首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
In order to evaluate the assimilation results from a global high resolution ocean model, the buoy observations from tropical atmosphere ocean(TAO) during August 2014 to July 2015 are employed. The horizontal resolution of wave-tide-circulation coupled ocean model developed by The First Institute of Oceanography(FIOCOM model) is 0.1°×0.1°, and ensemble adjustment Kalman filter is used to assimilate the sea surface temperature(SST), sea level anomaly(SLA) and Argo temperature/salinity profiles. The simulation results with and without data assimilation are examined. First, the overall statistic errors of model results are analyzed. The scatter diagrams of model simulations versus observations and corresponding error probability density distribution show that the errors of all the observed variables, including the temperature, isotherm depth of 20°C(D20), salinity and two horizontal component of velocity are reduced to some extent with a maximum improvement of 54% after assimilation. Second, time-averaged variables are used to investigate the horizontal and vertical structures of the model results. Owing to the data assimilation, the biases of the time-averaged distribution are reduced more than70% for the temperature and D20 especially in the eastern Pacific. The obvious improvement of D20 which represents the upper mixed layer depth indicates that the structure of the temperature after the data assimilation becomes more close to the reality and the vertical structure of the upper ocean becomes more reasonable. At last,the physical processes of time series are compared with observations. The time evolution processes of all variables after the data assimilation are more consistent with the observations. The temperature bias and RMSE of D20 are reduced by 76% and 56% respectively with the data assimilation. More events during this period are also reproduced after the data assimilation. Under the condition of strong 2014/2016 El Ni?o, the Equatorial Undercurrent(EUC) from the TAO is gradually increased during August to November in 2014, and followed by a decreasing process. Since the improvement of the structure in the upper ocean, these events of the EUC can be clearly found in the assimilation results. In conclusion, the data assimilation in this global high resolution model has successfully reduced the model biases and improved the structures of the upper ocean, and the physical processes in reality can be well produced.  相似文献   

2.
On the basis of the satellite maps of sea level anomaly(MSLA) data and in situ tidal gauge sea level data,correlation analysis and empirical mode decomposition(EMD) are employed to investigate the applicability of MSLA data,sea level correlation,long-term sea level variability(SLV) trend,sea level rise(SLR) rate and its geographic distribution in the South China Sea(SCS).The findings show that for Dongfang Station,Haikou Station,Shanwei Station and Zhapo Station,the minimum correlation coefficient between the closest MSLA grid point and tidal station is 0.61.This suggests that the satellite altimeter MSLA data are effective to observe the coastal SLV in the SCS.On the monthly scale,coastal SLV in the western and northern part of SCS are highly associated with coastal currents.On the seasonal scale,SLV of the coastal area in the western part of the SCS is still strongly influenced by the coastal current system in summer and winter.The Pacific change can affect the SCS mainly in winter rather than summer and the affected area mostly concentrated in the northeastern and eastern parts of the SCS.Overall,the average SLR in the SCS is 90.8 mm with a rising rate of(5.0±0.4) mm/a during1993–2010.The SLR rate from the southern Luzon Strait through the Huangyan Seamount area to the Xisha Islands area is higher than that of other areas of the SCS.  相似文献   

3.
The seasonal variation of mixing layer depth(MLD) in the ocean is determined by a wind stress and a buoyance flux.A South China Sea(SCS) ocean data assimilation system is used to analyze the seasonal cycle of its MLD.It is found that the variability of MLD in the SCS is shallow in summer and deep in winter,as is the case in general.Owing to local atmosphere forcing and ocean dynamics,the seasonal variability shows a regional characteristic in the SCS.In the northern SCS,the MLD is shallow in summer and deep in winter,affected coherently by the wind stress and the buoyance flux.The variation of MLD in the west is close to that in the central SCS,influenced by the advection of strong western boundary currents.The eastern SCS presents an annual cycle,which is deep in summer and shallow in winter,primarily impacted by a heat flux on the air-sea interface.So regional characteristic needs to be cared in the analysis about the MLD of SCS.  相似文献   

