首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A diagnostic leaching showed that partial oxidation of the sulphide minerals in a gold ore was beneficial for thiosulphate leaching of gold. A pre-treatment process with oxidative ammoniacal solution enhanced the thiosulphate leaching of the sulphide ore, while the thiosulphate consumption was substantially reduced. The sulphide minerals partially decomposed in the pre-treatment process, exposing gold to the leach solution. Oxygen input by air bubbling and a longer contact time enhanced the oxidative ammonia pre-treatment process and hence accelerated subsequent thiosulphate leaching of the sulphide ore. Gold extraction in 0.8 M ammonia and 0.1 M thiosulphate solution after 24 h increased from 69% without pre-treatment to 81%, 84%, 90% and 94% respectively after 1, 3, 7 and 22 h pre-treatment. The consumption of sodium thiosulphate was 2.37 kg/t after 24 h leaching without pre-treatment, but was negligible after over 1 h oxidative ammonia pre-treatment. A counter-current leaching process was conducted in the leaching of the sulphide ore. The fresh leachant still gave higher leaching rates in contact with the pre-leached ore, while the pre-used leachant had significantly lower leaching kinetics and overall gold extraction in contact with the fresh ore. This 2-step counter-current leaching process proved that the leachant, other than the passivation, was the determinant factor causing the gold leaching rates to decrease after a certain time of leaching. The findings enable the thiosulphate leaching of high sulphide containing gold ores to be more efficient at lower thiosulphate consumption following the oxidative ammoniacal pre-treatment.  相似文献   

2.
Leaching in the grinding circuit is currently practiced in plants that process gold ores with low content of cyanide consuming minerals. The high gold recovery observed in the grinding–classification section of the plant is commonly explained by the inherent high initial dissolution rate of gold observed in gold ore cyanidation, or by the intense agitation prevailing in grinding mills. For understanding this leaching behavior of gold ores, the grinding, classification and leaching sections of a gold processing plant are analyzed through reconciliation of operating data. It is found that gold circulation in the grinding circuit is quite different from the flow behavior of other species due to the strong gold separation effect in the hydrocyclones, which produces quite large residence time for gold-rich particles. The results presented in this study demonstrate that the residence time of these particles in the grinding circuit can be as long as in the leaching tanks and might be the dominant factor in explaining the high dissolution of gold in this section.  相似文献   

3.
To interpret the leaching rules, select suitable treatment methods, or optimize the treatment process of refractory gold ores, an in-depth analysis of ore characteristics using ore mineralogy is required. In this study, the mineralogical characteristics of a low-grade refractory gold ore were analyzed by a variety of analytical techniques and methods. The ore composition was obtained by chemical analysis, and the main minerals include gold, pyrite, arsenopyrite, feldspar, mica, and quartz. Gold exists in the form of sub-microscopic gold with a particle size of fewer than 1.7 μm, of which 56.90 % is encapsulated gold, 16.97 % is semi-coated gold, and 26.13 % is fractured gold. The content, classification, shape, grain distribution, and occurrence state of the main minerals in the gold ore were obtained by microscopic observation and statistical analysis. Based on the results, the leaching rules of the gold ore were predicted, and suggestions for optimizing the pretreatment process were put forward. These results can accurately guide the pretreatment and leaching process of the gold ore and lay a foundation for the effective utilization of comparable gold ores.  相似文献   

4.
Gold recovery from a refractory pyrrhotite ore by biooxidation   总被引:1,自引:0,他引:1  
The aim of the present investigation was to study the biooxidation of a refractory gold-bearing pyrrhotite, in order to increase the gold recovery during the subsequent conventional cyanidation.Bacterial cultures utilised in the biological test consisted predominantly of Thiobacillus genus. Tests were conducted at laboratory scale. The gold content of the ore sample, coming from Bolivia, was of 10 g t−1 Au.After 24 h leaching time by direct cyanidation, low gold recovery was obtained (<20% Au), with a high reagent consumption. On the other hand, a high gold recovery was achieved for the biooxidated samples: after 24 h cyanidation gold dissolution reached about 91% Au.Experimental results have shown the technical feasibility of the biooxidative pretreatment prior to conventional leaching and a complete circuit of treatment, on laboratory scale, has been developed considering also the subsequent gold recovery by carbon adsorption/desorption and electrowinning.A gold extraction yield of about 86% was determined in the whole process for gold extraction from pyrrhotite (biooxidation, solid–liquid separation, cyanidation, adsorption, desorption, electrowinning).  相似文献   

