首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of palaeomagnetic surveys of Mesozoic and Tertiary rocks from Gondwanaland can be reconciled with the results of modelling the evolution of oceanic floors from analyses of marine magnetic anomalies. Previous inconsistencies were mainly due to errors apparent in the Australian Cenozoic palaeomagnetic data. An alternative Tertiary apparent polar wander path (APWP) has been constructed from an analysis of all published laterite and weathered profile data. Palaeomagnetic results for Africa, Antarctica, Australia, India, Madagascar and South America are compared for rotations corresponding to marine magnetic anomalies 16, 22, 28, 34 and M1 and for “fit”. India has been selected as the reference continent since it provides the most detailed APWP having drifted about 50° of latitude since breakup.  相似文献   

2.
In this paper palaeomagnetic poles known to be older than 2000 m.y. in age are assessed in the context of a continental reconstruction derived from younger Precambrian palaeomagnetic results. It is found that the combined data from North America and Africa define a single apparent polar wander path during the intervals 2700-2500 m.y. and 2160-2000 m.y. using the same continental reconstruction as that derived from younger poles. A rapid polar shift is identified at ca. 2150 m.y. and a closed loop is present in the curve between 2160 and 2000 m.y. Palaeomagnetic results from the Rhodesia/Kaapvaal, Kasai, West Africa and North America (Slave and Superior) cratons define segments of this loop which are statistically identical within errors of the pole positions and their assigned ages.These results in common with younger Proterozoic data (2000-800 m.y.) confirm that the crust behaved as an integral unit during these times, although undergoing internal deformation along mobile zones which has not yet proved detectable by the palaeomagnetic method. The 2700-2000 m.y. interval includes the Archaean-Proterozoic transition during which major structural anisotropy began to be imprinted on the sialic crust. Tectonic straight belts and deformed anorthosites lie within a single great-circle belt on the continental reconstruction incorporating Gondwanaland and North America. This same belt later developed into an arc of major tectonic and magmatic activity (<2250 m.y.) including massive anorthosites, rapakivi granites, acidic volcanism and mobile belts.  相似文献   

3.
Paleomagnetic analysis of Cenozoic sediments from the Iblean platform (12 sites, 100 samples) has provided four new poles. These data are combined with those available from volcanic series to yield a new apparent polar wander path for “stable” Sicily since the Upper Cretaceous. This curve, when compared to a revised curve for Africa (using a selection of available data points), demonstrates a 15° rotation of Sicily with respect to Africa during the Plio-Pleistocene. This rotation accounts for the extensional tectonic regime that prevails in the Pelagian Sea and which is evidenced by “en relais” rifts (Malta, Pantelleria, Linosa), associated with alkaline volcanism of Pliocene and Quaternary age. Paleomagnetic directions from various areas of the Italian Peninsula also indicate anticlockwise rotations with diverse amplitudes. The chronology of these rotations is consistent with a deformation of the western Italian margin during progressive suturation from north to south of the Corsican-Sardinian block since the end of the Oligocene.  相似文献   

4.
An important result of recent years is the normal resistivity profile. It was obtained by interpretation of the combined apparent resistivity curve (magnetotelluric sounding and geomagnetic deep sounding) for the East European platform. This profile has no highly conducting layer and resistivity is greater than 100 ohm-m at asthenospheric depths. It corresponds well with geothermal indications of the absence of partial melting beneath the Precambrian plates. Nearly the same profiles have been obtained for the Canadian shield, and the Siberian and Australian platforms. Investigations carried out in many “hot” regions confirm the existence of a well-developed low-resistivity asthenosphere. Partially molten zones have conductances of about several thousand Siemens in the Eastern Pacific, Iceland and in the North American rift zone. Magnetotelluric soundings show that in many continental areas the lower part of the crust has low resistivity, in the range 10–20 ohm-m. Usually this crustal conductive layer is observed in regions of recent activity. Its total conductivity changes from several hundred to several thousand S. Many investigators propose that the most natural explanation of this conductivity is water solutions.It is necessary to note the distorting role of near-surface inhomogeneities. Local distortions can be eliminated by simple averaging of the experimental data. These average apparent resistivity curves are the starting point for the construction of deep geoelectrical models.  相似文献   

