首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
New petrological and geochronological data are presented on high‐grade ortho‐ and paragneisses from northwestern Ghana, forming part of the Paleoproterozoic (2.25–2.00 Ga) West African Craton. The study area is located in the interference zone between N–S and NE–SW‐trending craton‐scale shear zones, formed during the Eburnean orogeny (2.15–2.00 Ga). High‐grade metamorphic domains are separated from low‐grade greenstone belts by high‐strain zones, including early thrusts, extensional detachments and late‐stage strike‐slip shear zones. Paragneisses sporadically preserve high‐pressure, low‐temperature (HP–LT) relicts, formed at the transition between the blueschist facies and the epidote–amphibolite sub‐facies (10.0–14.0 kbar, 520–600 °C), and represent a low (~15 °C km?1) apparent geothermal gradient. Migmatites record metamorphic conditions at the amphibolite–granulite facies transition. They reveal a clockwise pressure–temperature–time (P–T–t) path characterized by melting at pressures over 10.0 kbar, followed by decompression and heating to peak temperatures of 750 °C at 5.0–8.0 kbar, which fit a 30 °C km?1 apparent geotherm. A regional amphibolite facies metamorphic overprint is recorded by rocks that followed a clockwise P–T–t path, characterized by peak metamorphic conditions of 7.0–10.0 kbar at 550–680 °C, which match a 20–25 °C km?1 apparent geotherm. These P–T conditions were reached after prograde burial and heating for some rock units, and after decompression and heating for others. The timing of anatexis and of the amphibolite facies metamorphic overprint is constrained by in‐situ U–Pb dating of monazite crystallization at 2138 ± 7 and 2130 ± 7 Ma respectively. The new data set challenges the interpretation that metamorphic breaks in the West African Craton are due to diachronous Birimian ‘basins’ overlying a gneissic basement. It suggests that the lower crust was exhumed along reverse, normal and transcurrent shear zones and juxtaposed against shallow crustal slices during the Eburnean orogeny. The craton in NW Ghana is made of distinct fragments with contrasting tectono‐metamorphic histories. The range of metamorphic conditions and the sharp lateral metamorphic gradients are inconsistent with ‘hot orogeny’ models proposed for many Precambrian provinces. These findings shed new light on the geodynamic setting of craton assembly and stabilization in the Paleoproterozoic. It is suggested that the metamorphic record of the West African Craton is characteristic of Paleoproterozoic plate tectonics and illustrates a transition between Archean and Phanerozoic orogens.  相似文献   

2.
Garnet crystallization in metapelites from the Barrovian garnet and staurolite zones of the Lesser Himalayan Belt in Sikkim is modelled utilizing Gibbs free energy minimization, multi‐component diffusion theory and a simple nucleation and growth algorithm. The predicted mineral assemblages and garnet‐growth zoning match observations remarkably well for relatively tight, clockwise metamorphic PT paths that are characterized by prograde gradients of ~30 °C kbar?1 for garnet‐zone rocks and ~20 °C kbar?1 for rocks from the staurolite zone. Estimates for peak metamorphic temperature increase up‐structure toward the Main Central Thrust. According to our calculations, garnet stopped growing at peak pressures, and protracted heating after peak pressure was absent or insignificant. Almost identical PT paths for the samples studied and the metamorphic continuity of the Lesser Himalayan Belt support thermo‐mechanical models that favour tectonic inversion of a coherent package of Barrovian metamorphic rocks. Time‐scales associated with the metamorphism were too short for chemical diffusion to substantially modify garnet‐growth zoning in rocks from the garnet and staurolite zones. In general, the pressure of initial garnet growth decreases, and the temperature required for initial garnet growth was reached earlier, for rocks buried closer toward the MCT. Deviations from this overall trend can be explained by variations in bulk‐rock chemistry.  相似文献   