5.
The Shizishan ore field is the largest gold–copper ore field in the Tongling ore district of Anhui Province, China. Copper and gold deposits in the district are present as one-commodity deposits or as deposits with both commodities. Copper and gold mineralization are either cogenetic or are temporally and spatially distinct. We present the results of systematic geochemical analysis of fluid inclusions from typical Au–Cu deposits in the Shizishan ore field; these data are used to determine the solubility of Cu and Au in the ore-forming fluids and to ascertain the mechanisms and factors that controlled variations in the association and separation of copper and gold mineralization. Our results indicate that copper in the ore-forming fluids was transported as CuCl2 and CuCl0 complexes and that the solubility of copper was controlled by variations in Cl concentration. In addition, the precipitation of copper was controlled by changes in temperature, pH, fO2, and fO2. In comparison, gold in the ore-forming fluids was transported as Au(HS)2 and Au2S(HS)22− complexes, and the solubility of gold was controlled by variations in total sulfur concentration; the precipitation of gold was controlled by temperature, pH, fO2, and fO2. These differences between the two elements meant that copper and gold in the ore-forming fluids responded in different ways to changes in physicochemical conditions. Copper precipitated under relatively acidic conditions at high temperatures, while gold precipitated under weakly alkaline conditions at relatively low temperatures; this dissociation resulted in the temporal and spatial separation and zonation of copper and gold mineralization in the Shizishan ore field.  相似文献   

6.

The paper comprises new analytical data on the nature and occurrence of gold in solid pyrobitumen, closely associated with the main gold-bearing sulfide arsenic ores of the Bakyrchik gold deposit (Kazakhstan), related to post-collisional magmatic-hydrothermal origin. Gold mineralization of the deposit occurs mainly in the form of an “invisible” type of gold in the structures of arsenian pyrite and arsenopyrite, and the form of gold-organic compounds of pyrobitumen in carbonaceous-terrigenous sequences of Carboniferous formation. Microscopic and electron microscopic analysis, Raman and FT-Infrared analysis, mineralogical and three-step sequential extraction analysis (NH2OH·HCl, H2O2, HNO3 + HCl) has been carried out using 9 ore samples (from 3 different types of ores) for a comprehensive study of pyrobitumen and sulfide arsenic ores focusing mainly on organic matter. The sequentially extracted precious metal content of pyrobitumen reaches up to 7 ppm gold and other metals like Ag 4 ppm, Pt 31 ppb, and Pd 26 ppb, forming metal–organic compounds, while arsenic sulfide minerals incorporate 11 ppm gold, 39 ppm Ag, 0.49 ppm Pt. The enrichment of gold associating with organic matter and sulfide ore minerals was confirmed in this study. Organic matter was active in the migration of gold and the capture of gold by pyrobitumen. Moreover, the reductive organic matter agent released gold, most likely for the sulfide arsenic ore minerals. Pyrobitumen was a decisive factor in the concentration, transportation, and preservation of gold in the deposit.

