples collected during the 2002–2003 eruptive crisis at Stromboli volcano (Aeolian Islands, Italy). On 28 December 2002, the persistent moderate explosive activity was broken by an effusive event lasting about 7 months. A more violent explosion (paroxysm) occurred on 5 April 2003. Two magma types were erupted, namely a volatile-poor and highly porphyritic magma (HP-magma) poured out as scoria or lava and a volatile-rich, phenocryst-poor magma (LP-magma) found as pumice. LP-magma differs from the HP-magma also for its slightly less-evolved chemistry, the groundmass composition and the lower Sr-isotope ratios. Micro-Sr-isotope data show the presence of zoned minerals in strong isotope disequilibrium, as previously found in products erupted in 1984, 1985 and 1996 AD, with 87Sr/86Sr values generally decreasing from cores to rims of minerals. Only some outer rims testify for equilibrium with the host groundmass. The internal mineral zones with high Sr-isotope ratios (0.70665–0.70618) are interpreted as ‘antecrysts’, crystallised during the previous activity and recycled in the present-day system since the opening shoshonitic activity of the Recent Period, which occurred at about 2.5 ka ago. This result has implications for the dynamics of the present-day plumbing system of Stromboli at intermediate pressure (about 2–3 km depth) and allows us to propose a model whereby an HP-magma reservoir is directly interconnected at the bottom with a cumulate crystal much reservoir. Efficient mixing between residing HP- and input LP-magmas can occur in this reservoir, due to more similar rheological characteristics of the two magmas than in the conduit, where crystallisation is enhanced by degassing. Antecrysts (and possibly melts) re-enter in the HP-magma reservoir both from the bottom, recycled by ascending LP-magmas crossing the crystal mush, and from the top, recycled by descending degassed and dense HP-magma, residual of the periodic Strombolian explosions at the surface. The isotope variation measured in the groundmasses allows calculating the proportion of the LP-magma entering the shallow HP-magma reservoir at ~20%. From this proportion, we estimate that the total volume of LP-magma input during 2002–2003 closely matches the magma volume erupted in the effusive event, suggesting a steady-state system at broadly constant volume. The comparison with estimates of the LP-magma volume ejected by the paroxysm indicates that the LP-magma amount directly reaching the surface during the 5 April paroxysm is minimal with respect to that entering the system.  相似文献   

2.
We studied the elemental and isotopic (Pb, B and Li isotopes) composition of melt inclusions hosted in highly forsteritic (Fo83–91) olivines that were collected from San Bartolo lava and pumice (ST79p, ST82p and ST531p) samples erupted by Stromboli in historical times. The studied melt inclusions have primitive calcalkaline to shoshonitic basaltic compositions. They cover a compositional range far wider than that exhibited by the whole-rocks and differ in key trace element ratios. San Bartolo melt inclusions are characterized by lower incompatible trace element abundances, higher ratios between fluid-mobile (B, Pb, U and LILE) and less fluid-mobile (REE, Th, HFSE) elements and lower La/Yb ratios relative to the pumice-hosted melt inclusions and pumiceous melts erupted during paroxysmal events. Trace elements, along with different Pb, B and Li isotopic signatures, attest to source heterogeneity on the small scale and provide new insights into subducted components beneath Stromboli. Results of a mixing model suggest that metasomatism of the mantle source of pumice-hosted melt inclusions was driven by solute-rich high-pressure fluids (<20%) expelled from the deep portion of the slab. Heterogeneous Pb isotopic composition together with light δ11B (−8.6 to −13.7‰) and δ7Li (+2.3 to −1.7‰) indicates that high-pressure liquids were released in variable proportions from highly dehydrated metabasalts and metasediments. On the other hand, the elemental and isotopic (δ11B ~ −1.9 to −5.9‰) composition of San Bartolo melt inclusions is better explained by the addition of a prevalent aqueous component (~2 to 4%) escaped at shallower depths from sediments and altered basaltic crust in almost equivalent proportions, with a smaller contribution by high-pressure fluids. Owing to the high-angle dip of the subducted cold Ionian slab, aqueous fluids and high-pressure fluids would rise through the mantle wedge and locally superimpose on each other, thus giving origin to variously metasomatized mantle domains.  相似文献   