3.
Geothermometry and mineral assemblages show an increase of temperature structurally upwards across the Main Central Thrust (MCT); however, peak metamorphic pressures are similar across the boundary, and correspond to depths of 35–45 km. Garnet‐bearing samples from the uppermost Lesser Himalayan sequence (LHS) yield metamorphic conditions of 650–675 °C and 9–13 kbar. Staurolite‐kyanite schists, about 30 m above the MCT, yield P‐T conditions near 650 °C, 8–10 kbar. Kyanite‐bearing migmatites from the Greater Himalayan sequence (GHS) yield pressures of 10–14 kbar at 750–800 °C. Top‐to‐the‐south shearing is synchronous with, and postdates peak metamorphic mineral growth. Metamorphic monazite from a deformed and metamorphosed Proterozoic gneiss within the upper LHS yield U/Pb ages of 20–18 Ma. Staurolite‐kyanite schists within the GHS, a few metres above the MCT, yield monazite ages of c. 22 ± 1 Ma. We interpret these ages to reflect that prograde metamorphism and deformation within the Main Central Thrust Zone (MCTZ) was underway by c. 23 Ma. U/Pb crystallization ages of monazite and xenotime in a deformed kyanite‐bearing leucogranite and kyanite‐garnet migmatites about 2 km above the MCT suggest crystallization of partial melts at 18–16 Ma. Higher in the hanging wall, south‐verging shear bands filled with leucogranite and pegmatite yield U/Pb crystallization ages for monazite and xenotime of 14–15 Ma, and a 1–2 km thick leucogranite sill is 13.4 ± 0.2 Ma. Thus, metamorphism, plutonism and deformation within the GHS continued until at least 13 Ma. P‐T conditions at this time are estimated to be 500–600 °C and near 5 kbar. From these data we infer that the exhumation of the MCT zone from 35 to 45 km to around 18 km, occurred from 18 to 16 to c. 13 Ma, yielding an average exhumation rate of 3–9 mm year?1. This process of exhumation may reflect the ductile extrusion (by channel flow) of the MCTZ from between the overlying Tibetan Plateau and the underthrusting Indian plate, coupled with rapid erosion.  相似文献   

4.
A section of the orogenic middle crust (Orlica‐?nie?nik Dome, Polish/Czech Central Sudetes) was examined to constrain the duration and significance of deformation (D) and intertectonic (I) phases. In the studied metasedimentary synform, three deformation events produced an initial subhorizontal foliation S1 (D1), a subsequent subvertical foliation S2 (D2) and a late subhorizontal axial planar cleavage S3 (D3). The synform was intruded by pre‐, syn‐ and post‐D2 granitoid sheets. Crystallization–deformation relationships in mica schist samples document I1–2 garnet–staurolite growth, syn‐D2 staurolite breakdown to garnet–biotite–sillimanite/andalusite, I2–3 cordierite blastesis and late‐D3 chlorite growth. Garnet porphyroblasts show a linear Mn–Ca decrease from the core to the inner rim, a zone of alternating Ca–Y‐ and P‐rich annuli in the inner rim, and a Ca‐poor outer rim. The Ca–Y‐rich annuli probably reflect the occurrence of the allanite‐to‐monazite transition at conditions of the staurolite isograd, whereas the Ca‐poor outer rim is ascribed to staurolite demise. The reconstructed PT path, obtained by modelling the stability of parageneses and garnet zoning, documents near‐isobaric heating from ~4 kbar/485 °C to ~4.75 kbar/575 °C during I1–2. This was followed by a progression to 4–5 kbar/580–625 °C and a subsequent pressure decrease to 3–4 kbar during D2. Pressure decrease below 3 kbar is ascribed to I2–3, whereas cooling below ~500 °C occurred during D3. In the dated mica schist sample, garnet rims show strong Lu enrichment, oscillatory Lu zoning and a slight Ca increase. These features are also related to allanite breakdown coeval with staurolite appearance. As Lu‐rich garnet rims dominate the Lu–Hf budget, the 344 ± 3 Ma isochron age is ascribed to garnet crystallization at staurolite grade, near the end of I1–2. For the dated sample of amphibole–biotite granitoid sheet, a Pb–Pb single zircon evaporation age of 353 ± 1 Ma is related to the onset of plutonic activity. The results suggest a possible Devonian age for D1, and a Carboniferous burial‐exhumation cycle in mid‐crustal rocks that is broadly coeval with the exhumation of neighbouring HP rocks during D2. In the light of published ages, a succession of telescoping stages with time spans decreasing from c. 10 to 2–3 Ma is proposed. The initially long period of tectonic quiescence (I1–2 phase, c. 10 Ma) inferred in the middle crust contrasts with contemporaneous deformation at deeper levels and points to decoupled PTD histories within the orogenic wedge. An elevated gradient of ~30 °C km?1 and assumed high heating rates of c. 20 °C Ma?1 are explained by the protracted intrusion of granitoid sheets, with or without deformation, whereas fast vertical movements (2–3 Ma, D2 phase) in the crust require the activity of deformation phases.  相似文献   