5.
Recent paleomagnetic studies and GPS-monitoring show that slow rotations of continental plates and differential rotations of separate domains inside them are important features of geophysics and geodynamics. The epicenter of rotation of contemporary Eurasia is located in the eastern Himalayas. To the second approximation, Eurasia is not a rigid plate because the angular velocities of its large domains vary several times, increasing from the periphery of the continent to the central domain, rotated. Paleomagnetic studies of the Phanerozoic rocks of ancient domains corroborate this regularity and the fact that continents in the Northern Hemisphere rotate, as a rule, clockwise, while in the Southern Hemisphere they rotate counter-clockwise, can be used to unambiguously determine the polarity of the pole from the Precambrian apparent pole wander paths (APWP). The majority of the ancient continental domains of contemporary Eurasia decrease the rotation velocity in Phanerozoic. According to the above model, their angular velocity vectors have components opposite in direction to the angular velocity vector of the proper rotation of the Earth. This factor, together with the known ocean tidal friction, resulted in a decrease in the rotational velocity of the Earth’s mantle on a geologic time scale.  相似文献   

6.
The enigmatic Salt Range of Pakistan is suggested to have been rotated about 75° counter-clockwise from an original position in line with the main Himalayan front, about a pole near the eastern end of the Range. Rotation was a consequence of the creation of the Pamir Arc by major block movements in Central Asia which also produced the Kashmir Syntaxis. Although direct palaeomagnetic testing of the hypothesis is not possible, Cambrian pole positions obtained from the Purple Sandstone and Salt Pseudomorph Beds of the Salt Range lie anomalously on the Precambrian part of the apparent polar wander curve for Gondwanaland. These revert to positions in correct chronological sequence on that curve if rotation is allowed for.  相似文献   

7.
An updated analysis of the global paleomagnetic database shows that the frequency distributions of paleomagnetic inclinations for the Cenozoic and Mesozoic eras (younger than 250 Ma) are compatible with a random geographical sampling of a time-averaged geomagnetic field that closely resembles that of a geocentric axial dipole. In contrast, the frequency distributions of paleomagnetic inclinations for the Paleozoic and Precambrian eras (prior to 250 Ma) are over-represented by shallow inclinations. After discounting obvious secondary causes for the bias, such as from data averaging, sedimentary inclination error, inhomogeneous lithological distributions, and tropical remagnetization, we show that the anomalous inclination distributions for the Paleozoic and Precambrian can be explained by a geomagnetic field source model which includes a relatively modest (25%) contribution to the axial dipole from a zonal octupole field and an arbitrary zonal quadrupolar contribution. The apparent change by around 250 Ma to a much more axial dipolar field geometry might be due to the stabilization of the geodynamo from growth of the inner core to some critical threshold size, a gross speculation which would imply that either the threshold size was rather large or the inner core nucleated rather late in Earth history. Alternatively, if a geocentric axial dipole model is assumed or can eventually be demonstrated independently, the anomalous inclination distributions for the Paleozoic and Precambrian may reflect a tendency of continental lithosphere to be cycled into the equatorial belt, perhaps because geoid highs associated with long-term continental aggregates influence true polar wander.  相似文献   

8.
Martian surface features such as quasi-circular structures in polar regions have been previously cited as evidence of polar wander (i.e., large-scale relative motion between a body-fixed axis and the rotation pole). Another feature, the Coprates (Valles Marineris) trough assemblage, is proposed as further, plausible evidence of such wander. This trough assemblage is explained as a failure due to curvature changes in Mars' lithosphere, in the manner of certain hypotheses explaining terrestrial features (e.g. East African Rift System). In the Earth's case plate tectonics cause lithospheric curvature changes, whereas, in Mars' case polar wander is most probable. Membrane stresses which can reach 10 kbars are shown to most likely over-shadow bending stresses. Flattening changes are judged to be inappropriate. Simple wander scenarios are constructed to illustrate the hypothesis.  相似文献   

