首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TOHRU OHTA 《Sedimentology》2008,55(6):1687-1701
The present study examines the provenance of the Jurassic Ashikita Group distributed in south‐west Japan, which is composed of the Idenohana, Kyodomari and Sakamoto Formations. Two geochemical diagrams for provenance analysis were utilized, which incorporate full consideration of compositional modifications resulting from weathering (MFW diagram) and hydraulic sorting processes (SiO2/Al2O3–Na2O/K2O diagram). The MFW diagram delineates weathering trends of sedimentary rocks and allows estimation of the original source rock composition by tracing the weathering trends backwards to an unweathered domain. Weathering trends of the Idenohana and Kyodomari Formations extend backward to the domain of intermediate and felsic igneous rocks. In contrast, sediments of the Sakamoto Formation do not fit into a linear weathering trend, indicating that the source rock cannot be approximated to igneous rocks. On the SiO2/Al2O3–Na2O/K2O diagram, sediments are organized into compositional trends, in which the range reflects compositional variations induced by the hydraulic sorting effect. On this diagram, sediments derived from the igneous and recycled sedimentary provenances can be distinguished by reading the inclination of the trend. By utilizing this principle, source rocks of the Idenohana and Kyodomari Formations are interpreted as igneous rocks and those of the Sakamoto Formation are interpreted as recycled sedimentary rocks. Therefore, these diagrams concurrently estimate the source rock composition through quantifying and adjusting the weathering and sorting effects, and reveal a systematic transition in the provenance of the Ashikita Group. The Idenohana and Kyodomari Formations were supplied chiefly from an igneous provenance, which shifted from intermediate to felsic compositions in stratigraphic order. Whereas, sediments of the Sakamoto Formation were sourced primarily from a recycled sedimentary provenance.  相似文献   

2.
A small watershed (160 km2) located in the Massif Central (France) has been chemically, isotopically and hydrologically studied through its dissolved load, bed sediments and soils. This watershed is underlain by basaltic bedrock and associated soils in which the vegetation is dominated mainly by meadows.Dissolved concentrations of major ions (Cl, SO4, NO3, HCO3, Ca, Na, Mg, K, Al and Si), trace elements (Rb and Sr) and strontium isotopes have been determined for two different hydrologic periods on the main stream of the Allanche river and its tributaries.The major objectives of this study were to characterize the chemical and isotopic signatures of each reservoir occurring in the watershed. Changes in chemical and isotopic signatures are interpreted in terms of fluctuations of the different components inputs: rainwater, weathering products, anthropogenic addition.Water quality may be influenced by natural inputs (rainwater, weathering processes) and anthropogenic additions (fertilizers, road salts, etc.). Precipitation serves as a major vehicle for dissolved chemical species in addition to the hydrosystem and, in order to constrain rain inputs, a systematic study of rainwaters is carried out over a one year period using an automatic collector. Corrections of rainwater addition using chloride as an atmospheric input reference were computed for selected elements and the Sr/Sr ratio. After such corrections, the geochemical budget of the watershed was determined and the role of anthropogenic additions evaluated through the relationship between strontium isotopes and major and trace element ratios. Thus, 10% of Ca and Na originate in rainwater input, 40 to 80% in fertilizer additions and 15 to 50% in rock weatheringThe cationic denudation rates for this watershed are around 0.3 g s–1 km2 during low water discharge and 0.6 g s–1 km2 in high water stage. This led to a chemical denudation rate of 5.3 mm/1000 years.For solid matter, the normalization of chemical species relative to parent rocks shows the depletion or enrichment in soils and sediments. The use of K and Ca as mobile reference illustrates the weathering state of soils and sediments relative to parent rocks. This weathering state for bed sediments range from 15 to 45% for the K normalization and from 2 to 50% for the Ca normalization. For the soils, the weathering state ranges from 15 to 57% for the K normalization and from 17 to 90% for the Ca normalization.  相似文献   