5.
U(–Th)–Pb geochronology, geothermobarometric estimates and macro‐ and micro‐structural analysis, quantify the pressure–temperature–time–deformation (PTtD) history of Everest Series schist and calcsilicate preserved in the highest structural levels of the Everest region. Pristine staurolite schist from the Everest Series contains garnet with prograde compositional zoning and yields a P–T estimate of 649 ± 21 ° C, 6.2 ± 0.7 kbar. Other samples of the Everest Series contain garnet with prograde zoning and staurolite with cordierite overgrowths that yield a P–T estimate of 607 ± 25 ° C, 2.9 ± 0.6 kbar. The Lhotse detachment (LD) marks the base of the Everest Series. Structurally beneath the LD, within the Greater Himalayan Sequence (GHS), garnet zoning is homogenized, contains resorption rinds and yields peak temperature estimates of ~650 ± 50 ° C. P–T estimates record a decrease in pressure from ~6 to 3 kbar and equivalent temperatures from structurally higher positions in the overlying Everest Series, through the LD and into GHS. This transition is interpreted to result from the juxtaposition of the Everest Series in the hangingwall with the GHS footwall rocks during southward extrusion and decompression along the LD system. An age constraint for movement on the LD is provided by the crystallization age of the Nuptse granite (23.6 ± 0.7 Ma), a body that was emplaced syn‐ to post‐solid‐state fabric development. Microstructural evidence suggests that deformation in the LD progressed from a distributed ductile shear zone into the structurally higher Qomolangma detachment during the final stages of exhumation. When combined with existing geochronological, thermobarometric and structural data from the GHS and Main Central thrust zone, these results form the basis for a more complete model for the P–T–t–D evolution of rocks exposed in the Mount Everest region.  相似文献   

6.
Rift‐related regional metamorphism of passive margins is usually difficult to observe on the surface, mainly due to its strong metamorphic overprint during the subsequent orogenic processes that cause its exposure. However, recognition of such a pre‐orogenic evolution is achievable by careful characterization of the polyphase tectono‐metamorphic record of the orogenic upper plate. A multidisciplinary approach, involving metamorphic petrology, P–T modelling, structural geology and in situ U‐Pb monazite geochronology using laser‐ablation split‐stream inductively coupled plasma mass spectrometry, was applied to unravel the polyphase tectono‐metamorphic record of metapelites at the western margin of the Teplá‐Barrandian domain in the Bohemian Massif. The study resulted in discovery of three tectono‐metamorphic events. The oldest event M1 is LP–HT regional metamorphism with a geothermal gradient between 30 and 50 °C km?1, peak temperatures up to 650 °C and of Cambro‐Ordovician age (c. 485 Ma). The M1 event was followed by M2‐D2, which is characterized by a Barrovian sequence of minerals from biotite to kyanite and a geothermal gradient of 20–25 °C km?1. D2‐M2 is associated with a vertical fabric S2 and was dated as Devonian (c. 375 Ma). Finally, the vertical fabric S2 was overprinted by a D3‐M3 event that formed sillimanite to chlorite bearing gently inclined fabric S3 also of Devonian age. The high geothermal gradient of the M1 event can be explained as the result of an extensional, rift‐related tectonic setting. In addition, restoration of the deep architecture and polarity of the extended domain before the Devonian history – together with the supracrustal sedimentary and magmatic record – lead us to propose a model for formation of an Ordovician passive continental margin. The subsequent Devonian evolution is interpreted as horizontal shortening of the passive margin at the beginning of Variscan convergence, followed by detachment‐accommodated exhumation of lower‐crustal rocks. Both Devonian shortening and detachment occurred in the upper plate of a Devonian subduction zone. The tectonic evolution presented in this article modifies previous models of the tectonic history of the western margin of the Teplá‐Barrandian domain, and also put constraints on the evolution of the southern margin of the Rheic ocean from the passive margin formation to the early phases of Variscan orogeny.  相似文献   

7.
New pseudosection modelling was applied to better constrain the P–T conditions and evolution of glaucophane‐bearing rocks in the Tamayen block of the Yuli belt, recognized as the world's youngest known blueschist complex. Based on the predominant clinoamphibole, textural relationships, and mineral compositions, these glaucophane‐bearing high‐P rocks can be divided into four types. We focused on the three containing garnet. The chief phase assemblages are (in decreasing mode): amphibole + quartz + epidote + garnet + chlorite + rutile/titanite (Type‐I), phengite + amphibole + quartz + garnet + chlorite + epidote + titanite + biotite + magnetite (Type‐II), and amphibole + quartz + albite + epidote + garnet + rutile + hematite + titanite (Type‐III). Amphibole exhibits compositional zoning from core to rim as follows: glaucophane → pargasitic amphibole → actinolite (Type‐I), barroisite → Mg‐katophorite/taramite → Fe‐glaucophane (Type‐II), glaucophane → winchite (Type‐III). Using petrographic data, mineral compositions and Perple_X modelling (pseudosections and superimposed isopleths), peak P–T conditions were determined as 13 ± 1 kbar and 550 ± 40 °C for Type‐I, 10.5 ± 0.5 kbar and 560 ± 30 °C for Type‐II (thermal peak) and 11 ± 1 kbar and 530 ± 30 °C for Type‐III. The calculations yield higher pressures and temperatures than previously thought; the difference is ~1–6 kbar and 50–200 °C. The three rock types record similar P–T retrograde paths with clockwise trajectories; all rocks followed trajectories with substantial pressure decrease under near‐isothermal conditions (Type‐I and Type‐III), with the probable exception of Type‐II where decompression followed colder geotherms. The P–T paths suggest a tectonic environment in which the rocks were exhumed from maximum depths of ~45 km within a subduction channel along a relative cold geothermal gradient of ~11–14 °C km?1.  相似文献   