9.
Reliable data on the paleointensity of the geomagnetic field can become an important source of information both about the mechanisms of generation of the field at present and in the past, and about the internal structure of the Earth, especially the structure and evolution of its core. Unfortunately, the reliability of these data remains a serious problem of paleomagnetic research because of the limitations of experimental methods, and the complexity and diversity of rocks and their magnetic carriers. This is true even for relatively “young” Phanerozoic rocks, but investigation of Precambrian rocks is associated with many additional difficulties. As a consequence, our current knowledge of paleointensity, especially in the Precambrian period, is still very limited. The data limitations do not preclude attempts to use the currently available paleointensity results to analyze the evolution and characteristics of the Earth’s internal structure, such as the age of the Earth’s solid inner core or thermal conductivity in the liquid core. However, such attempts require considerable caution in handling data. In particular, it has now been reliably established that some results on the Precambrian paleointensity overestimate the true paleofield strength. When the paleointensity overestimates are excluded from consideration, the range of the field strength changes in the Precambrian does not exceed the range of its variation in the Phanerozoic. This result calls into question recent assertions that the Earth’s inner core formed in the Mesoproterozoic, about 1.3 billion years ago, triggering a statistically significant increase in the long-term average field strength. Instead, our analysis has shown that the quantity and quality of the currently available data on the Precambrian paleointensity are insufficient to estimate the age of the solid inner core and, therefore, cannot be useful for solving the problem of the thermal conductivity of the Earth’s core. The data are consistent with very young or very “old” inner core ages and, correspondingly, with high or low values of core thermal conductivity.  相似文献   

10.
Over 95 paleomagnetic pole positions have been determined from North American Precambrian rocks, and they are listed in tabulations by Irving and McElhinny. Using rocks which are isotopically dated, five groups of pole positions can be defined, and these are consistent for rock units from widely separated areas of the North American continent. They are named for convenience (1) Keweenawan trend (age range 1000-1200 my) (2) Mackenzie trend (1200 my) (3) Elsonian trend (1300-1475 my) (4) Animikie-Sudbury trend (1600-2060 my) (5) Matachewan-Stillwater trend (2450-2485 my). An apparent polar wandering path can be constructed between the trends, and this will also incorporate data from rock units of uncertain age e.g. the Belt and Grand Canyon Series. Using an average rate of apparent polar wandering of 1°/5 my during the Phanerozoic for comparison, it suggests that the Precambrian was marked by long quasi static intervals in which the rate of polar shift was much less than 1°/5 my (2485-2140 my, 2060-1600 my, 1475-1200 my) separated by short periods of fairly rapid polar shift of much greater than 1°/5 my (2140-2060 my, 1600-1475 my, 1200-1000 my).  相似文献   

11.
The Precambrian basement of the British region south of the Caledonian orogenic belt is only observed in a few small inliers; this paper reports a detailed paleomagnetic study of four of these inliers. The Stanner-Hanter amphibolitised gabbro-dolerite complex of uncertain age yields a mean direction of magnetisation D = 282°, I = 51° (15 sites,α95 = 11.4°) after AF and thermal cleaning. Uriconian lavas and tuffs (~700-600 m.y.) of the Pontesford and Wrekin inliers require both thermal and AF cleaning for complete analysis of NRM. The former region (Western Uriconian) yields a mean of D = 136°, I = ?25° (6 sites,α95 = 15.3°) and the latter region (Eastern Uriconian) a mean of D = 78°, I = 17° (9 sites, α95 = 12.8°); the Eastern Uriconian shows a marked improvement in precision after a two-stage fold test, and the palaeomagnetic data suggest that some apparent polar movement took place between eruption of the two sequences. The Uriconian rocks in both areas were intruded by dolerites which yield a mean direction of magnetisation D = 72°, I = 54° (11 sites,α95 = 13.2°).The collective data give palaeomagnetic poles related to Upper Proterozoic metamorphic episodes (Stanner-Hanter Complex and Rushton Schist) which are in close agreement with earlier studies of the Malvernian metamorphic rocks, and to the late Precambrian Uriconian volcanic/hypabyssal igneous episode. All of these magnetisations are probably confined to the interval 700-600 m.y., and are indicative of appreciable polar movement during this interval. The palaeomagnetic poles define an apparent polar wander path for this crustal block between Late Precambrian and Lower Cambrian times and show that cratonic Britain south of the Caledonian suture is unrelated to the Baltic Shield.  相似文献   