3.
A thermobarometric and petrologic study of basanites erupted from young volcanic cones along the submarine portions of the three El Hierro rift zones (NE-Rift, NW-Rift and S-Ridge) has been performed to reconstruct magma plumbing and storage beneath the island. Mineral-melt thermobarometry applied to naturally quenched glass and clinopyroxene rims yields pressures ranging from 350 to 1070 MPa with about 80% of the calculated pressures being in the range of 600–800 MPa. This corresponds to a depth range of 19–26 km, implying that the main level of final crystal fractionation is within the uppermost mantle. No systematic dependence between sample locality and fractionation pressures could be observed. Olivine and clinopyroxene crystals in the rocks are complexly zoned and have, on an inter-sample as well as on an intra-sample scale, highly variable core and rim compositions. This can best be explained by mixing of multiply saturated (olivine, magnetite, clinopyroxene, ilmenite), moderately evolved magmas with more mafic magmas being either only saturated with olivine + spinel or with olivine + spinel + clinopyroxene. The inter-sample differences indicate derivation from small, isolated magma chambers which have undergone distinct fractionation and mixing histories. This is in contrast to oceanic intraplate volcanoes situated on plumes with high melt supply rates, e.g. Kilauea Volcano (Hawaii), where magma is mainly transported through a central conduit system and stored in a shallow magma chamber prior to injection into the rift zones. The plumbing system beneath El Hierro rather resembles the magma storage systems beneath, e.g. Madeira or La Palma, indicating that small, intermittent magma chambers might be a common feature of oceanic islands fed by plumes with relatively low fluxes, which results in only limited and periodic magma supply.  相似文献   

4.
Understanding magma plumbing is essential for predicting the behaviour of explosive volcanoes. We investigate magma plumbing at the highly active Anak Krakatau volcano (Indonesia), situated on the rim of the 1883 Krakatau caldera by employing a suite of thermobarometric models. These include clinopyroxene-melt thermobarometry, plagioclase-melt thermobarometry, clinopyroxene composition barometry and olivine-melt thermometry. Petrological studies have previously identified shallow magma storage in the region of 2–8 km beneath Krakatau, while existing seismic evidence points towards mid- to deep-crustal storage zone(s), at 9 and 22 km, respectively. Our results show that clinopyroxene in Anak Krakatau lavas crystallized at a depth of 7–12 km, while plagioclase records both shallow crustal (3–7 km) and sub-Moho (23–28 km) levels of crystallization. These magma storage regions coincide with well-constrained major lithological boundaries in the crust, implying that magma ascent and storage at Anak Krakatau is strongly controlled by crustal properties. A tandem seismic tomography survey independently identified a separate upper crustal (<7 km) and a lower to mid-crustal magma storage region (>7 km). Both petrological and seismic methods are sensitive in detecting magma bodies in the crust, but suffer from various limitations. Combined geophysical and petrological surveys, in turn, offer increased potential for a comprehensive characterization of magma plumbing at active volcanic complexes.  相似文献   

5.
An effective approach to understanding the dynamics of explosive volcanic eruptions and the conduit systems that drive them is through synergy of multiple data sets. Three data sets that lend themselves to ease of integration are seismic, infrasonic and thermal. Although approaches involving these data have been used to record volcanological phenomena since 1862, 1955 and 1965, respectively, their integrated use has only developed since 1999. When combined, these three data sets allow constraint of shallow system geometry and the dynamics of the explosive events that occur within that system. Using Stromboli volcano (Italy) as a case study, we review the complete range of geochemical and geophysical studies that can be applied. In doing so, we aim to show how integration of these diverse studies allows insights into a plumbing system and the dynamics of the eruptive activity that the system feeds. When combined at Stromboli, these data provide constraint of multiple system parameters including chamber depths, gas and magma fluxes, shallow system magma residence times, explosion source depths, and the rise/ejection velocities of ascending gas slugs and ejecta. In turn, these results allow various conduit and eruption dynamic models to be applied and tested.The persistent and repeated mildly explosive events that characterize Stromboli have been modeled in terms of the coalescence of gas within the magma to form large gas slugs that ascend the remaining portion of the conduit to burst at the free surface. Our integrated seismic, infrasonic and thermal data sets indicate that gas coalescence occurs at a depth of ∼260 m, with a typical event frequency of ∼9/h. Infrasonic and thermal data show the explosion source to be located 20-220 m below the vent. Thermal data give emission velocities for the ejected fragments of 8-20 m/s, which converts to gas jet velocities of 23-39 m/s. Tracking these parameters in space and time shows that, although eruptions at Stromboli can be grouped into two characteristic types (simple and complex-each of which characterizes a particular crater, NE and SW, respectively), events within each type show significant short-term variability. The system does, however, appear robust, maintaining its characteristic strombolian eruption style after significant effusive phases and more energetic explosive events.  相似文献   