8.
The Gangdese magmatic arc, southeastern Tibet, was built by mantle‐derived magma accretion and juvenile crustal growth during the Mesozoic to Early Cenozoic northward subduction of the Neo‐Tethyan oceanic slab beneath the Eurasian continent. The petrological and geochronological data reveal that the lower crust of the southeastern Gangdese arc experienced Oligocene reworking by metamorphism, anatexis and magmatism after the India and Asia collision. The post‐collisional metamorphic and migmatitic rocks formed at 34–26 Ma and 28–26 Ma respectively. Meta‐granitoids have protolith ages of 65–38 Ma. Inherited detrital zircon from metasedimentary rocks has highly variable ages ranging from 2708 to 37 Ma. These rocks underwent post‐collisional amphibolite facies metamorphism and coeval anatexis under P–T conditions of ~710–760 °C and ~12 kbar with geothermal gradients of 18–20 °C km ? 1, indicating a distinct crustal thickening process. Crustal shortening, thickening and possible subduction erosion due to the continental collision and ongoing convergence resulted in high‐P metamorphic and anatectic reworking of the magmatic and sedimentary rocks of the deep Gangdese arc. This study provides a typical example of the reworking of juvenile and ancient continental crust during active collisional orogeny.  相似文献   

9.
New structural and tectono‐metamorphic data are presented from a geological transect along the Mugu Karnali valley, in Western Nepal (Central Himalaya), where an almost continuous cross‐section from the Lesser Himalaya Sequence to the Everest Series through the medium‐high‐grade Greater Himalayan Sequence (GHS) is exposed. Detailed meso‐ and micro‐structural analyses were carried out along the transect. Pressure (P)–temperature (T) conditions and P–T–deformation paths for samples from different structural units were derived by calculating pseudosections in the MnNKCFMASHT system. Systematic increase of P–T conditions, from ~0.75 GPa to 560 °C up to ≥1.0 GPa–750 °C, has been detected starting from the garnet zone up to the K‐feldspar + aluminosilicate zone. Our investigation reveals how these units are characterized by different P–T evolutions and well‐developed tectonic boundaries. Integrating our meso‐ and micro‐structural data with those of metamorphism and geochronology, a diachronism in deformation and metamorphism can be highlighted along the transect, where different crustal slices were underthrust, metamorphosed and exhumed at different times. The GHS is not a single tectonic unit, but it is composed of (at least) three different crustal slices, in agreement with a model of in‐sequence shearing by accretion of material from the Indian plate, where coeval activity of basal thrusting at the bottom with normal shearing at the top of the GHS is not strictly required for its exhumation.  相似文献   

10.
The Chandman massif, a typical structure of the Mongolian Altai, consists of a migmatite–magmatite core rimmed by a lower grade metamorphic envelope of andalusite and cordierite‐bearing schists. The oldest structure in the migmatite–magmatite core is a subhorizontal migmatitic foliation S1 parallel to rare granitoid sills. This fabric is folded by upright folds F2 and transposed into a vertical migmatitic foliation S2 that is syn‐tectonic, with up to several tens of metres thick granitoid sills. Sillimanite–ilmenite–magnetite S1 inclusion trails in garnet constrain the depth of equilibration during the S1 fabric to 6–7 kbar at 710–780 °C. Reorientation of sillimanite into the S2 fabric indicates that the S1–S2 fabric transition occurred in the sillimanite stability field. The presence of cordierite, and garnet rim chemistry point to decompression to 3–4 kbar and 680–750 °C during development of the S2 steep fabric, and post‐tectonic andalusite indicates further decompression to 2–3 kbar and 600–650 °C. Widespread crystallization of post‐tectonic muscovite is explained by the release of H2O from crystallizing partial melt. In the metamorphic envelope the subhorizontal metamorphic schistosity S1 is heterogeneously affected by upright F2 folds and axial planar subvertical cleavage S2. In the north, the inclusion trails in garnet are parallel to the S1 foliation, and the garnet zoning indicates nearly isobaric heating from 2.5 to 3 kbar and 500–530 °C. Cordierite contains crenulated S1 inclusion trails and has pressure shadows related to the formation of the S2 fabric. The switch from the S1 to the S2 foliation occurred near 2.5–3 kbar and 530–570 °C; replacement of cordierite by fine‐grained muscovite and chlorite indicates further retrogression and cooling. In the south, andalusite containing crenulated inclusion trails of ilmenite and magnetite indicates heating during the D2 deformation at 3–4 kbar and 540–620 °C. Monazite from a migmatite analysed by LASS yielded elevated HREE concentrations. The grain with the best‐developed oscillatory zoning is 356 ± 1.0 [±7] Ma (207Pb‐corrected 238U/206Pb), considered to date the crystallization from melt in the cordierite stability ~680 °C and 3.5 kbar, whereas the patchy BSE‐dark domains give a date of 347 ± 4.2 [±7] Ma interpreted as recrystallization at subsolidus conditions. The earliest sub‐horizontal fabric is associated with the onset of magmatism and peak of P–T conditions in the deep crust, indicating important heat input associated with lower crustal horizontal flow. The paroxysmal metamorphic conditions are connected with collapse of the metamorphic structure, an extrusion of the hot lower crustal rocks associated with vertical magma transfer and a juxtaposition of the hot magmatite–migmatite core with supracrustal rocks. This study provides information about tectono‐thermal history and time‐scales of horizontal flow and vertical mass and heat transfer in the Altai orogen. It is shown that, similar to collisional orogens, doming of partially molten rocks assisted by syn‐orogenic magmatism can be responsible for the exhumation of orogenic lower crust in accretionary orogenic systems.  相似文献   