  相似文献   

7.
Aqueous solutions with about 10 ppt195Au and [HCl] of 10–2.3 and 10–1.3 m were exposed to solid minerals for several months. The gold uptake with time was observed by time-stepped sampling and radiochemical Au analysis. Sorbants were polished thick sections of quartz, pyrite, pyrrhotite and elemental gold, as well as crushed grains and sawed mineral cubes of quartz and pyrite (all randomly oriented). The kinetics of gold sorption strongly varied with the surface area of the sorbents, the type of mineral and the pH of the solution. Mineral-specific differences in reaction rates were observed only at experimental pH values around 2.3, where sorption on pyrrhotite and elemental gold was much more rapid than by quartz and pyrite. At pH around 1.3 gold sorption was rapid on all minerals. This finding is thought to reflect the gold speciation, i.e. neutral hydroxo-gold complexes above pH 1.5, for which only chemisorption is possible, versus dominantly AuCl 4 below pH 1.5, where unspecific electrostatic interaction enhances reaction rates with all protonated mineral surfaces.  相似文献   

8.
In recent years mineral exploration has concentrated on concealed deposits in regolith-covered terrains. In China, the regolith-covered landscapes mainly include desert windblown sand basins, desert peneplains, semi-arid grassland, loess plateaus, forestry land, alluvial plains and laterite terrains. These diverse regolith-covered areas represent geochemical challenges for mineral exploration in China. This paper provides an overview of recent progress on mechanisms of metal dispersion from the buried ore deposits through the transported cover to the surface and penetrating geochemical methods to detect the anomalies. Case studies show that, in arid and semi-arid desert sand-covered terrains, sampling of fine-fraction (− 120 mesh, < 0.125 mm) clay-rich horizon soil is cost-effective for regional geochemical surveys for sandstone-type uranium, gold, and base metal deposits. Fine-fraction sampling, selective-leaching and overburden drilling geochemical methods can effectively indicate the 210 gold ore body at Jinwozi goldfield. In alluvium-covered terrains, fine-grained soil sampling (− 200 mesh, < 0.074 mm) combined with selective leaching geochemistry shows clear ring-shaped anomalies of Cu and Ni over the Zhouan concealed Cu–Ni deposit. In laterite-covered terrains, the anomalies determined by the fine-fraction soils and selective leaching of absorbed metals on coatings of Fe–Mn oxides coincide well with the concealed deposit over the Yueyang ore deposits at the Zijin Au–Cu–Ag field. Nanoparticles of hexagonal crystals mainly native copper, gold and alloys of Cu–Fe, Cu–Fe–Mn, Cu–Ti, and Cu–Au were observed in gases, soils and ores using a transmission electron microscope (TEM). The findings imply that nanoparticles of gold and copper may migrate through the transported cover to the surface. Uranium is converted to uranyl ions [UO22 +] under oxidizing conditions when migrating from ore bodies to the surface. The uranyl ions are absorbed on clay minerals, because clay layers have a net negative charge, which needs to be balanced by interlayer cations. Nanoparticles of Au and Cu and ion complexes of U are more readily absorbed onto fine fractions of soils containing clays, colloids, oxides and organic matters. Thus, fine-grained soils enriched with clays, oxides and colloids are useful media for regional geochemical surveys in regolith-covered terrains and in sedimentary basins. Fine-fraction soil sampling combined with selective leaching geochemistry is effective for finding concealed ore bodies in detailed surveys. Penetrating geochemistry at surface sampling provides cost-effective mineral exploration methods for delineation of regional and local targets in transported cover terrains.  相似文献   