6.
Basaltic pyroclastic volcanism takes place over a range of scales and styles, from weak discrete Strombolian explosions (~102–103 kg s?1) to Plinian eruptions of moderate intensity (107–108 kg s?1). Recent well-documented historical eruptions from Etna, Kīlauea and Stromboli typify this diversity. Etna is Europe's largest and most voluminously productive volcano with an extraordinary level and diversity of Strombolian to subplinian activity since 1990. Kīlauea, the reference volcano for Hawaiian fountaining, has four recent eruptions with high fountaining (>400 m) activity in 1959, 1960, 1969 (–1974) and 1983–1986 (–2008); other summit (1971, 1974, 1982) and flank eruptions have been characterized by low fountaining activity. Stromboli is the type location for mildly explosive Strombolian eruptions, and from 1999 to 2008 these persisted at a rate of ca. 9 per hour, briefly interrupted in 2003 and 2007 by vigorous paroxysmal eruptions. Several properties of basaltic pyroclastic deposits described here, such as bed geometry, grain size, clast morphology and vesicularity, and crystal content are keys to understand the dynamics of the parent eruptions.The lack of clear correlations between eruption rate and style, as well as observed rapid fluctuations in eruptive behavior, point to the likelihood of eruption style being moderated by differences in the fluid dynamics of magma and gas ascent and the mechanism by which the erupting magma fragments. In all cases, the erupting magma consists of a mixture of melt and gaseous bubbles. The depth and rate of degassing, melt rheology, bubble rise and coalescence rates, and extent of syn-eruptive microlite growth define complex feedbacks that permit reversible shifts between fragmentation mechanisms and in eruption style and intensity. However, many basaltic explosive eruptions end after an irreversible shift to open-system outgassing and microlite crystallization in melt within the conduit.Clearer understanding of the factors promoting this diversity of basaltic pyroclastic eruptions is of fundamental importance in order to improve understanding of the range of behaviors of these volcanoes and assess hazards of future explosive events at basaltic volcanoes. The three volcanoes used for this review are the sites of large and growing volcano-tourism operations and there is a public need both for better knowledge of the volcanoes’ behavior and improved forecasting of the likely course of future eruptions.  相似文献   

7.
Klyuchevskoy volcano, in Kamchatka’s subduction zone, is one of the most active arc volcanoes in the world and contains some of the highest δ18O values for olivines and basalts. We present an oxygen isotope and melt inclusion study of olivine phenocrysts in conjunction with major and trace element analyses of 14C- and tephrochronologically-dated tephra layers and lavas spanning the eruptive history of Klyuchevskoy. Whole-rock and groundmass analyses of tephra layers and lava samples demonstrate that both high-Mg (7–12.5 wt% MgO) and high-Al (17–19 wt% Al2O3, 3–6.5 wt% MgO) basalt and basaltic andesite erupted coevally from the central vent and flank cones. Individual and bulk olivine δ18O range from normal MORB values of 5.1‰ to values as high as 7.6‰. Likewise, tephra and lava matrix glass have high-δ18O values of 5.8–8.1‰. High-Al basalts dominate volumetrically in Klyuchevskoy’s volcanic record and are mostly high in δ18O. High-δ18O olivines and more normal-δ18O olivines occur in both high-Mg and high-Al samples. Most olivines in either high-Al or high-Mg basalts are not in oxygen isotopic equilibrium with their host glasses, and Δ18Oolivine–glass values are out of equilibrium by up to 1.5‰. Olivines are also out of Fe–Mg equilibrium with the host glasses, but to a lesser extent. Water concentrations in olivine-hosted melt inclusions from five tephra samples range from 0.4 to 7.1 wt%. Melt inclusion CO2 concentrations vary from below detection (<50 ppm) to 1,900 ppm. These values indicate depths of crystallization up to ~17 km (5 kbar). The variable H2O and CO2 concentrations likely reflect crystallization of olivine and entrapment of inclusions in ascending and degassing magma. Oxygen isotope and Fe–Mg disequilibria together with melt inclusion data indicate that olivine was mixed and recycled between high-Al and high-Mg basaltic melts and cumulates, and Fe–Mg and δ18O re-equilibration processes were incomplete. Major and trace elements in the variably high-δ18O olivines suggest a peridotite source for the parental magmas. Voluminous, highest in the world with respect to δ18O, and hydrous basic volcanism in Klyuchevskoy and other Central Kamchatka depression volcanoes is explained by a model in which the ascending primitive melts that resulted from the hydrous melt fluxing of mantle wedge peridotite, interacted with the shallow high-δ18O lithospheric mantle that had been extensively hydrated during earlier times when it was part of the Kamchatka forearc. Following accretion of the Eastern Peninsula terrains several million years ago, a trench jump eastward caused the old forearc mantle to be beneath the presently active arc. Variable interaction of ascending flux-melting-derived melts with this older, high-δ18O lithospheric mantle has produced mafic parental magmas with a spectrum of δ18O values. Differentiation of the higher δ18O parental magmas has created the volumetrically dominant high-Al basalt series. Both basalt types incessantly rise and mix between themselves and with variable in δ18O cumulates within dynamic Klyuchevskoy magma plumbing system, causing biannual eruptions and heterogeneous magma products. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Quizapu is part of a linear system of active volcanos in central Chile. The volcanic petrology and geology have been used to infer the plumbing system beneath the volcano. The 1846–1847 eruption (~5 km3) started with small flows of dacite, then changed to a range of andesite–dacite compositions and finally terminated with large flows of dacite. Andesitic enclaves (<10 %) occur in some of these flows. Activity restarted explosively in 1932 (~4 km3 DRE) with an initial andesite–dacite ash, followed by uniform dacite ash and then a terminal andesite ash. All samples, including the enclaves, have chemical compositions that lie on an almost perfect mixing line, with a few exceptions. The abundant plagioclase macrocrysts in the matrix were divided into five petrographic classes on the basis of colour in cold-cathode cathodoluminescence images and zonation in visible light. All populations of macrocrysts have CSDs characteristic of coarsening, although they differ in detail. Two classes can be ascribed to growth in andesite and dacite magmas, but the three other classes are associated with particular magma batches. A model is developed which started with ponding of andesite magma in the crust. This differentiated to produce a dacite magma, most of which probably solidified to make a granodiorite batholith. Activation of a N–S fault enabled volcanism: andesite magma traversed the dacite-filled chamber, heating and raising it up into storage areas hosted by the fault, where it mixed to form a homogeneous magma. A short time before the 1846–1847 eruption, more andesite magma was injected into the shallow part of the system where it mingled with existing mixed magmas. The first magma to be erupted from Quizapu was a dacite, but soon other storage areas along the fault started to feed the system—first mixed magmas, then back to dacites. The eruption then terminated until 1932 when renewed injection of andesite into the system created a conduit that tapped an undegassed dacite chamber and resulted in a strong explosive eruption. The whole story is one of continual andesite magmatism, modulated by storage, degassing and mixing.  相似文献   