11.
In the Greater Himalayan sequence of far northwestern Nepal, detailed mapping, thermobarometry, and microstructure analysis are used to test competing models of the construction of Himalayan inverted metamorphism. The inverted Greater Himalayan sequence, which is characterized by an increase in peak metamorphic temperatures up structural section from 580 to 720 °C, is divided into two tectonometamorphic domains. The lower domain contains garnet‐ to kyanite‐zone rocks whose peak metamorphic assemblages suggest a metamorphic field pressure gradient that increases up structural section from 8 to 11 kbar, and which developed during top‐to‐the‐south directed shearing. The upper portion of the Greater Himalayan sequence is composed of kyanite‐ and sillimanite‐zone migmatitic gneisses that contain a metamorphic pressure gradient that decreases up structural section from 10 to 5 kbar. The lower and upper portions of the Greater Himalayan sequence are separated by a metamorphic discontinuity that spatially coincides with the base of the lowest migmatite unit. Temperatures inferred from quartz recrystallization mechanisms and the opening angles of quartz c‐axis fabrics increase up section through the Greater Himalayan sequence from ~530 to >700 °C and yield similar results to peak metamorphic temperatures determined by thermometry. The observations from the Greater Himalayan sequence in far northwestern Nepal are consistent with numerical predictions of channel‐flow tectonic models, whereby the upper hinterland part evolved as a ductile southward tunnelling mid‐crustal channel and the lower foreland part ductily accreted in a critical‐taper system at the leading edge of the extruding channel. The boundary between the upper and lower portions of the Greater Himalayan sequence is shown to represent a foreland–hinterland transition zone that is used to reconcile the different proposed tectonic styles documented in western Nepal.  相似文献   

12.
Metabasic rocks from the Adula Nappe in the Central Alps record a regional high‐pressure metamorphic event during the Eocene, and display a regional variation in high‐pressure mineral assemblages from barroisite, or glaucophane, bearing garnet amphibolites in the north to kyanite eclogites in the central part of the nappe. High‐pressure rocks from all parts of the nappe show the same metamorphic evolution of assemblages consistent with prograde blueschist, high‐pressure amphibolite or eclogite facies conditions followed by peak‐pressure eclogite facies conditions and decompression to the greenschist or amphibolite facies. Average PT calculations (using thermocalc ) quantitatively establish nested, clockwise P–T paths for different parts of the Adula Nappe that are displaced to higher pressure and temperature from north to south. Metamorphic conditions at peak pressure increase from about 17 kbar, 640 °C in the north to 22 kbar, 750 °C in the centre and 25 kbar, 750 °C in the south. The northern and central Adula Nappe behaved as a coherent tectonic unit at peak pressures and during decompression, and thermobarometric results are interpreted in terms of a metamorphic field gradient of 9.6 ± 2.0 °C km?1 and 0.20 ± 0.05 kbar km?1. These results constrain the peak‐pressure position and orientation of the nappe to a depth of 55–75 km, dipping at an angle of approximately 45° towards the south. Results from the southern Adula Nappe are not consistent with the metamorphic field gradient determined for the northern and central parts, which suggests that the southern Adula Nappe may have been separated from central and northern parts at peak pressure.  相似文献   