4.
Nontidal sea level changes generated in Hiroshima Bay of the Seto-Inland Sea in Japan are studied over various time scales, from the sub-tidal (2 d to 1 month) to inter-annual scales (〉2 years). The total sea level variation produces a standard deviation (STD) of 12.5 cm. The inter-annual component of the sea level variation in Hiroshima Bay oscillates with a STD of 3.4 cm, forming a long-term trend of 4.9 mm/a. The STD of the sea level variation is 9.8 cm for the seasonal component (8 months to 2 years) and 4.7 cm for the intra-seasonal one (1 month to 8 months). Significant sea level variations with a STD of 4.2 cm also occur in the sub-tidal range. Special attention is paid to the sub-tidal sea level changes. It is found that the upwelling and associated transient sea level changes generated along the north coast of Hiroshima Bay (opened southward) by the strong northerly wind, play a significant role in sub-tidal sea level changes. The transient sea level changes are over 10 cm in most cases when caused by typhoons that pass through the Pacific Ocean offthe Kii Peninsula, located at about 400 km east of Hiroshima Bay. Reasonable sea level changes are evaluated by the balance of pressure forces at the onshore and offshore boundary of the study domain.  相似文献   

5.
The effects of sea surface temperature(SST) data assimilation in two regional ocean modeling systems were examined for the Yellow Sea(YS). The SST data from the Operational Sea Surface Temperature and Sea Ice Analysis(OSTIA) were assimilated. The National Marine Environmental Forecasting Center(NMEFC) modeling system uses the ensemble optimal interpolation method for ocean data assimilation and the Kunsan National University(KNU) modeling system uses the ensemble Kalman filter. Without data assimilation, the NMEFC modeling system was better in simulating the subsurface temperature while the KNU modeling system was better in simulating SST. The disparity between both modeling systems might be related to differences in calculating the surface heat flux, horizontal grid spacing, and atmospheric forcing data. The data assimilation reduced the root mean square error(RMSE) of the SST from 1.78°C(1.46°C) to 1.30°C(1.21°C) for the NMEFC(KNU) modeling system when the simulated temperature was compared to Optimum Interpolation Sea Surface Temperature(OISST) SST dataset. A comparison with the buoy SST data indicated a 41%(31%) decrease in the SST error for the NMEFC(KNU) modeling system by the data assimilation. In both data assimilative systems, the RMSE of the temperature was less than 1.5°C in the upper 20 m and approximately 3.1°C in the lower layer in October. In contrast, it was less than 1.0°C throughout the water column in February. This study suggests that assimilations of the observed temperature profiles are necessary in order to correct the lower layer temperature during the stratified season and an ocean modeling system with small grid spacing and optimal data assimilation method is preferable to ensure accurate predictions of the coastal ocean in the YS.  相似文献   

6.
The sea-level anomaly (SLA) from a satellite altimeter has a high accuracy and can be used to improve ocean state estimation by assimilation techniques. However, the lack of an accurate mean dynamic topography (MDT) is still a bothersome issue in an ocean data assimilation. The previous studies showed that the errors in MDT have significant impacts on assimilation results, especially on the time-mean components of ocean states and on the time variant parts of states via nonlinear ocean dynamics. The temporal-spatial differences of three MDTs and their impacts on the SLA analysis are focused on in the South China Sea (SCS). The theoretical analysis shows that even for linear models, the errors in MDT have impacts on the SLA analysis using a sequential data assimilation scheme. Assimilation experiments, based on EnOI scheme and HYCOM, with three MDTs from July 2003 to June 2004 also show that the SLA assimilation is very sensitive to the choice of different MDTs in the SCS with obvious differences between the experimental results and observations in the centre of the SCS and in the vicinity of the Philippine Islands. A new MDT for assimilation of SLA data in the SCS was proposed. The results from the assimilation experiment with this new MDT show a marked reduction (increase) in the RMSEs (correlation coefficient) between the experimental and observed SLA. Furthermore, the subsurface temperature field is also improved with this new MDT in the SCS.  相似文献   