9.
We report the occurrence of unusual, high-magnesium (Fo96) olivinephenocrysts in a basaltic lava and an ejected lithic block fromthe Upper Vancori period (13 ka) and the recent activity (2002–2003)of Stromboli volcano, Italy. The samples that contain this distinctivemineral chemistry are a shoshonitic basalt and a basaltic andesitewith anomalous bulk-rock chemical characteristics in which theiron is highly oxidized (6–8 wt % Fe2O3 and <1 wt %FeO). In other respects these samples are similar to the majorityof Stromboli basalts, characterized by the coexistence of olivine,clinopyroxene, plagioclase and Fe–Ti oxides as phenocrysts,and clinopyroxene, plagioclase and Fe–Ti oxides in thegroundmass. In the high-magnesium olivine samples, Fe–Tioxides (pseudobrookite) typically occur as symplectitic intergrowthswith the olivine phenocrysts, indicating simultaneous growthof the two phases. We propose, as a paragenetic model, thatthe Fo96 olivine phenocrysts crystallized from a highly oxidizedbasaltic magma in which most of the iron was in the ferric state;hence, only magnesium was available to form olivine. The highlyoxidized state of the magma reflects sudden degassing of volatilephases associated with instantaneous, irreversible, transientdegassing of the magma chamber; this is postulated to occurduring periods of sudden decompression induced by fracturingof the volcanic edifice associated with paroxysmic activityand edifice collapse. KEY WORDS: Stromboli; Mg-rich olivine; oxygen fugacity; redox state of magmas; irreversible processes  相似文献   

10.
The 2011 eruption of Nabro volcano, Eritrea, produced one of the largest volcanic sulphur inputs to the atmosphere since the 1991 eruption of Mt. Pinatubo, yet has received comparatively little scientific attention. Nabro forms part of an off-axis alignment, broadly perpendicular to the Afar Rift, and has a history of large-magnitude explosive silicic eruptions, as well as smaller more mafic ones. Here, we present and analyse extensive petrological data obtained from samples of trachybasaltic tephra erupted during the 2011 eruption to assess the pre-eruptive magma storage system and explain the large sulphur emission. We show that the eruption involved two texturally distinct batches of magma, one of which was more primitive and richer in sulphur than the other, which was higher in water (up to 2.5 wt%). Modelling of the degassing and crystallisation histories demonstrates that the more primitive magma rose rapidly from depth and experienced degassing crystallisation, while the other experienced isobaric cooling in the crust at around 5 km depth. Interaction between the two batches occurred shortly before the eruption. The eruption itself was likely triggered by recharge-induced destabilisation of vertically extensive mush zone under the volcano. This could potentially account for the large volume of sulphur released. Some of the melt inclusions are volatile undersaturated, and suggest that the original water content of the magma was around 1.3 wt%, which is relatively high for an intraplate setting, but consistent with seismic studies of the Afar plume. This eruption was smaller than some geological eruptions at Nabro, but provides important insights into the plumbing systems and dynamics of off-axis volcanoes in Afar.  相似文献   