13.
The High Himalayan Crystalline Sequence in north-central Nepal is a 15-km-thick pile of metasediments that is bound by the Main Central Thrust to the south and a normal fault to the north. The Langtang section through the metasediments shows an apparent inversion of metamorphic isograds with high-P, kyanite-grade rocks exposed beneath low-P, sillimanite-grade rocks. Textural evidence confirms that the observed inversion is a result of a polyphase metamorphic history and phase equilibria studies indicate that thermal decoupling has occurred within a mechanically coherent section of crust. Rocks now exposed at the base of the High Himalayan thrust sheet underwent Barrovian regional metamorphism (M1) prior to 34 Ma in the early stages of the Himalayan orogeny, recording metamorphic conditions of T= 710 ± 30° C, P= 9 ± 1 kbar. After the activation of the Main Central Thrust, which emplaced these metapelites southwards onto the lower grade Lesser Himalayan formations, the upper part of the thrust sheet was overprinted by a second heating event (M2), resulting in sillimanite-grade metamorphism and anatexis of metapelites at T= 760 ± 30° C, P= 5.8 ± 0.4 kbar between 17 and 20 Ma. Crustally derived, leucogranite magmas have been emplaced into low-grade Tethyan sediments on the hangingwall of the normal fault that bounds the northern limit of the metapelitic sequence. The cause of the selective heating of the upper section of the metasediments during M2 cannot be reconciled with either post-thrusting thermal relaxation or advection models. The cause of M2 remains problematical but it is suggested that heat focusing has occurred at the top of the High Himalayan Crystalline Sequence as a result of movement on the normal fault blanketing metapelites of high heat productivity with low-grade sediments of low thermal conductivity. This model implies that the normal fault was active before M2, consistent with decompression textures that formed during, or shortly after, sillimanite-grade metamorphism.  相似文献   

14.
This paper aims to decipher the thermal evolution of the Montagne Noire Axial Zone (MNAZ, southern French Massif Central) gneiss core and its metasedimentary cover through determination of P–T paths and temperature gradients. Migmatitic gneiss from the core of the dome record a clockwise evolution culminating at 725 ± 25 °C and 0.8 ± 0.1 GPa with partial melting, followed by a decompression path with only minor cooling to 690 ± 25° C and 0.4 ± 0.1 GPa. Field structural analyses as well as detailed petrological observations indicate that the cover sequence experienced LP‐HT metamorphism. Apparent thermal gradients within the cover were determined with garnet–biotite thermometry and Raman Spectroscopy on Carbonaceous Matter. High‐temperature apparent gradients (e.g. 530 °C km?1 along one transect) are explained by late brittle–ductile extensional shearing evidenced by phyllonites that post‐date peak metamorphism. In areas where normal faults are less abundant and closely spaced, gradients of 20 to 50 °C km?1 are calculated. These gradients can be accounted for by a combination of dome emplacement and ductile shearing (collapse of isotherms), without additional heat input. Finally, the thermal evolution of the MNAZ is typical for many gneiss domes worldwide as well as with other LP‐HT terranes in the Variscides.  相似文献   

15.
Northward subduction of the leading edge of the Indian continental margin to depths greater than 100 km during the early Eocene resulted in high‐pressure (HP) quartz‐eclogite to ultrahigh‐pressure (UHP) coesite–eclogite metamorphism at Tso Morari, Ladakh Himalaya, India. Integrated pressure–temperature–time determinations within petrographically well‐constrained settings for zircon‐ and/or monazite‐bearing assemblages in mafic eclogite boudins and host aluminous gneisses at Tso Morari uniquely document segments of both the prograde burial and retrograde exhumation path for HP/UHP units in this portion of the western Himalaya. Poikiloblastic cores and inclusion‐poor rims of compositionally zoned garnet in mafic eclogite were utilized with entrapped inclusions and matrix minerals for thermobarometric calculations and isochemical phase diagram construction, the latter thermodynamic modelling performed with and without the consideration of cation fractionation into garnet during prograde metamorphism. Analysis of the garnet cores document (M1) conditions of 21.5 ± 1.5 kbar and 535 ± 15 °C during early garnet growth and re‐equilibration. Sensitive high resolution ion microprobe (SHRIMP) U–Pb analysis of zircon inclusions in garnet cores yields a maximum age determination of 58.0 ± 2.2 Ma for M1. Peak HP/UHP (M2) conditions are constrained at 25.5–27.5 kbar and 630–645 °C using the assemblage garnet rim–omphacite–rutile–phengite–lawsonite–talc–quartz (coesite), with mineral compositional data and regional considerations consistent with the upper PT bracket. A SHRIMP U–Pb age determination of 50.8 ± 1.4 Ma for HP/UHP metamorphism is given by M2 zircons analysed in the eclogitic matrix and that are encased in the garnet rim. Two garnet‐bearing assemblages from the Puga gneiss (host to the mafic eclogites) were utilized to constrain the subsequent decompression path. A non‐fractionated isochemical phase diagram for the assemblage phengite–garnet–biotite–plagioclase–quartz–melt documents a restricted (M3) P–T stability field centred on 12.5 ± 0.5 kbar and 690 ± 25 °C. A second non‐fractionated isochemical phase diagram calculated for the lower pressure assemblage garnet–cordierite–sillimanite–biotite–plagioclase–quartz–melt (M4) documents a narrow P–T stability field ranging between 7–8.4 kbar and 705–755 °C, which is consistent with independent multiequilibria PT determinations. Th–Pb SHRIMP dating of monazite cores surrounded by allanite rims is interpreted to constrain the timing of the M4 equilibration to 45.3 ± 1.1 Ma. Coherently linking metamorphic conditions with petrographically constrained ages at Tso Morari provides an integrated context within which previously published petrological or geochronological results can be evaluated. The new composite path is similar to those published for the Kaghan UHP locality in northern Pakistan, although the calculated 12‐mm a?1 rate of post‐pressure peak decompression at Tso Morari would appear less extreme.  相似文献   