3.
Based on the geological background, R-mode factor statistics, and the analysis of the stability diagram for the corresponding system, five weathering reactions controlling the surface-water chemical composition in the watershed of the Changhuajiang River are deduced. In the mass balance model, the precipitation accounts for some solute input, since the rainwater is dilute without pollution. Most of the Ca2+ and HCO 3 ions are from the dissolution of calcite, K+, Na+, H4SiO4 and some of the Mg2+ and HCO 3 come from albite and biotite weathering to kaolinite. The dissolution of dolomite and gypsum controls the mass balances of Mg2+ and SO 4 2– . The dissolution of calcite is the dominant chemical weathering reaction in the watershed because of its reactivity and high concentration. In the watershed in 1986, the chemical weathering rate was 0.073 (kg/m2 a), and the mechanical denudation rate is 0.093 (kg/m2 a). The chemical weathering mass output proportion of carbonate rocks to silicate rocks was about three to one.  相似文献   

4.
We present here the first available estimations of chemical weathering and associated atmospheric CO2 consumption rates as well as mechanical erosion rate for the Lesser Antilles. The chemical weathering (100–120 t/km2/year) and CO2 consumption (1.1–1.4 × 106 mol/km2/year) rates are calculated after subtraction of the atmospheric and hydrothermal inputs in the chemical composition of the river dissolved loads. These rates thus reflect only the low-temperature basalt weathering. Mechanical erosion rates (approx. 800–4000 t/km2/year) are estimated by a geochemical mass balance between the dissolved and solid loads and mean unaltered rock. The calculated chemical weathering rates and associated atmospheric CO2 consumption rates are among the highest values worldwide but are still lower than those of other tropical volcanic islands and do not fit with the HCO3 concentration vs. 1/T correlation proposed by Dessert et al. (2001). The thick soils and explosive volcanism context of the Lesser Antilles are the two possible keys to this different weathering behaviour; the development of thick soils limits the chemical weathering and the presence of very porous pyroclastic flows allows an important water infiltration and thus subsurface weathering mechanisms, which are less effective for atmospheric CO2 consumption.  相似文献   

5.
The petrography, heavy mineral analysis, major element geochemical compositions and mineral chemistry of Early Cretaceous to Miocene–Pliocene rocks, and recent sediments of the Tarfaya basin, SW Morocco, have been studied to reveal their depositional tectonic setting, weathering history, and provenance. Bulk sediment compositional and mineral chemical data suggest that these rocks were derived from heterogeneous sources in the Reguibat Shield (West African Craton) including the Mauritanides and the western Anti-Atlas, which likely form the basement in this area. The Early Cretaceous sandstones are subarkosic in composition, while the Miocene–Pliocene sandstones and the recent sediments from Wadis are generally carbonate-rich feldspathic or lithic arenites, which is also reflected in their major element geochemical compositions. The studied samples are characterized by moderate SiO2 contents and variable abundances of Al2O3, K2O, Na2O, and ferromagnesian elements. Binary tectonic discrimination diagrams demonstrate that most samples can be characterized as passive continental marginal deposits. Al2O3/Na2O ratios indicate more intense chemical weathering during the Early Cretaceous and a variable intensity of weathering during the Late Cretaceous, Early Eocene, Oligocene–Early Miocene, Miocene–Pliocene and recent times. Moreover, weathered marls of the Late Cretaceous and Miocene–Pliocene horizons also exhibit relatively low but variable intensity of chemical weathering. Our results indicate that siliciclastics of the Early Cretaceous were primarily derived from the Reguibat Shield and the Mauritanides, in the SW of the basin, whereas those of the Miocene–Pliocene had varying sources that probably included western Anti-Atlas (NE part of the basin) in addition to the Reguibat Shield and the Mauritanides.  相似文献   