12.
Continental flood basalts consist of vast quantities of lava, sills and giant dyke swarms that are associated with continental break-up. The commonly radiating geometry of dyke swarms in these provinces is generally interpreted as the result of the stress regime that affected the lithosphere during the initial stage of continental break-up or as the result of plume impact. On the other hand, structures in the basement may also control dyke orientations, though such control has not previously been documented. In order to test the role of pre-dyke structures, we investigated four major putative Karoo-aged dyke swarms that taken together represent a giant radiating dyke swarm (the so-called “triple-junction”) ascribed to the Jurassic Karoo continental flood basalt (> 3 × 106 km2; southern Africa). One of the best tests to discriminate between neoformed and inherited dyke orientation is to detect Precambrian dykes in the Jurassic swarms. Accordingly, we efficiently distinguished between Jurassic and Precambrian dykes using abbreviated low resolution, 40Ar/39Ar incremental heating schedules.Save-Limpopo dyke swarm samples (n = 19) yield either apparent Proterozoic (728–1683 Ma) or Mesozoic (131–179 Ma) integrated ages; the Olifants River swarm (n = 20) includes only Proterozoic (851–1731 Ma) and Archaean (2470–2872 Ma) dykes. The single age obtained on one N–S striking dyke (1464 Ma) suggests that the Lebombo dyke swarm includes Proterozoic dykes in the basement as well. These dates demonstrate the existence of pre-Karoo dykes in these swarms as previously hypothesized without supporting age data. In addition, aeromagnetic and air-photo interpretations indicate that: (1) dyke emplacement was largely controlled by major discontinuities such as the Zimbabwe and Kaapvaal craton boundaries, the orientation of the Limpopo mobile belt, and other pre-dyke structures including shear zones and (2) considering its polygenetic, pre-Mesozoic origin, the Olif ants River dyke swarm cannot be considered part of the Karoo magmatic event.This study, along with previous results obtained on the Okavango dyke swarm, shows that the apparent “triple junction” formed by radiating dyke swarms is not a Jurassic structure; rather, it reflects weakened lithospheric pathways that have controlled dyke orientations over hundreds of millions of years. One consequence is that the “triple-junction” geometry can no longer be unambiguously used as a mantle plume marker as previously proposed, although it does not preclude the possible existence of a mantle plume. More generally, we suggest that most Phanerozoic dyke swarms (including triple junctions) related to continental flood basalts were probably controlled in part by pre-existing lithospheric discontinuities.  相似文献   

13.
Precambrian amphibolite and hyperite rocks from the Bamble and Kongsberg areas in SE Norway, and amphibolite rocks from SW Sweden were investigated for evidence of remagnetization by the Sveconorwegian metamorphic episode. The similarity of the characteristic natural remanent magnetization directions, shown by the various rocks from the Bamble and Kongsberg areas, indeed supports the idea of remagnetization on a regional scale. Therefore the average pole position at 3°S, 153°W, determined from six sites in these areas, is considered to reflect the average virtual pole position for the post-Sveconorwegian period of uplift and cooling (1,120–975) · 106 year ago. The pole positions determined from the characteristic natural remanent magnetization directions of amphibolite rocks in SW Sweden are indicative of being somewhat younger.In addition, two hyperite dikes were studied near Karlshamn in SE Sweden. Their characteristic natural remanent magnetization is consistent with that of the hyperite dikes in central south Sweden (Mulder, 1971).The Precambrian apparent polar wandering path for Europe is reconstructed on the basis of twenty-three pole positions from the Baltic Shield and three pole positions from Great Britain. This pole path requires an average angular rate of apparent polar wandering of 0.2–0.3° per 106 year.  相似文献   

14.
This paper presents paleomagnetic results obtained from the study of Early Proterozoic rocks in the Baikal Range of the Siberian craton, namely, the 1850–1880-Ma volcanicalstic rocks of the Akitkanskian series of the North Baikal volcanic-plutonic belt) and 1674-Ma basic dikes of the Chaya complex within the massif. The data of this work are used to reconstruct the development of the Siberian craton structure in the Early Precambrian. The projections of the inferred paleomagnetic directions onto a sphere form S (southern) and W (western) groups of vectors of characteristic magnetization components. The S group consists of three clusters representing primary magnetization components belonging to different time levels of the end of the Early Proterozoic. The W group is represented by directions associated with a metachronous magnetization probably acquired during the Riphean. Four paleomagnetic poles are obtained. Two of them that can be regarded as key poles correspond to time levels of 1875 and 1670 Ma (the Early Proterozoic). The two other poles can be used for a detailed reconstruction of the Proterozoic segment of the Siberian apparent polar wander path. The data presented in the paper indicate that the formation of the southern Siberian craton structure was accomplished at the end of the Early Proterozoic, which resulted in a synchronous motion of different blocks composing the southern flank of the craton (in particular, the Sharyzhalgai and Baikal Ranges).  相似文献   