16.
The exposed residual crust in the Eastern Ghats Province records ultrahigh temperature (UHT) metamorphic conditions involving extensive crustal anatexis and melt loss. However, there is disagreement about the tectonic evolution of this late Mesoproterozoic–early Neoproterozoic orogen due to conflicting petrological, structural and geochronological interpretations. One of the petrological disputes in residual high Mg–Al granulites concerns the origin of fine‐grained mineral intergrowths comprising cordierite + K‐feldspar ± quartz ± biotite ± sillimanite ± plagioclase. These intergrowths wrap around porphyroblast phases and are interpreted to have formed by the breakdown of primary osumilite in the presence of melt trapped in the equilibration volume by the melt percolation threshold. The pressure (P)–temperature (T) evolution of four samples from three localities across the central Eastern Ghats Province is constrained using phase equilibria modelling in the chemical system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (NCKFMASHTO). Results of the modelling are integrated with published geochronological results for these samples to show that the central Eastern Ghats Province followed a common P–T–t history. This history is characterized by peak UHT metamorphic conditions of 945–955 °C and 7.8–8.2 kbar followed by a slight increase in pressure and close‐to‐isobaric cooling to the conditions of the elevated solidus at 940–900 °C and 8.5–8.3 kbar. In common with other localities from the Eastern Ghats Province, the early development of cordierite before osumilite and the peak to immediate post‐peak retrograde reaction between osumilite and melt to produce the intergrowth features requires that the prograde evolution was one of contemporaneous increasing pressure with increasing temperature. This counter‐clockwise (CCW) evolution is evaluated for one sample using inverse phase equilibria modelling along a schematic P–T path of 150 °C kbar?1 starting from the low P–T end of the prograde P–T path as constrained by the phase equilibria modelling. The inverse modelling is executed by step‐wise down temperature reintegration of sufficient melt into the residual bulk chemical composition at the P–T point of the 1 mol.% melt isopleth at each step, representing the melt remaining on grain boundaries after each prograde drainage event, to reach the melt connectivity transition (MCT) of 7 mol.%. The procedure is repeated until a plausible protolith composition is recovered. The result demonstrates that clastic sedimentary rocks that followed a CCW P–T evolution could have produced the observed mineral assemblages and microstructures preserved in the central Eastern Ghats Province. This study also highlights the role of melt during UHT metamorphism, particularly its importance to both chemical and physical processes along the prograde and retrograde segments of the P–T path. These processes include: (i) an increase in diffusive length scales during the late prograde to peak evolution, creating equilibration volumes larger than a standard thin section; (ii) the development of retrograde mineral assemblages, which is facilitated if some melt is retained post‐peak; (iii) the presence of melt as a weakening mechanism and the advection of heat by melt, allowing the crust to thicken; and (iv) the effect of melt loss, which makes the deep crust both denser and stronger, and reduces heat production at depth, limiting crustal thickening and facilitating the transition to close‐to‐isobaric cooling.  相似文献   

17.
The exhumation history and tectonic evolution of the Qilian Shan at the north‐eastern margin of the Tibetan Plateau has been widely debated. Here, we present apatite fission‐track (AFT) data for 12 Ordovician granodiorite samples along a vertical transect in the eastern Qilian Shan. These thermochronometry data indicate that the eastern Qilian Shan experienced a three‐stage cooling history, including: (i) rapid initial cooling in the late Cretaceous; (ii) a stage of quasi isothermal quiescence from ~ 80 to 24 Ma; and (iii) rapid subsequent cooling beginning in the early Miocene. The inferred cooling rates for the three stages are 6.8 ± 4.9 °C Ma?1, 0.6 ± 0.2 °C Ma?1 and 2.7 ± 0.9 °C Ma?1 respectively (±1 σ). Assuming a geothermal gradient of 25 °C km?1, the exhumation rates for the three stages are 0.27 ± 0.20 mm a?1, 0.017 ± 0.007 mm a?1 and 0.11 ± 0.04 mm a?1 respectively (±1 σ). We suggest that the late Cretaceous cooling records collision of the Lhasa block with the Eurasian continent and that the Miocene cooling represents uplift/exhumation of the Qilian Shan.  相似文献   