9.
The published mean δ34S values of ore-related pyrites from orogenic gold deposits of the Eastern Goldfields Province, Yilgarn Craton lie between −4‰ and +4‰. As for orogenic gold deposits worldwide, most deposits have positive means and a restricted range of δ34S values, but some have negative means and wider ranges of δ34S values. Wall-rock carbonation and back-mixing of similar-source fluids with different fluid pathways can explain some of the more negative δ34S signatures. However, structural setting appears to be the most important factor controlling ore-fluid oxidation state and hence the distribution of δ34S values in gold-related pyrites. Shear-hosted deposits appear to have experienced fluid-dominated processes such as phase separation, whereas stockwork, vein-hosted or disseminated deposits formed under conditions of greater rock buffering. At Victory-Defiance, in particular, negative δ34S values are more common in gently dipping dilational structures, compared to more compressional steeply dipping structures. It appears most likely that fluid-pressure fluctuations during fault-valve cycles establish different fluid-flow regimes in structures with different orientations. Rapid fluid-pressure fluctuations in dilational structures during seismic activity can cause partitioning of reduced gas phases from the ore fluid during extreme phase separation and hence are an effective method of ore-fluid oxidation, leading to large, local fluctuations in oxidation state. It is thus not necessary to invoke mixing with oxidised magmatic fluids to explain δ34S signatures indicative of oxidation. In any case, available, robust geochronology in the Eastern Goldfields Province does not support the direct involvement of oxidised magmatic fluids from adjacent granitic intrusions in orogenic gold genesis. Thus, negative mean δ34S values and large variations in δ34S values of ore-related pyrites in world-class orogenic gold deposits are interpreted to result from multiple mechanisms of gold precipitation from a single, ubiquitous ore fluid in varying structural settings, rather than from the involvement of oxidised ore fluids from a different source. Such signatures are indicative, but not diagnostic, of anomalously large orogenic gold systems. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
The Dongping gold deposit hosted in syenites is one of the largest hydrothermal gold deposits in China and composed of ore veins in the upper parts and altered zones in the lower parts of the ore bodies. Pervasive potassic alteration and silicification overprint the wall rocks of the ore deposit. The alteration minerals include orthoclase, microcline, perthite, quartz, sericite, epidote, calcite, hematite and pyrite, with the quartz, pyrite and hematite assemblages closely associated with gold mineralization. The phases of hydrothermal alteration include: (i) potassic alteration, (ii) potassic alteration - silicification, (iii) silicification - epidotization - hematitization, (iv) silicification - sericitization - pyritization and (v) carbonation. Mass-balance calculations in potassic altered and silicified rocks reveal the gain of K2O, Na2O, SiO2, HFSEs and transition elements (TEs) and the loss of REEs. Most major elements were affected by intense mineral reactions, and the REE patterns of the ore are consistent with those of the syenites. Gold, silver and tellurium show positive correlation and close association with silicification. Fluid inclusion homogenization temperatures in quartz veins range from 154 °C to 382 °C (peak at 275 °C–325 °C), with salinities of 4–9 wt.% NaCl equiv. At temperatures of 325 °C the fluid is estimated to have pH = 3.70–5.86, log fO2 =  32.4 to − 28.1, with Au and Te transported as Au (HS)2 and Te22  complexes. The ore forming fluids evolved from high pH and fO2 at moderate temperatures into moderate-low pH, low fO2 and low temperature conditions. The fineness of the precipitated native gold and the contents of the oxide minerals (e.g., magnetite and hematite) decreased, followed by precipitation of Au- and Ag-bearing tellurides. The hydrothermal system was derived from an alkaline magma and the deposit is defined as an alkaline rock-hosted hydrothermal gold deposit.  相似文献   

11.
In this study we investigated the sulphidic mine tailings from Frongoch and Grogwynion, two abandoned lead zinc mines in mid-Wales, UK. Despite falling within the same ore field the mine waste characterisation has identified differences in the tailings from the two sites. Bulk concentrations range from 10 to 52 g kg− 1 for Pb, 1.1 to 2.9 g kg− 1 for Zn in Grogwynion and from 1.0 to 130 g kg− 1 for Pb, 11 to 110 g kg− 1 for Zn in Frongoch. An experimental (European standard leaching tests TS 14429 and TS 14405) and geochemical modelling approach was used to study the leaching composition as a function of pH and liquid/solid ratio. There was little correlation between the tailings bulk metal concentrations and the leachate composition, but variations in Pb and Zn concentrations were found to be consistent with control of dissolved Pb and Zn by secondary minerals and the mechanisms of dissolution/precipitation/sorption involving them. Specifically, the Grogwynion mine tailings with near-neutral pH have predominantly lead and zinc carbonates controlling Pb and Zn solubility in the leachates, whereas the Pb and Zn concentrations in Frongoch leachates are best modelled with a surface complexation model for metal sorption to oxyhydroxides. The different speciation results in a greater sensitivity of Grogwynion tailings to acidification with a potential release of Pb in solution up to 10 times higher than in Frongoch, despite similar bulk Pb concentrations. At acid pH, Zn is similarly dissolved to a greater extent in Grogwynion than in Frongoch tailings. There was no evidence of sulphide oxidation during the batch and column leaching tests and the suitability of using these European leaching standards for the characterisation of sulphidic mine waste materials for waste management purposes has been considered.  相似文献   