6.
Major element compositions and chemical weathering features of the purple soils and their corresponding rocks in the Red Sichuan Basin, China were studied in this paper to infer the diagenetic features of the purple rocks and the pedogenetic features of the purple soils. The results showed that all of the rock and soil samples, except those from Yibin, have strongly similar major element compositions and the distribution patterns of their major element compositions are similar to those of the upper continental crust. Chemical index of alteration, chemical index of weathering and Na2O/K2O indicate that the purple soils and rocks have similar chemical weathering intensities, whereas the Al2O3–CaO* + Na2O–K2O (A–CN–K) relationship, suggests that chemical weathering was strong during diagenesis of the purple rocks, but weak during pedogenesis of the purple soils. Variations in major element compositions of the purplish rock samples, except that from Yibin, do not primarily reflect differences in compositions of the sediment source, sediment recycling and potassium metasomatism, and therefore the effects of chemical weathering on the major element compositions were mainly dependent on climate condition and the residence time of material exposed to chemical weathering. Chemical weathering of the purple rocks reached only moderate degrees under the general influence of warm and humid climate during Jurassic and Cretaceous. Warmer and more humid climate conditions partly resulted in stronger chemical weathering of rocks in the southern region of the basin than in the central and western region, whereas shorter residence time of material in upslope position partly resulted in weaker chemical weathering of rocks in the eastern region than in the central and western region. The same climate and stable tectonic setting led to comparable chemical weathering intensities of rocks in the Ziliujing and Jiaguan Formations. Gradually colder and dryer climate from Early Jurassic to Middle Jurassic then to Late Jurassic and shorter residence time in tectonically active setting of Middle Jurassic and late Late Jurassic resulted in the following order of chemical weathering intensity of the purple Jurassic rocks: Ziliujing Formation ? Shaximiao Formation ≈ Suining Formation > Penglaizhen Formation.  相似文献   

7.
Chemical weathering and resulting water compositions in the upper Ganga river in the Himalayas were studied. For the first time, temporal and spatial sampling for a 1 year period (monthly intervals) was carried out and analyzed for dissolved major elements, trace elements, Rare Earth Elements (REE), and strontium isotopic compositions. Amounts of physical and chemical loads show large seasonal variations and the overall physical load dominates over chemical load by a factor of more than three. The dominant physical weathering is also reflected in high quartz and illite/mica contents in suspended sediments. Large seasonal variations also occur in major elemental concentrations. The water type is categorized as HCO3–SO42––Ca2+ dominant, which constitute >60% of the total water composition. On an average, only about 5–12% of HCO3 is derived from silicate lithology, indicating the predominance of carbonate lithology in water chemistry in the head waters of the Ganga river. More than 80% Na+ and K+ are derived from silicate lithology. The silicate lithology is responsible for the release of low Sr with extremely radiogenic Sr (87Sr/86 Sr>0.75) in Bhagirathi at Devprayag. However, there is evidence for other end-member lithologies for Sr other than carbonate and silicate lithology. Trace elements concentrations do not indicate any pollution, although presence of arsenic could be a cause for concern. High uranium mobilization from silicate rocks is also observed. The REE is much less compared to other major world rivers such as the Amazon, perhaps because in the present study, only samples filtered through <0.2 m were analysed. Negative Eu anomalies in suspended sediments is due to the excess carbonate rock weathering in the source area.  相似文献   

8.
Loess geochemistry generally reflects paleo-weathering conditions and it can be used to determine the average composition of the upper continental crust (UCC). In this study, major and trace element concentrations were analyzed on loess samples from southwestern Hungary to determine the factors influencing their chemical compositions and to propose new average loess compositions. All studied loess samples had nearly uniform chemical composition, suggesting similar alteration history of these deposits. Chemical Index of Alteration values (58–69) suggested a weak to moderate degree of weathering in a felsic source area. Typical non-steady state weathering conditions were shown on the Al2O3–CaO + Na2O–K2O patterns, indicating active tectonism of the Alpine–Carpathian system during the Pleistocene. Whole-rock element budgets were controlled by heavy minerals derived from a felsic magmatic or reworked sedimentary provenance. Geochemical parameters indicated that dust particles must have been recycled and well homogenized during fluvial and eolian transport processes.  相似文献   