7.
With the tides propagating from the open sea to the lagoon, the mean water level (MWL) in the inlet and lagoon becomes different from that at the open sea, and a setup/setdown is generated. The change of MWL (setup/setdown) in the system imposes a great impact on regulating the development of tidal marshes, on determining the long-term water level for harbor maintenance, on the planning for the water front development with the flood control for the possible inundation, and on the interpretation of the historical sea level change when using tidal marsh peat deposits in the lagoon as the indicator for open sea' s sea level. In this case study on the mechanisms which control the setup/setdown in Xincun Inlet, Hainan in China, the 2-D barotropic mode of Eulerian - Lagrangian CIRCulation (ELCIRC) model was utilized. After model calibration and verification, a series of numerical experiments were conducted to examine the effects of bottom friction and advection terms, wetting and drying of intertidal areas, bathymetry and boundary conditions on the setup/setdown in the system. The modeling results show that setup occurs over the inlet and lagoon areas with an order of one tenth of the tide range at the entrance. The larger the bottom friction is, a larger setup is generated. Without the advection term, the setup is reduced clue to a decrease of water level gradient to compensate for the disappearance of the advection term. Even without overtides, a setup can still be developed in the system. Sea level rise and dredging in the inlet and tidal channel can cause a decrease of setup in the system, whereas shoaling of the system can increase the setup. The uniqueness of the Xincun Inlet with respect to MWL change is that there is no evident setdown in the inlet, which can be attributed to the complex geometry and bathymetry associated with the inlet system.  相似文献   

8.
In the past nearly two decades, the Argo Program has created an unprecedented global observing array with continuous in situ salinity observations, providing opportunities to extend our knowledge on the variability and effects of ocean salinity. In this study, we utilize the Argo data during 2004–2017, together with the satellite observations and a newly released version of ECCO ocean reanalysis, to explore the decadal salinity variability in the Southeast Indian Ocean(SEIO) and its impacts on the regional sea level changes. Both the observations and ECCO reanalysis show that during the Argo era, sea level in the SEIO and the tropical western Pacific experienced a rapid rise in 2005–2013 and a subsequent decline in 2013–2017. Such a decadal phase reversal in sea level could be explained, to a large extent, by the steric sea level variability in the upper 300 m. Argo data further show that, in the SEIO, both the temperature and salinity changes have significant positive contributions to the decadal sea level variations. This is different from much of the Indo-Pacific region, where the halosteric component often has minor or negative contributions to the regional sea level pattern on decadal timescale. The salinity budget analyses based on the ECCO reanalysis indicate that the decadal salinity change in the upper 300 m of SEIO is mainly caused by the horizontal ocean advection. More detailed decomposition reveals that in the SEIO, there exists a strong meridional salinity front between the tropical low-salinity and subtropical high salinity waters. The meridional component of decadal circulation changes will induce strong cross-front salinity exchange and thus the significant regional salinity variations.  相似文献   

9.
Seasonal, interannual and interdecadal variations of monsoon over the South China Sea (SCS) directly influence the ocean circulation and the mass transport process, etc. , especially the changes of horizontal circulation pattern and upwelling area. These changes directly influence the nutrient transport and the photosynthesis of phytoplankton, which induce the change of the marine ecosystem in the SCS, including the change of marine primary production in this sea area. On the basis of climatic data for long-time series and primary production estimated by remote sensing, the multi-time scale variations of monsoon, seasonal and interannual variations of primary production, and the response of primary production to monsoon variations were analyzed. Furthermore, the spatio-temporal variations of primary production in different sea areas of the SCS and their relations to the monsoon variations were given. The results showed that the strong southwesterly prevailed over the SCS in summer whereas the vigorous northeasterly in winter. The seasonal primary production in the entire sea area of the SCS also produced a strong peak in winter and a suhpeak in summer. And the seasonal primary production distributions displayed different characteristics in every typical sea area. The variations of the annual and summer averaged primary production in the entire sea area of the SCS showed almost the same rising trend as the intensity of the summer monsoon. Especially for 1998, the summer monsoon reached almost the minimum in the past 54 a when the primary production was also found much lower than any other year ( 1999--2005 ). The responses of annual primary production to monsoon variation were displayed to different extent in different sea areas of the SCS ; especially it was better in the deep sea basin. Such research activities could be very important for revealing the response of marine ecosystem to the monsoon variations in the SCS.  相似文献   