11.
Sulfur isotope compositions of pumice and adsorbed volatiles on ash from the first historical eruption of Anatahan volcano (Mariana arc) are presented in order to constrain the sources of sulfur erupted during the period 10-21 May, 2003. The isotopic composition of S extracted from erupted pumice has a narrow range, from δ34SV-CDT +2.6‰ to +3.2‰, while the composition of sulfur adsorbed onto ash has a larger range (+2.8‰ to +5.3‰). Fractionation modeling for closed and open system scenarios suggests that degassing of SO2 raised the δ34SV-CDT value of S dissolved in the melt from an initial composition of between +1.6‰ and +2.6‰ for closed-system degassing, or between −0.5‰ and +1.5‰ for open-system degassing, however closed-system degassing is the preferred model. The calculated values for the initial composition of the magma represent a MORB-like (δ34SV-CDT ∼ 0‰) mantle source with limited contamination by subducted seawater sulfate (δ34SV-CDT +21‰). Modeling also suggests that the δ34SV-CDT value of SO2 gas in closed-system equilibrium with the degassed magma was between +0.9‰ and +2.5‰. The δ34SV-CDT value of sulfate adsorbed onto ash in the eruption plume (+2.8‰ to +5.1‰) is consistent with sulfate formation by oxidation of magmatic SO2 in the eruption column. The sulfur isotope composition of sulfate adsorbed to ash changes from lower δ34S values for ash erupted early in the eruption to higher δ34S values for ash erupted later in the eruption. We interpret the temporal/stratigraphic change in sulfate isotopic composition to primarily reflect a change in the isotopic composition of magmatic SO2 released from the progressively degassing magma and is attributed to the expulsion of an accumulated gas phase at the beginning of the eruption. More efficient oxidation of magmatic SO2 gas to sulfate in the early water-rich eruption plume probably contributed to the change in S isotope compositions observed in the ash leachates.  相似文献   

12.
Fluorine speciation in topsoils of three active volcanoes of Sicily (Italy)   总被引:1,自引:0,他引:1  
Fluorine is one of the many environmental harmful elements released by volcanic activity. The content of total oxalate-extractable and water-extractable fluorine was determined in 96 topsoils of three active volcanic systems of southern Italy (Mt Etna, Stromboli and Vulcano). Total fluorine (F) content (F TOT) ranges from 112 to 7,430 mg kg−1, F extracted with oxalate (F OX) ranges from 16 to 2,320 mg kg−1 (2–93% of F TOT) and F extracted with distilled water ( ) ranges from 1.7 to 159 mg kg−1 (0.2–40 % of F TOT). Fluorine in the sampled topsoils derives both from the weathering of volcanic rocks and ashes and from the enhanced deposition due to volcanic gas emissions either from open-conduit passive degassing (Mt Etna and Stromboli) or from a fumarolic field (Vulcano). Fluorine accumulation in the studied soils does not generally present particular environmental issues except for a few anomalous sites at Vulcano, where measured contents could be dangerous both for vegetation and for grazing animals.  相似文献   

13.
Summary  The Stromboli island, in the Aeolian archipelago (Italy), is one of the most active volcanoes in Europe. In the last 13,000 years, its growth has been complicated by four sector collapses affecting the NW flank, the latest of which resulting in the formation of Sciara del Fuoco (SdF) horseshoe-shaped depression. Slope instability phenomena are represented not only by giant deep-seated gravitational slope deformations, but also by more frequent large landslides, such as occurred in December 2002–January 2003, and shallow landslides, involving loose or weakly cemented deposits, that constitute a natural hazard and affect residential and tourists safety. It is noteworthy that in volcanic environment the instability factors are manifold and much more complex than in other non-volcanic contexts. This paper deals with the Stromboli NW flank instability, and focuses on the effects of magma pressure in the feeding system. Two main objectives have been pursued: (1) to test a methodological approach, in order to evaluate a complex instability process; (2) to contribute to the understanding of volcano deformation and collapse mechanisms and associated hazard. A numerical model was developed by the Finite Difference Method and the FLAC 4.0 code, considering a cross-section of the entire volcano, orthogonal to the SdF and including both subaerial and submerged slopes. The stability of the volcano was analysed under gravity alone, and by introducing the magma pressure effect, both related to magmastatic and overpressure components. The results indicate that gravity alone is not sufficient to affect the stability of the volcano slopes, nor is the magmastatic pressure component. If an excess magma pressure component is introduced, instability is produced in accordance with field evidences and recent slope dynamics. Correspondence: Tiziana Apuani, Dipartimento di Scienze della Terra “A. Desio”, via Mangiagalli 34, 20133 Milano, Italy  相似文献   