9.
High-resolution siliciclastic grain size and bulk mineralogy combined with clay mineralogy, rubidium, strontium, and neodymium isotopes of Core MD01-2393 collected off the Mekong River estuary in the southwestern South China Sea reveals a monsoon-controlled chemical weathering and physical erosion history during the last 190,000 yr in the eastern Tibetan Plateau and the Mekong Basin. The ranges of isotopic composition are limited throughout sedimentary records: 87Sr/86Sr = 0.7206–0.7240 and εNd(0) = −11.1 to −12.1. These values match well to those of Mekong River sediments and they are considered to reflect this source region. Smectites/(illite + chlorite) and smectites/kaolinite ratios are used as indices of chemical weathering rates, whereas the bulk kaolinite/quartz ratio is used as an index of physical erosion rates in the eastern Tibetan Plateau and the Mekong Basin. Furthermore, the 2.5–6.5 μm/15–55 μm siliciclastic grain size population ratio represents the intensity of sediment discharge of the Mekong River and, in turn, the East Asian summer monsoon intensity. Strengthened chemical weathering corresponds to increased sediment discharge and weakened physical erosion during interglacial periods. In contrast, weakened chemical weathering associated with reduced sediment discharge and intensified physical erosion during glacial periods. Such strong glacial–interglacial correlations between chemical weathering/erosion and sediment discharge imply the monsoon-controlled weathering and erosion.  相似文献   

10.
The present research tests the application of geochemical atlas of soils and stream sediments in the investigation of weathering and erosion processes on volcanic islands. The composition of surface soils collected in six catchments from Santiago Island (Cape Verde) are compared with bedload stream deposits sourced by these catchment areas in order to evaluate the spatial variability of these exogenous processes. The geochemistry of bedload stream deposits is between that of the fresh rocks and the topsoils of their source areas. Relative to average soil composition, bedload deposits are depleted in most of less-mobile elements (e.g., Al, Fe, La, Sc) and strongly enriched in Na and, usually, Ca. When the topsoil weathering intensity in the catchment areas is highly variable and the composition of bedload deposits is substantially different from the average soil composition, bedload deposits should incorporate significant amounts of poorly-weathered rocks and sectors from erosion occur within the drainage basin. Ratios of non-mobile elements allow the identification of highly vulnerable and erosion-protected sectors within the catchments. It is proposed that the catchments of the rivers in the SW flanking side of Santiago Island include sectors where lava shields formed during the post-erosional eruptive phases are capable of an effective protection to erosion. Conversely, the NE-facing part of the island is highly dissected and any younger post-erosional cover was either completely eroded away, or never existed in the first place. Simple compositional parameters derived from the databases of geochemical maps of soil and stream sediments provide important information for the analyses of weathering, erosion and denudation processes at the catchment scale.  相似文献   

11.
In the present study, the lake floor sediments of the Karlad lake, located at higher elevation in Wayanad region of north Kerala, were analyzed for textural characteristics, organic matter, calcium carbonate, major oxides and trace elements. This study was carried out to infer the chemical composition, provenance and intensity of chemical weathering of the source rocks in the lake catchment area. Textural studies signify that lake floor sediments are predominantly as clays (38.75%) followed by sand (36.36%) and silt (25.19%) fractions. The C/N ratio of the lake sediments signify that the sediments are both autochthonous and allochthonous in origin. The major oxides average content reveals the order of abundance as follows; SiO2 > Al2O3 > Fe2O3 > TiO2 > MgO > CaO > K2O > P2O5 > Na2O > MnO. Moreover, the various weathering indices such as Chemical Index of Alteration (CIAAvg. 93.5%), PlagioclaseIndex of Alteration (PIA- Avg. 95.6%) and Chemical Index of Weathering (CIW- Avg. 95.76%) suggest an intense chemical weathering of the source area. The A-CN-K diagram is also corroborating the same. Various provenance discrimination diagrams reveal that the sediments are derived from the mafic source rocks.  相似文献   