10.
南海沿海季节性海平面异常变化特征及成因分析   总被引:1,自引:1,他引:0  
Based on sea level, air temperature, sea surface temperature(SST), air pressure and wind data during 1980–2014,this paper uses Morlet wavelet transform, Estuarine Coastal Ocean Model(ECOM) and so on to investigate the characteristics and possible causes of seasonal sea level anomalies along the South China Sea(SCS) coast. The research results show that:(1) Seasonal sea level anomalies often occur from January to February and from June to October. The frequency of sea level anomalies is the most in August, showing a growing trend in recent years. In addition, the occurring frequency of negative sea level anomaly accounts for 50% of the total abnormal number.(2) The seasonal sea level anomalies are closely related to ENSO events. The negative anomalies always occurred during the El Ni?o events, while the positive anomalies occurred during the La Ni?a(late El Ni?o) events. In addition, the seasonal sea level oscillation periods of 4–7 a associated with ENSO are the strongest in winter, with the amplitude over 2 cm.(3) Abnormal wind is an important factor to affect the seasonal sea level anomalies in the coastal region of the SCS. Wind-driven sea level height(SSH) is basically consistent with the seasonal sea level anomalies. Moreover, the influence of the tropical cyclone in the coastal region of the SCS is concentrated in summer and autumn, contributing to the seasonal sea level anomalies.(4) Seasonal variations of sea level, SST and air temperature are basically consistent along the coast of the SCS, but the seasonal sea level anomalies have no much correlation with the SST and air temperature.  相似文献   

11.
Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal and inter-annual variations of the SCS surface circulation are identified through the evolution of the characteristic circulation patterns. The annual cycle of the SCS gener- al circulation patterns is described as a change between two opposite basin-scale SW-NE oriented gyres embedded with eddies: low sea surface height anomaly (SSHA) (cyclonic) in winter and high SSHA (anticyclonic) in summer half year. The transition starts from July--August (January--February) with a high (low) SSHA tongue east of Vietnam around 12°~14° N, which de- velopa into a big anticyclonic (cyclonic) gyre while moving eastward to the deep basin. During the transitions, a dipole structure, cyclonic (anticyclonic) in the north and anticyclonic (cyclonic) in the south, may be formed southeast off Vietnam with a strong zonal jet around 10°~12° N. The seasonal variation is modulated by the interannual variations. Besides the strong 1997/1998 e- vent in response to the peak Pacific El Nino in 1997, the overall SCS sea level is found to have a significant rise during 1999~ 2001, however, in summer 2004 the overall SCS sea level is lower and the basin-wide anticyclonic gyre becomes weaker than the other years.  相似文献   

12.
赵军  高山  王凡 《海洋与湖沼》2021,52(5):1145-1159
海洋中尺度涡在本质上是属于满足准地转平衡的大尺度运动,因此理论上,其在短时间内的运动将主要受到准地转平衡关系的约束,而外部强迫场的影响在短期内不会明显改变其运动特征。基于上述思想,我们提出了一种基于四维变分同化初始场的中尺度涡旋预报方案。为了检验该方案的可行性,本文使用区域海洋模式(regional ocean modeling system, ROMS)和其内建的增量强约束四维变分同化(incremental strong constraint four dimensional variational, I4D-Var)模块,建立了一个南海海洋同化模拟系统。首先,通过I4D-Var方法将AVISO卫星高度计资料同化到海洋数值模拟中,获得了理想的中尺度涡同化模拟结果。同化、模式模拟和观测三者的中尺度涡统计结果表明,该同化系统模拟的南海中尺度涡的路径、半径、海表高度异常和振幅等特征信息与AVISO(Archiving ValidationandInterpolationofSatelliteOceanographicData)观测结果高度吻合,同时在深度上的分析表明,涡旋对应的温度、盐度和密度均得到有效的调整。然后,将该同化系统的模拟结果做为初始场,对某一特定时段的南海中尺度涡进行了后报模拟和结果的定量化分析。通过比较后报模拟与观测资料中对应涡旋的海表面高度异常(sea surface height anomalies, SSHA)相关系数、涡心差距和半径绝对误差,证明该方案的中尺度涡后报时效至少可达10 d以上。后报实验结果验证了该中尺度涡预报方案的可行性,从而为中尺度涡的预报提供一定的理论基础和可行性方案。  相似文献   