14.
Changbaishan, an intraplate volcano, is characterized by an approximately 6 km wide summit caldera and last erupted in 1903. Changbaishan experienced a period of unrest between 2002 and 2006. The activity developed in three main stages, including shield volcano(basalts), cone-construction(trachyandesites to trachytes with minor basalts), and caldera-forming stages(trachytes to comendites). This last stage is associated with one of the more energetic eruptions of the last millennium on Earth, the 946 CE, VEI 7 Millennium Eruption(ME),which emitted over 100 km3 of pyroclastics. Compared to other active calderas, the plumbing system of Changbaishan and its evolution mechanisms remain poorly constrained. Here, we merge new whole-rock,glass, mineral, isotopic, and geobarometry data with geophysical data and present a model of the plumbing system. The results show that the volcano is characterized by at least three main magma reservoirs at different depths: a basaltic reservoir at the Moho/lower crust depth, an intermediate reservoir at 10–15 km depth, and a shallower reservoir at 0.5–3 km depth. The shallower reservoir was involved in the ME eruption, which was triggered by a fresh trachytic melt entering a shallower reservoir where a comenditic magma was stored. The trachytes and comendites originate from fractional crystallization processes and minor assimilation of upper crust material, while the less evolved melts assimilate lower crust material. Syn-eruptive magma mingling occurred during the ME eruption phase. The magma reservoirs of the caldera-forming stage partly reactivate those of the cone-construction stage. The depth of the magma storage zones is controlled by the layering of the crust.The plumbing system of Changbaishan is vertically extensive, with crystal mush reservoirs renewed by the replenishment of new trachytic to trachyandesitic magma from depth. Unlike other volcanoes, evidence of a basaltic recharge is lacking. The interpretation of the signals preceding possible future eruptions should consider the multi-level nature of the Changbaishan plumbing system. A new arrival of magma may destabilize a part of or the entire system, thus triggering eruptions of different sizes and styles. The reference model proposed here for Changbaishan represents a prerequisite to properly understand periods of unrest to potentially anticipate future volcanic eruptions and to identify the mechanisms controlling the evolution of the crust below volcanoes.  相似文献   

15.
Li contents and its isotopes of minerals in mantle peridotite xenoliths from late Cretaceous mafic dikes, analyzed in situ by Cameca IMS-1280, reveal the existence of melt/rock interaction in remains of refertilized Archean lithospheric mantle in Qingdao, Jiaodong Peninsula, North China Craton. Two groups of peridotites exist, i.e., low-Mg# lherzolite and high-Mg# harzburgites. The low-Mg# lherzolite has a relatively homogeneous Li concentration (ol: 2.01–2.11 ppm; opx: 1.77–1.88 ppm; cpx: 1.75–1.93 ppm) and Li isotopic composition (δ7Li in ol: 4.2–7.6‰; in opx: 6.0–8.3‰; in cpx: 5.3–8.4‰). The similarity in δ7Li value to the fresh MORB provides further evidence for the argument that the low-Mg# lherzolite could be the fragment of the newly accreted lithospheric mantle. The high-Mg# harzburgites have heterogeneous Li abundances (ol: 0.83–2.09 ppm; opx: 0.92–1.94 ppm; cpx: 1.12–4.89 ppm) and Li isotopic compositions (δ7Li in ol: −0.5 to +11.5‰; in opx: −6.2 to +11.1‰; in cpx: −34.3 to +10.1‰), showing strong disequilibrium in Li partitioning and Li isotope fractionation between samples. The cores of most minerals in these high-Mg# harzburgites have relatively homogeneous δ7Li values, which are higher than those of fresh MORB, but similar to those previously reported for arc lavas. These harzburgites have enriched trace elemental and Sr–Nd isotopic compositions. These observations indicate that in the early Mesozoic the lithospheric mantle beneath the southeastern North China Craton was similar to that in arc settings, which is metasomatized by subducted crustal materials. Extremely low δ7Li preserved in cpxs requires diffusive fractionation of Li isotopes from later-stage melt into the minerals. Thus, the Li data provide further evidence that the Archean refractory lithospheric mantle represented by the high-Mg# harzburgites was refertilized through melt/rock interaction and transformed to the Mesozoic less refractory and incompatible element and Sr–Nd isotopes enriched lithospheric mantle.  相似文献   