12.
A soil geochemical survey was conducted in a 27,000-km2 study area of northern California that includes the Sierra Nevada Mountains, the Sacramento Valley, and the northern Coast Range. The results show that soil geochemistry in the Sacramento Valley is controlled primarily by the transport and weathering of parent material from the Coast Range to the west and the Sierra Nevada to the east. Chemically and mineralogically distinctive ultramafic (UM) rocks (e.g. serpentinite) outcrop extensively in the Coast Range and Sierra Nevada. These rocks and the soils derived from them have elevated concentrations of Cr and Ni. Surface soil samples derived from UM rocks of the Sierra Nevada and Coast Range contain 1700–10,000 mg/kg Cr and 1300–3900 mg/kg Ni. Valley soils west of the Sacramento River contain 80–1420 mg/kg Cr and 65–224 mg/kg Ni, reflecting significant contributions from UM sources in the Coast Range. Valley soils on the east side contain 30–370 mg/kg Cr and 16–110 mg/kg Ni. Lower Cr and Ni concentrations on the east side of the valley are the result of greater dilution by granitic sources of the Sierra Nevada.Chromium occurs naturally in the Cr(III) and Cr(VI) oxidation states. Trivalent Cr is a non-toxic micronutrient, but Cr(VI) is a highly soluble toxin and carcinogen. X-ray diffraction and scanning electron microscopy of soils with an UM parent show Cr primarily occurs within chromite and other mixed-composition spinels (Al, Mg, Fe, Cr). Chromite contains Cr(III) and is highly refractory with respect to weathering. Comparison of a 4-acid digestion (HNO3, HCl, HF, HClO4), which only partially dissolves chromite, and total digestion by lithium metaborate (LiBO3) fusion, indicates a lower proportion of chromite-bound Cr in valley soils relative to UM source soils. Groundwater on the west side of the Sacramento Valley has particularly high concentrations of dissolved Cr ranging up to 50 μg L−1 and averaging 16.4 μg L−1. This suggests redistribution of Cr during weathering and oxidation of Cr(III)-bearing minerals. It is concluded that regional-scale transport and weathering of ultramafic-derived constituents have resulted in enrichment of Cr and Ni in the Sacramento Valley and a partial change in the residence of Cr.  相似文献   

13.
《Applied Geochemistry》2002,17(5):583-603
This study identifies and quantifies the water–rock interactions responsible for the composition of 25 spring waters, and derives the weathering rates of rock-forming minerals in a complex of petrologic units containing ultramafics, amphibolites, augengneisses and micaschists. Bulk chemical analyses were used to calculate the mineralogical composition of these rocks; the composition of the rock-forming minerals were determined by microprobe analyses. The soils developed on augengneisses and micaschists contain predominantly halloysite; on the other units mixtures of halloysite and smectites. The mineralogical and chemical data on rocks and soils are essential for writing the proper weathering reactions and for solving mole balances between the amounts of weathered primary minerals and secondary products formed (soils and solutes in groundwater). Ground waters emanating in springs were collected in 3 consecutive seasons, namely late Summer, Winter and Spring, and analyzed for major components. Using an algorithm based on mole and charge balance equations, the average concentrations of the solutes were linked with a combination of possible weathering reactions. To sort out the best match of weathering reactions and the concomitantly generated water composition, the results were checked against the limiting condition of similarity between the predicted and actual clay mineral abundance in the soils. Having selected the best-fit weathering reactions, the mineral weathering rates could also be calculated by combining the median discharge rates and recharge areas of the springs and normalizing the rates by the mineral abundance. For the one case—plagioclase—for which comparison with published results was possible, the results compare favorably with rates calculated by other groups. For the most abundant primary minerals the following order of decreasing weathering rates was found (in moles/(ha·a·%mineral)): forsterite (485) > clinozoisite (114) > chlorite (49) > plagioclase (45) > amphibole (28). In as far as this order differs from commonly used orders of weatherability, this has to be due to differences in the hydrologic regime within this area and between this and other case studies. As additional objective, the authors wanted to explain the effects of contributions by sources other than water-rock interactions. The latter processes are coupled with acquisition of carbonate alkalinity and dissolved silica. Contributions by sources other than water–rock interactions are manifest by the Cl, SO2−4 and NO3 concentrations. It was possible to approximate the contribution of atmospheric deposition. More importantly, knowledge of the application and composition of fertilizers enabled assessment of the effects of farming on the composition of ground waters emanating in the springs. It was also possible to estimate how selective uptake of nutrients and cations by vegetation as well as ion-exchange processes in the soil modified the spring water composition. Using this rather holistic approach, it is possible to satisfactorily explain how spring waters, in this petrologically and agriculturally diverse area, acquired their composition.  相似文献   