13.
Intercomparison of three South China Sea circulation models   总被引:2,自引:1,他引:1  
1IntroductionTheSouthChinaSeaisthelargesttropicalmarginaldeepsealocatingbetweenthewesternPacificOceanandtheeasternIndianOcean.AsapartofAsia-Australiamaritimecontinent,monsoonisaprimaryfactorforcingtheSouthChinaSeaCurrent(SCSC)variation.Drivenbynortheasterlymonsooninwinterandsouth-westerlymonsooninsummer,respectively,theSCSCbehavesacyclonicgyreandananticy-clonicgyre,correspondingly(Wyrtki,1961;Xuetal.,1982).Owingtotheshortageandexpen-sivenessofdirectobservationsintheSCS,fur-therunder…  相似文献   

14.
To improve the Arctic sea ice forecast skill of the First Institute of Oceanography-Earth System Model (FIO-ESM) climate forecast system, satellite-derived sea ice concentration and sea ice thickness from the Pan-Arctic Ice-Ocean Modeling and Assimilation System (PIOMAS) are assimilated into this system, using the method of localized error subspace transform ensemble Kalman ?lter (LESTKF). Five-year (2014–2018) Arctic sea ice assimilation experiments and a 2-month near-real-time forecast in August 2018 were conducted to study the roles of ice data assimilation. Assimilation experiment results show that ice concentration assimilation can help to get better modeled ice concentration and ice extent. All the biases of ice concentration, ice cover, ice volume, and ice thickness can be reduced dramatically through ice concentration and thickness assimilation. The near-real-time forecast results indicate that ice data assimilation can improve the forecast skill significantly in the FIO-ESM climate forecast system. The forecasted Arctic integrated ice edge error is reduced by around 1/3 by sea ice data assimilation. Compared with the six near-real-time Arctic sea ice forecast results from the subseasonal-to-seasonal (S2S) Prediction Project, FIO-ESM climate forecast system with LESTKF ice data assimilation has relatively high Arctic sea ice forecast skill in 2018 summer sea ice forecast. Since sea ice thickness in the PIOMAS is updated in time, it is a good choice for data assimilation to improve sea ice prediction skills in the near-real-time Arctic sea ice seasonal prediction.  相似文献   

15.
High-resolution models can reproduce mesoscale dynamics and the variability in the Gulf of Mexico (GOM), but cannot provide accurate locations of currents without data assimilation (DA). We use the computationally cheap Ensemble Optimal Interpolation (EnOI) in conjunction with the Hybrid Coordinate Ocean Model (HYCOM) model for assimilating altimetry data. The covariance matrix extracted from a historical ensemble, is three-dimensional and multivariate. This study shows that the multivariate correlations with sea level anomaly are coherent with the known dynamics of the area at two locations: the central part of the GOM and the upper slope of the northern shelf. The correlations in the first location are suitable for an eddy forecasting system, but the correlations in the second location show some limitations due to seasonal variability. The multivariate relationships between variables are reasonably linear, as assumed by the EnOI. Our DA set-up produces little noise that is dampened within 2 d, when the model is pulled strongly towards observations. Part of it is caused by density perturbations in the isopycnal layers, or artificial caballing. The DA system is demonstrated for a realistic case of Loop Current eddy shedding, namely Eddy Yankee.  相似文献   

16.
南海盐度对南海夏季风响应的初步分析   总被引:5,自引:0,他引:5  
为分析南海盐度对南海夏季风的响应情况,采用1967-2001年共35年的月平均海洋同化数据(SODA)等资料,利用合成等分析方法,探讨了南海上层盐度与净淡水通量、风应力、Ekman抽吸速度的关系以及不同海域盐度对南海夏季风爆发以及季风强度的响应.结果表明,随着南海夏季风建立,南海北部、东部的盐度降低,南部盐度增加.在强季风年,南海北部沿岸、东部盐度偏低,南海南部马来西亚以北海域盐度偏高;弱季风年南海盐度异常分布则为北部、东部盐度偏高,南部盐度偏低.南海上层盐度对南海夏季风爆发和季风强度的响应均与南海的净淡水通量、风应力、Ekman抽吸速度存在密切关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号