16.
In order to shed light on upper crustal differentiation of mantle-derived basaltic magmas in a subduction zone setting, we have determined the mineral chemistry and oxygen and hydrogen isotope composition of individual cumulus minerals in plutonic blocks from St. Vincent, Lesser Antilles. Plutonic rock types display great variation in mineralogy, from olivine–gabbros to troctolites and hornblendites, with a corresponding variety of cumulate textures. Mineral compositions differ from those in erupted basaltic lavas from St. Vincent and in published high-pressure (4–10 kb) experimental run products of a St. Vincent high-Mg basalt in having higher An plagioclase coexisting with lower Fo olivine. The oxygen isotope compositions (δ18O) of cumulus olivine (4.89–5.18‰), plagioclase (5.84–6.28‰), clinopyroxene (5.17–5.47‰) and hornblende (5.48–5.61‰) and hydrogen isotope composition of hornblende (δD = −35.5 to −49.9‰) are all consistent with closed system magmatic differentiation of a mantle-derived basaltic melt. We employed a number of modelling exercises to constrain the origin of the chemical and isotopic compositions reported. δ18OOlivine is up to 0.2‰ higher than modelled values for closed system fractional crystallisation of a primary melt. We attribute this to isotopic disequilibria between cumulus minerals crystallising at different temperatures, with equilibration retarded by slow oxygen diffusion in olivine during prolonged crustal storage. We used melt inclusion and plagioclase compositions to determine parental magmatic water contents (water saturated, 4.6 ± 0.5 wt% H2O) and crystallisation pressures (173 ± 50 MPa). Applying these values to previously reported basaltic and basaltic andesite lava compositions, we can reproduce the cumulus plagioclase and olivine compositions and their associated trend. We conclude that differentiation of primitive hydrous basalts on St. Vincent involves crystallisation of olivine and Cr-rich spinel at depth within the crust, lowering MgO and Cr2O3 and raising Al2O3 and CaO of residual melt due to suppression of plagioclase. Low density, hydrous basaltic and basaltic andesite melts then ascend rapidly through the crust, stalling at shallow depth upon water saturation where crystallisation of the chemically distinct cumulus phases observed in this study can occur. Deposited crystals armour the shallow magma chamber where oxygen isotope equilibration between minerals is slowly approached, before remobilisation and entrainment by later injections of magma.  相似文献   

17.
A voluminous (>600 km3) and long-lived (~520–75 ka) phase of rhyolitic eruptions followed collapse of the Yellowstone caldera 640 ka. Whether these eruptions represent a dying cycle, or the growth of a new magma chamber, remains an important question. We use new U–Th zircon ages and δ18O values determined by ion microprobe, and sanidine Pb isotope ratios determined by laser ablation, to investigate the genesis of voluminous post-caldera rhyolites. The oldest post-caldera rhyolites, erupted between ~520 and 470 ka, exhibit extreme age and oxygen isotopic heterogeneity, requiring derivation from individual parcels of low-δ18O melts. We find a progressive increase in zircon homogeneity for rhyolite eruptions from ~260 to 75 ka, with homogeneous low-δ18O zircon values of 2.7–2.8‰ that are in equilibrium with low-δ18O host melts for the majority of the youngest eruptions. New sanidine Pb isotope data define separate arrays for post-caldera rhyolites and the caldera-forming tuffs that preceded them, indicating that they were not sourced from a mushy Lava Creek Tuff batholith that remained after caldera collapse. Rather, our new age and isotopic data indicate that the post-caldera rhyolites were generated by remelting of a variety of intracaldera source rocks, consisting of pre-Lava Creek Tuff volcanic and plutonic rocks and earlier erupted post-Lava Creek Tuff rhyolites. Batch assembly of low-δ18O melts starting at ~260 ka resulted in progressive homogenization, followed by differentiation and cooling up until the last rhyolite eruption ~75 ka, a trend that we interpret to be characteristic of a dying magma reservoir beneath the Yellowstone caldera.  相似文献   