14.
Geochemical variations in stream sediments (n = 54) from the Mahaweli River of Sri Lanka have been evaluated from the viewpoints of lithological control, sorting, heavy mineral concentration, influence of climatic zonation (wet, intermediate, and dry zones), weathering, and downstream transport. Compositions of soils (n = 22) and basement rocks (n = 38) of the catchment and those of <180 μm and 180–2000 μm fractions of the stream sediments were also examined. The sediments, fractions, soils and basement rocks were analyzed by X-ray fluorescence to determine their As, Pb, Zn, Cu, Ni, Cr, V, Sr, Y, Nb, Zr, Th, Sc, Fe2O3, TiO2, MnO, CaO, P2O5 and total sulfur contents. Abundances of high field strength and ferromagnesian elements in the sediments indicate concentration of durable heavy minerals including zircon, tourmaline, rutile, monazite, garnet, pyriboles, and titanite, especially in <180 μm fractions. The sediments show strong correlation between Ti and Fe, further suggesting presence of heavy mineral phases containing both elements, such as ilmenite and magnetite. The basement rocks range from mafic through to felsic compositions, as do the soils. The river sediments lack ultrabasic components, and overall have intermediate to felsic compositions. Elemental spikes in the confluences of tributary rivers and high values in the <180 μm fractions indicate sporadic inputs of mafic detritus and/or heavy minerals to the main channel. Al2O3/(K2O + Na2O) and K2O/Na2O ratios of the sediments and LOI values of the soils correlate well with the climatic zones, suggesting intense weathering in the wet zone, lesser weathering in the intermediate zone, and least weathering in the dry zone. Low Sr and CaO contents and Cr/V ratios in stream sediments in the wet zone also suggest climatic influence. Fe-normalized enrichment factors (EFs) for As, Pb, Zn, Cu, Ni and Cr in stream sediments in the main channel are nearly all <1.5, indicating there is no significant environmental contamination. The chemistry of the sediments, rocks and the soils in the Mahaweli River are thus mainly controlled by source lithotype, weathering, sorting, and heavy mineral accumulation.  相似文献   

15.
Pramod Singh   《Chemical Geology》2009,266(3-4):251-264
The sediments of the Ganga River from different depositional regimes in the Plain region such as the river channel, active flood-plain and the older flood-plain sediments from the inter-fluve region were analysed for major, trace and the rare earth elements (REEs). These are compared with catchment zone sediments of the river and probable source rocks in the Himalaya. The lower CIA values between 48 and 54.7 for the catchment sediments indicates that the sediments supplied to the Ganga Plain are chemically immature and subjected mostly to physical weathering due to higher erosion rates in the Himalaya. The CIA values ranging between 55 and 74, with average value of 59, 61.4 and 67 for sediments from the Plain's bed-load, active flood-plain and older flood-plain from the inter-fluve region indicates that silicate weathering of Ganga River sediments has occurred only after entering into the plains. This is likely because of higher residence time and change in the climate from cold-frigid in the Himalaya to tropical sub-humid in the plains. Therefore, the use of geochemical data on ancient system to infer climate in their source region may not always be true. Although the CIA values indicate a moderate chemical weathering in the plains, it is far from impressive. Dominance of physical weathering in the catchment region and lower degree of chemical weathering in the Plains indicate that weathering of sediments supplied by Himalayan Rivers, particularly the Ganga River may not have affected the atmospheric CO2 to a significant level as is generally believed. Thus the net effect of the Himalaya on the CO2 sequestration and consequent global cooling needs a re-evaluation.The plots of sediments in ternary diagram among La, Th, Sc and ratios involving Co/Th, La/Sc and Sc/Th indicate granitic to granodioritic source rocks to the sediments. The ratio plots involving relatively immobile Al2O3, TiO2 and FeO along with REE plots suggest that out of the major Himalayan lithologies, gneisses and Cambro-Ordovician granites of HHCS have acted as the dominant source to the sediments.The plots of LogNa2O/K2O vs. LogSiO2/Al2O3 and FeO/SiO2 vs. Al2O3/SiO2 diagrams show that the combination of processes including erosion, weathering, sorting and aeolian activity has together played a major role in progressively changing the chemistry from source rock to catchments bed-load to Plains bed-load, active flood-plains and the older inter-fluve sediments in the Ganga River system. The above plots demonstrate that as a result of above processes the ratios between the elements generally thought to be immobile and used in provenance studies does not always remain invariant and the linear trend line in the scatter gram between the two immobile elements show rotation around the fine grained end member.  相似文献   