18.
Fluid plays a key role in metamorphism and magmatism in subduction zones. Veins in high‐pressure (HP) to ultrahigh‐pressure (UHP) rocks are the products of fluid‐rock interaction, and can thus provide important constraints on fluid processes in subduction zones. This contribution is an integrated study of zircon U–Pb and O–Hf, as well as whole‐rock Nd–Sr isotopic compositions for a quartz vein, a complex vein, and their host eclogite in the Sulu UHP terrane to decipher the timing and source of fluid flow under HP‐UHP metamorphic conditions. The inherited magmatic zircon cores from the host eclogite constrain the protolith age at c. 750 Ma. Their variable εHf(t) values from ?1.11 to 2.54 and low δ18O values of 0.32–3.40‰ reflect a protolith that formed in a rift setting due to the breakup of the supercontinent Rodinia. The hydrothermal zircon from the quartz and the complex veins shows euhedral shapes, relatively flat HREE pattern, slight or no negative Eu anomaly, low 176Lu/177Hf ratios, and low formation temperatures of 660–690 °C, indicating they precipitated from fluids under HP eclogite facies conditions. This zircon yielded similar U–Pb ages of 217 ± 2 and 213 ± 3 Ma within analytical uncertainty, recording the timing of fluid flow during the exhumation of the UHP rock. It is inferred that the fluids might be of internal origin based on the homogeneity of δ18O values of the hydrothermal zircon from the quartz (?2.41 ± 0.13‰) and complex veins (?2.35 ± 0.12‰), and the metamorphic grown zircon of the host eclogite (?2.23 ± 0.16‰). The similar εNd(t) values of the whole rocks also support such a point. Zircon O and whole‐rock Nd isotopic compositions are therefore useful to identify the source of fluid, for they are major and trace components in minerals involved in metamorphic reactions during HP‐UHP conditions. On the other hand, the hydrothermal zircon from the veins and the metamorphic zircon from the host eclogite exhibit variable εHf(t) values. Model calculation suggests that the Hf was derived from the breakdown of major rock‐forming minerals and recycling of the inherited magmatic zircon. The variable whole‐rock initial 87Sr/86Sr ratios might be caused by subsequent retrograde metamorphism after the formation of the veins.  相似文献   

19.
In the Transangarian region of the Yenisey Ridge in eastern Siberia (Russia), Fe‐ and Al‐rich metapelitic schists of the Korda plate show field and petrological evidence of two superimposed metamorphic events. An early middle Proterozoic event with age of c.1100 Ma produced low‐pressure, andalusite‐bearing assemblages at c. 3.5–4 kbar and 540–560 °C. During a subsequent late Proterozoic event at c. 850 Ma, a medium‐pressure, regional metamorphic overprint produced kyanite‐bearing mineral assemblages that replaced minerals formed in the low‐pressure event. Based on the results of geothermobarometry and PT path calculations it can be shown that pressure increased from 4.5 to 6.7 kbar at a relatively constant temperature of 540–600 °C towards a major suture zone called the Panimba thrust. In order to produce such nearly isothermal loading of 1–7 °C km ?1, we propose a model for the tectono‐metamorphic evolution of the study area based on crustal thickening caused by south‐westward thrusting of the 5–7 km‐thick upper‐plate metacarbonates over lower‐plate metapelites with velocity of c. 350 m Myr?1. A small temperature increase (up to 20 ± 15 °C) of the upper part of the overlapped plate is explained by specific behaviour of steady‐state geotherms calculated using lower radioactive heat production of metacarbonates as compared with metapelites. The suggested thermal‐mechanical model corresponds well with PT paths inferred from obtained thermobarometric data and correlates satisfactorily with PT trajectories predicted by other two‐dimensional thermal models for different crustal thickening and exhumation histories.  相似文献   

20.
Recent fieldwork in Nordenskiöld Land, Svalbard's Southwestern Basement Province, has established the presence of high‐pressure (HP) lithologies. They are strongly retrogressed blueschists consisting mainly of garnet and Ca‐amphibole with remnants of ferroglaucophane and phengite. The pressure–temperature (P–T) conditions were estimated using phase equilibrium modelling in the NCKFMMnASHTO system. P–T estimates based on the garnet, phengite and ferroglaucophane compositional isopleths and modelled paragenetic assemblage indicate peak metamorphism at 470–490 °C and 14–18 kbar. These data fall close to the 7–8 °C km?1 geotherm, which is similar to that from Motalafjella, the only previously known occurrence of blueschists in Svalbard's Caledonides. The newly discovered blueschists could have formed during the early stage of the Caledonian Orogeny and may represent a vestige of missing marginal basins of the western Iapetus developed at the onset of subduction. The likely counterpart to Svalbard's blueschists is the ophiolitic sequence in the Pearya Terrane of northern Ellesmere Island.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号