18.
About 12.3 km3 of basaltic magma were erupted from the Lakagigar fissure in Iceland in 1783, which may have been derived from the high-level reservoir of Grimsvotn central volcano, by lateral flow within the rifted crust. We have studied the petrology of quenched, glassy tephra from sections through pyroclastic cones along the fissure. The chemical composition of matrix glass of the 1783 tephra is heterogeneous and ranges from olivine tholeiite to Fe–Ti rich basalt, but the most common magma erupted is quartz tholeiite (Mg#43.6 to 37.2). The tephra are characterized by low crystal content (5 to 9 vol%). Glass inclusions trapped in plagioclase and Fo86 to Fo75 olivine phenocrysts show a large range of compositions, from primitive olivine tholeiite (Mg#64.3), quartz tholeiite (Mg#43–37), to Fe–Ti basalts (Mg#33.5) which represent the most differentiated liquids and are trapped as rare melt inclusions in clinopyroxene. Both matrix glass and melt inclusion data indicate a chemically heterogeneous magma reservoir, with quartz tholeiite dominant. LREE-depleted olivine-tholeiite melt-inclusions in Mg-rich olivine and anorthitic-plagioclase phenocrysts may represent primitive magma batches ascending into the reservoir at the time of the eruption. Vesicularity of matrix glasses correlates with differentiation, ranging from 10 to 60 vol.% in evolved quartz-tholeiite glasses, whereas olivine-tholeiite glasses contain less than 10 vol.% vesicles. FTIR analyses of olivine-tholeiite melt-inclusions indicate concentrations of 0.47 wt% H2O and 430 to 510 ppm for CO2. Chlorine in glass inclusions and matrix glasses increases from 50 ppm in primitive tholeiite to 230 ppm in Fe–Ti basalts, without clear evidence of degassing. Melt inclusion analyses show that sulfur varies from 915 ppm to 1970 ppm, as total FeO* increases from 9 to 13.5 wt%. Sulfur degassing correlates both with vesicularity and magma composition. Thus sulfur in matrix glasses decreases from 1490 ppm to 500 ppm, as Mg # decreases from 47 to 37 and vesicularity of the magma strongly increases. These results indicate loss of at least 75% of sulfur during the eruption. The correlation of low sulfur content in matrix glasses with high vesicularity is regarded as evidence of the control of a major exsolving volatile phase on the degassing efficiency of the magma. Our model is consistent a quasi-permanent CO2 flux through the shallow-level magmatic reservoir of Grimsvotn. Following magma withdrawal from the reservoir and during eruption from the Lakagigar fissure, sulfur degassing was controlled by inherent CO2-induced vesicularity of the magma.  相似文献   

19.
Volcán Tequila is an extinct stratovolcano in the western Mexican Volcanic Belt that has erupted lavas ranging from andesite to rhyolite during the last 0.9 Ma. Following an early period of rhyolitic volcanism, the main edifice of the volcano was constructed by central vent eruptions that produced 25 km3 of pyroxene-andesite. At about 0.2 Ma central activity ceased and numerous flows of hornblende-bearing andesite, dacite, and rhyodacite erupted from vents located around the flanks of the volcano. Bimodal plagioclase phenocryst rim compositions in lavas from both the main edifice and the flanks indicate that magma mixing commonly occurred shortly prior to or during eruption. Compositions of endmember magmas involved in mixing, as constrained by whole-rock major and trace element abundances, phenocryst compositions, and mineral-melt exchange equilibria, are similar to those of some lavas erupted from the central vent and on the flanks of the volcano. Estimated pre-eruptive temperatures for hornblende-bearing lavas (970°–830°C) are systematically lower than for lavas that lack hornblende (1045°–970°C), whereas magmatic H2O contents are systematically higher for hornblende-bearing lavas. In addition to stabilizing hornblende, high magmatic water contents promoted crystallization of calcic plagioclase (An70–82). Frequent injections of magma into the base of the subvolcanic plumbing system followed by eruption of mixed magma probably prevented formation of large volumes of silicic magma, which have caused paroxysmal, caldera-forming eruptions at other stratovolcanoes in western Mexico. The later stages of volcanic activity, represented by the flank lavas, indicate a change from a large magma storage reservoir to numerous small ones that developed along a NW-trending zone parallel to regional fault trends. Sr and Nd isotopic data for lavas from the Tequila region and other volcanoes in western Mexico demonstrate that differentiated calc-alkaline magmas are formed primarily through crystal fractionation of mantle-derived calc-alkaline basalt coupled with assimilation of crustal material. Present Address:Department of the Geophysical Sciences The University of Chicago, Chicago IL, 60637, USA  相似文献   

20.
Merapi is Indonesia's most dangerous volcano with a history of deadly eruptions. Over the past two centuries, the volcanic activity has been dominated by prolonged periods of lava dome growth and intermittent gravitational or explosive dome failures to produce pyroclastic flows every few years. Explosive eruptions, such as in 2010, have occurred occasionally during this period, but were more common in pre‐historical time, during which a collapse of the western sector of the volcano occurred at least once. Variations in magma supply from depth, magma ascent rates and the degassing behaviour during ascent are thought to be important factors that control whether Merapi erupts effusively or explosively. A combination of sub‐surface processes operating at relatively shallow depth inside the volcano, including complex conduit processes and the release of carbon dioxide into the magmatic system through assimilation of carbonate crustal rocks, may result in unpredictable explosive behaviour during periods of dome growth. Pyroclastic flows generated by gravitational or explosive lava dome collapses and subsequent lahars remain the most likely immediate hazards near the volcano, although the possibility of more violent eruptions that affect areas farther away from the volcano cannot be fully discounted. In order to improve hazard assessment during future volcanic crises at Merapi, we consider it crucial to improve our understanding of the processes operating in the volcano's plumbing system and their surface manifestations, to generate accurate hazard zonation maps that make use of numerical mass flow models on a realistic digital terrain model, and to utilize probabilistic information on eruption recurrence and inundation areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号