12.
Hematite, as a typical iron oxide slime in sulphide ore slurries, was artificially added into the leaching systems of pure gold and a sulphide ore respectively, in an attempt to investigate the effect of iron oxide slimes on the ammoniacal thiosulphate leaching of gold. The presence of hematite significantly reduced the dissolution of gold and this detrimental effect became more pronounced with increasing hematite concentration. Hematite formed coatings on gold surfaces, which could prevent leach solution from diffusing to the gold surfaces and hence, inhibit gold dissolution. Hematite catalysed the oxidative decomposition of thiosulphate to polythionates with oxygen present. XPS studies indicated a thin layer of iron oxide coating as well as the deposition of some copper and sulphur species on gold surfaces. SEM images revealed a lesser extent of corrosion for gold after leaching in the presence of hematite. The gold extraction from the sulphide ore was reduced with the addition of hematite and this effect became more noticeable with an addition of hematite at a higher concentration. A natural guar type surfactant (Gempolym M47) reduced the detrimental effect of hematite on gold extraction likely due to the prevention of hematite coating on gold and mineral particles and the dispersion of the mineral slurry. Gempolym M47 stabilised thiosulphate by weakening the interaction between cupric ions and thiosulphate and by minimising the catalytic effect of hematite on thiosulphate decomposition.  相似文献   

13.
The gold mining process at Kolar gold field (KGF) mines has generated about 32 million tons of tailings. Gold was extracted from the mined ores using cyanidation technique that involved dissolution of gold in the ore by water soluble alkali metal cyanides (example, sodium cyanide or potassium cyanide). Of the several dumps that received the mine tailings only the Kennedy’s Line dump was active prior to closure of the KGF mines in the year 2000. The Kennedy’s Line dump received sulfide bearing tailings in slurry form that comprised of spent ore and process water bearing soluble alkali metal cyanide. Depending on the pH of the tailing slurry, the free cyanides may exist as aqueous hydrogen cyanide that can escape to the atmosphere as hydrogen cyanide gas or occur as soluble cyanide (CN) ions that can be leached by infiltrating water to the sub-surface environment. Additionally, the presence of pyrite minerals in the Kennedy’s Line dump makes them susceptible to acid drainage. This study examines the potential of gold tailings of Kennedy’s Line dump to release cyanide ions (CN) and acid drainage to the sub-surface environment by performing physico-chemical and leaching tests with tailing samples collected from various depths of the dump, sub-surface soil samples beneath the dump and groundwater samples from vicinity of Kennedy’s Line dump. The chemical mechanisms responsible for the ambient cyanide and pH levels of the tailing dump, sub-surface soil samples and groundwater are also inferred from the laboratory results.  相似文献   

14.
马俊  赵占清 《吉林地质》1999,18(2):46-49
本文从赤卫沟金矿的矿石性质、矿石加工、池浸方法、金银回收方面,介绍了贫硫化物、金颗粒细微、有一定氧化程度的金矿池浸生产实践。从而推荐一种简便、回收率高、投资少、见效快的提工方法-池浸,以便促进矿业开发工作更快发展。  相似文献   