16.
The role of both natural weathering and anthropogenic pollution in controlling the distribution of major oxides and several trace elements in soils, stream sediments, and rocks of the Fiume Grande catchment was evaluated. The contents of major oxides and trace elements in soils appear to be governed by weathering and pedogenetic processes, although the use of fertilizers in agriculture could also partly affect K2O and P2O5 contents. Stream sediments have concentrations of major oxides (except CaO) very similar to soils, as relevant amounts of soil materials are supplied to the stream channels by erosive phenomena. In contrast, stream sediments have concentrations of Cr, Co, Ni, Zn, As, and Pb significantly higher than those of soils, probably due to different conditions and rates of mobility of these elements within the three considered matrices and/or disposal of wastes in the drainage network. Comparison of the concentrations of PHEs in soils with the maximum admissible contents established by the Italian law shows that these limits are too restrictive in some cases and too permissive in other ones. The approach of setting these limits with no consideration for the local geological–geochemical framework may lead to improper management of the territory and its resources. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

17.
Comminution in the glaciers that debouch into Guys Bight Basin, followed by selective sorting in the fluvial system, has had little effect on the bulk composition, or on the mineralogy, of the basin sands and muds. Most striking are the feldspar contents, and the feldspar-quartz ratios in sands and muds, both of which remain similar to those of average bedrock. The feldspar contents of sands and muds range from 48 to 52% feldspar whereas average bedrock contains 51·7% feldspar. Feldspar-quartz ratios average 1·58:1 in bedrock and 1·54:1, 1·66:1 and 1·69:1 in the medium to coarse sands, fine sands and muds, respectively, indicating minimal feldspar enrichment in the fine-grained sediments. In the absence of appreciable chemical weathering, extreme abrasion followed by hydraulic sorting has not produced mature sediments such as quartz arenites and clay-mineral-rich muds. There is, however, some chemical differentiation. Preferential accumulation of mafic minerals in fine sands and muds is reflected in bulk compositions by higher abundances of MgO, FeO and TiO2, and in the mineralogy by enrichment of biotite in the fine grades. Bulk compositional studies focused solely on muds and mudstones will result in an overestimate of the mafic contribution from source rocks. This work shows that bulk compositional studies of sediments and sedimentary rocks should include all available granulometric grades.  相似文献   

18.
Large rivers are a major pathway for the erosion products of continents to reach the oceans. The riverine transport of dissolved and particulate materials is generally related to a large number of interactions involving climate, hydrological, physico-chemical and biological aspects. Consequently, the investigation of large rivers allows the erosion processes at a global scale to be addressed, with information about biogeochemical cycles of the elements, weathering rates, physical erosion rates and CO2 consumption by the acid degradation of continental rocks. Today, good databases exist for the major dissolved ions in the world’s largest rivers. Since concentration of ions in river waters has to be considered in a compositional context, it is necessary to study the implications of considering the simplex, with its proper geometry, as the natural sample space. Using the additive (alr) or the isometric (ilr) log-ratio transformations, a composition can be represented as a real vector; but only in the second case can these coordinates be mapped onto orthogonal axes. Using data related to the dissolved load of some of the most important rivers in the world, the relationships among the major ions frequently used in molar ratio mixing diagrams have been investigated with alternative tools. Following the balances approach, an investigation of the properties of aqueous solutions of electrolytes that are often treated in terms of equilibrium constants is undertaken. The role played by the source—rain water, weathering of silic, carbonatic and evaporitic rocks, pollution—from which elements and chemical species can potentially be derived, has been checked through an investigation of a probabilistic model able to describe the relationships among the different components that contribute to the chemical composition of a river water sample.  相似文献   