15.
The Cu hydroxy mineral, atacamite, is commonly associated with saline environments and is generally thought to dissolve rapidly in the presence of fresh water. A Cu contaminated soil from the arid Namaqualand region, South Africa, shows atacamite as the dominant Cu containing mineral. The stability of the Cu phase in this soil was determined through equilibrium and leaching studies using both deionised water (DI) and a concentrated (0.5 M) NaCl solution. Initially a high concentration of exchangeable Cu was released from the soils leached with NaCl. Continued leaching with NaCl resulted in a substantial decrease in Cu release as atacamite equilibria started to control dissolved Cu. This suggests that an initial spike of Cu laden water will leach from the soils at the onset of a large rainfall event. Further additions of water will result in a lower but sustained release of Cu from the soil. The Cu contaminated soils are exposed to acidic sulphate leachate thus the dissolution kinetics of synthetic atacamite in the acidic range (pH 5.5–4.0) was determined in both NaCl and DI solutions. The kinetic data showed that atacamite dissolution rates are significantly higher in DI than in NaCl but the rates converge at pH 4. In comparison to common acid soluble minerals, atacamite displays a moderate dissolution rate (10−9.55–10−7.14 mol m−2 s−1) within the acid range (pH 5.5–4.0). The atacamite dissolution reaction order with respect to pH is 1.3 and 1.6 in DI and NaCl solutions, respectively, suggesting that dissolution rates of atacamite are highly pH dependent in the acid range. The type of acid used to lower the pH had no effect on the reaction kinetics, with HNO3 and H2SO4 resulting in comparable dissolution rates of atacamite at pH 4.5.  相似文献   

16.
贵州省兴义市雄武地区金矿主要为卡林型,其次为红土型,矿床受断裂构造控制,矿石为中等含硫微细浸染状氧化矿石。目前浅部矿石已基本采完,深部矿石品位较低(0.8~1.8 g/t),因此有效提高低品位矿石浸出率和金回收率至关重要。研究表明,筑堆时矿石粒度和喷淋时氰化钠浓度是堆浸生产中的重要影响因素。矿石粒度大,金浸出率低;氰化钠浓度大,则成本增加。根据矿石物质成分和工艺特征研究,得到矿石冶炼时的最佳工艺条件:筑堆时矿石粒度为15~25 mm,氰化钠浓度为0.05%~0.08%。该研究有效提高了矿石浸出率,降低了运营成本,为金矿石堆浸实际生产提供了理论和实验依据。  相似文献   

17.
A methodology to characterizing processes of in situ leaching is developed to investigate various parameters that may affect the recovery of a valuable mineral and assure a successful application of the in situ leaching technology. The governing equations of in situ leaching processes for the one-dimensional case are solved both analytically and numerically for both the consumption rate of a lixiviant and the production rate of a target mineral. A numerical simulator, which is developed to evaluate coupled effects among leaching kinetics, solution flow and transport of the dissolved mineral species in saturated ore deposits, is validated against the steady-state solutions and applied to investigate the transient effects of various parameters on the mineral recovery. Results from the evaluation indicate that there exists an optimal flow velocity range of leach solution for the effective leaching of a particular ore deposit. The determination of this optimal leaching velocity may become a key to the design of a real in situ leach mine. Results of the parameter sensitivity study illustrate the relative importance of other parameters such as porosity, ore grade, and reaction rate. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
Widespread Mesozoic Au and other hydrothermal polymetal (Zn–Pb–Cu–Mo–Ag–W–Fe–REE) deposits or smaller prospects occur in association with ancient mobile belts surrounding and cutting through the North China Carton (NCC). Among these, the gold ores of the Jiaodong Peninsula, Shandong Province, eastern NCC, represent the largest gold district in China. However, the genesis of these important gold mineralizations has remained controversial, notably their relationships to widespread mafic magmatism of alkaline affinity.The ore bodies of the Guocheng gold deposit on the Jiaodong Peninsula are fracture-controlled, sulfide-rich veins and disseminations, formed contemporaneously with abundant dolerite, lamprophyre and monzonite dikes at ca. 120 Ma. Dolerite dikes possess mantle-like major element compositions and alkaline affinity, associated with prominent subduction-type trace element enrichments. The dikes show petrographic and chemical evidence of magma mixing that triggered exsolution of magmatic sulfide and anhydrite crystallization, preserved as primary inclusions in phenocrysts. LA-ICP-MS analysis of magmatic sulfide inclusions demonstrates that metal abundance ratios (Ag, As, Au, Bi, Co, Cu, Mo, Ni, Pb, Sb, Zn) largely correspond to those of both unaltered bulk rock and bulk ore. Together with identical Pb isotope ratios of dolerite and bulk ore, this demonstrates that gold mineralization and dolerite dikes share a common source.Lead isotope signatures of the ore sulfides are much less radiogenic (17.08 < 206Pb/204Pb < 17.25, 15.41 <207Pb/204Pb < 15.45, 37.55 < 208Pb/204Pb < 37.93) relative to the Pb signature of Phanerozoic convecting mantle and plot to the left of the Geochron and above the MORB-source mantle Pb evolution line. Forward Monte Carlo simulations indicate three events for the U–Th–Pb isotope evolution: (1) late Archean formation of juvenile crust is followed by (2) subduction of this aged crust at ca. 1.85 Ga along with the assembly of Jiao–Liao–Ji mobile belt (suture within Columbia supercontinent). This late-Archean subducted crust released fluids with drastically reduced U/Pb that metasomatized the overlying depleted mantle, which formed cratonic lithospheric mantle. This metasomatized lithospheric mantle was (3) tapped in response to early Cretaceous extensional tectonics affecting notably the eastern margin of the NCC to generate mafic magmas and associated gold mineralization at Guocheng. Similarly non-radiogenic uranogenic Pb isotope data characterize the contemporaneous mafic dikes and gold deposits in the entire Jiaodong Peninsula, suggesting that our genetic model applies to the entire Jiaodong gold district.We propose that early Cretaceous melting of subcontinental lithospheric mantle metasomatized by subduction fluids during Paleoproterozoic amalgamation of terranes to the eastern NCC along with Columbia supercontinent assembly generated mafic magmatism and associated gold deposits. Given the conspicuous association of Phanerozoic hydrothermal ore deposits associated with reactivated Paleoproterozoic mobile belts, we envisage that our genetic model, which largely corresponds to that which is proposed for the Bingham porphyry-Cu–Au–Mo deposit, USA, may explain much of the magmatic-hydrothermal activity and associated ore formation all around the NCC.  相似文献   

19.
Processing U ores in the JEB Mill of the McClean Lake Operation in northern Saskatchewan produces spent leaching solutions (raffinates) with pH  1.5, and As and Ni concentrations up to 6800 and 5200 mg L−1, respectively. Bench-scale neutralization experiments (pH 2–8) were performed to help optimize the design of mill processes for reducing As and Ni concentrations in tailings and raffinates to 1 mg L−1 prior to their disposal. Precipitate mineralogy determined by chemical analysis, XRD, SEM, EM, XM and EXAFS methods, included gypsum (the dominant precipitate), poorly crystalline scorodite (precipitated esp. from pH 2–4), annabergite, hydrobasaluminite, ferrihydrite, green rust II and theophrastite. The As was mostly in scorodite with smaller amounts in annabergite and trace As adsorbed and/or co-precipitated, probably by ferrihydrite. Geochemical modeling indicated that above pH 2, the ion activity product (IAP) of scorodite lies between the solubility products of amorphous and crystalline phases (log Ksp = −23.0 and −25.83, respectively). The IAP decreases with increasing pH, suggesting that the crystallinity of the scorodite increases with pH. Forward geochemical models support the assumption that during neutralization, particles of added base produce sharp local pH gradients and disequilibrium with bulk solutions, facilitating annabergite and theophrastite precipitation.  相似文献   

20.
含有机碳、粘土物质、砷、铜较高的难处理原生硫化金矿石广泛分布于石棉西部地区。多年来该区该类型金矿的选矿一直采用混汞法收金或原矿浮选、产品销售冶炼厂的办法。本文根据矿石特性选择原矿氢氧化钠碱浸预处理→次氯酸钙氧化处理→氰化提金工艺进行探索性试验,获得金浸出率86.9%的结果,为石棉地区该类型金矿石的开发利用开辟了一条新的途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号