19.
A close relation of the organic carbon (Corg) content with major has been established for rocks of the Upper Jurassic–Lower Cretaceous Bazhenov Formation. Applying the method of multiple linear regression, it has been demonstrated that the Corgcontent in rocks of the Bazhenov Formation is stringently controlled by its bulk chemical composition. This inference is consistent with the existing ideas regarding a close interrelation between the following main components of rocks: organic carbon and authigenic quartz formed on remains of Radiolaria; pyrite formed in a highly reducing medium of Corg-rich sediments; and terrigenous clayey material diluting the authigenic siliceous–carbonaceous–pyritic matrix. These components chiefly determine the spectrum of major elements in the Bazhenov Formation. The establishment of the close relation between the Corgcontent and the group of major elements refutes the suggestion of some authors that siliceous material was supplied to nonlithified sediments of the Bazhenov sea by hydrothermal solutions, because this mechanism would have inevitably upset geochemical relations between elements in the studied rocks.  相似文献   

20.
There is an increasing interest in the distribution of rare earth elements (REEs) within soils, primarily as these elements can be used to identify pedogenetic processes and because soils may be future sources for REE extraction, despite much attention should be paid to the protection and preservation of present soils. Here, we evaluate the processes that control the distribution of REEs in subsoil horizons developed over differing lithologies in an area of low anthropogenic contamination, allowing estimates of the importance of source rocks and weathering. Specifically, this study presents new data on the distribution of REEs and other trace elements, including transition and high-field-strength elements, in subsoils developed on both Quaternary silica-undersaturated volcanic rocks and Pliocene siliciclastic sedimentary rocks within the Mt. Vulture area of the southern Apennines in Italy. The subsoils in the Mt. Vulture area formed during moderate weathering (as classified using the chemical index of alteration) and contain an assemblage of secondary minerals that is dominated by trioctahedral illite with minor vermiculite. The REEs, high-field-strength elements, and transition metals have higher abundances in subsoils that developed from volcanic rocks, and pedogenesis caused the Mt. Vulture subsoils to have REE concentrations that are an order of magnitude higher than typical values for the upper continental crust. This result indicates that the distribution of REEs in soils is a valuable tool for mineral exploration. A statistical analysis of inter-elemental relationships indicates that REEs are concentrated in clay-rich fractions that also contain significant amounts of low-solubility elements such as Zr and Th, regardless of the parent rock. This suggests that low-solubility refractory minerals, such as zircon, play a significant role in controlling the distribution of REEs in soils. The values of (La/Yb)N and (Gd/Yb)N fractionation indices are dependent on the intensity of pedogenesis; soils in the study area have values that are higher than typical upper continental crust ratios, suggesting that soils, especially those that formed during interaction with near neutral to acidic organic-rich surface waters, may represent an important source of both light REEs and medium REEs (MREEs). In comparison, MREE/heavy REE fractionation in soils that form during moderate weathering may be affected by variations in parent rock lithologies, primarily as MREE-hosting minerals, such as pyroxenes, may control (La/Sm)N index values. Eu anomalies are thought to be the most effective provenance index for sediments, although the anomalies within the soils studied here are not related to the alteration of primary minerals, including feldspars, to clay phases. In some cases, Eu/Eu* values may have a weak correlation with elements hosted by heavy minerals, such as Zr; this indicates that the influence of mechanical sorting of clastic particles during sedimentary transport on the Eu/Eu* values of siliciclastic sediments needs to be considered carefully.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号