15.
Palaeomagnetic results are reported from eight sites in an Upper Devonian basic intrusion (the Msissi norite) in southeast Morocco. Specimens from one site are suspected of having been affected by lightning, but results from the other seven sites indicate the presence of a less-stable component, probably of viscous origin. The pole position corresponding to the stable component(0.5°S, 25°E, A95 = 16.5) is interposed between the Middle Cambrian/Ordovician pole and the Lower Carboniferous pole on the African polar wander curve. When the southern continents are reassembled on the Smith/Hallam reconstruction of Gondwanaland the new Moroccan Devoniån pole is in excellent agreement with the corresponding portion of the main Australian polar-wander curve. This places additional constraints on the possible date of fusion of the separate Southeast Australian plate with the rest of Gondwanaland, postulated recently on palaeomagnetic grounds by M.W. McElhinny and B.J.J. Embleton (1974). The combined African/Australian polar-wander curve is compared with the South American curve, and two possible interpretations of available data are discussed, one involving possible relative tectonic motion between South America and the rest of Gondwanaland during the Lower and Middle Palaeozoic, and the other, favoured here, requiring a reassessment of the ages of several South American pole determinations.  相似文献   

16.
Directions of magnetization observed from rock-units from a given continental block are conveniently summarized by a path of apparent polar wander (apw) relative to that block. This article documents apw paths for the major continental blocks spanning the interval from Late Carboniferous (approximately –300 Ma) to the present. It is shown that by passing moving windows of 30 or 40 Ma duration over the data an apw path can be obtained with little or no loss of features through smoothing. It also is shown that mean pole positions obtained using Fisher's statistics or by calculating modes do not differ significantly. In the analysis poor results are screened out by applying certain minimum reliability criteria. Unit weight is then given to each of the remaining results. No attempt has been made to weight the results differentially because of the risk of added subjectivity.The paths contain many interesting features. One is an interval of rapid apparent polar motion relative to all major land-masses that occurred sometime in the Late Permian and Triassic. The general form of these motions is roughly established, but their timing and detailed form is poorly known because of inadequacies in the paleomagnetic record. Although it is clear that the motions occurred sometime around the Paleozoic-Mesozoic boundary it is not known whether the motions are or are not contemporaneous from continent to continent.Apw paths are of great importance for many problems in geology and geophysics. As an example, the new paths are applied to the question of how should Gondwana be correctly assembled. The results show that the best available reconstruction is the 1937 assembly of Alex du Toit as quantified by Smith and Hallam, with a minor modification by Barton and Molnar for the fit of Australia and Antarctica. Assemblies, that place Antaretica to the south and wrap the Antarctic Peninsula around the southern Andes, are not supported by the paleomagnetic data. There are, however, several obscurities, which derive, it is argued, from the uncertainties in timing the Late Permian to Triassic transitions alluded to above.  相似文献   

17.
We have carried out paleomagnetic studies of the Upper Vendian sedimentary rocks from the Bashkirian Meganticlinorium (Southern Ural). The rocks were sampled at three localities spread over more than 100 km. Totally, more than 300 samples were collected from about 40 sampling sites. Stepwise thermal demagnetization up to 700°C revealed a stable component of magnetization of either polarity in 25 sites. The fold test and the reversal test for this component are positive, which is usually regarded as a sound argument in favor of the primary origin of magnetization. However, the Basu paleomagnetic pole (longitude 187.3°E, latitude 1.1°N) is located near the Late Ordovician-Early Silurian segment of the apparent polar wander path for Baltica, which might indicate a Paleozoic remagnetization of Vendian rocks. In this work we analyze different interpretations of the obtained results and evaluate the reliability of the Late Riphean and Vendian paleomagnetic data for Baltica.  相似文献   

18.
Pb isotope data are presented for the potassic rocks from Roccamonfina and some other Campanian volcanoes. Pb isotope variations for Roccamonfina fall within the previously found range of values for the Italian potassic volcanism and form similar shallow regression lines in the Pb-Pb diagrams. Their interpretation as two-component mixing lines is well supported by other geochemical evidence. The relation of the mixing processes deduced for Roccamonfina and for the wider regional volcanism is discussed. The enriched and anomalous mantle under Italy is proposed to be a result of various degrees of metasomatism of a range of “Atlantic island” type mantle compositions by an LIL-element-enriched mantle “fluid”. The mantel “fluid” may either derive its isotope and trace element characteristics from an old LIL-element-enriched mantle source or from continental crust which has to some extend retained its geochemical identity in the upper mantle.  相似文献   

19.
Two hundred and nineteen palaeomagnetic results are combined in calculating Gondwanan apparent polar wander paths, their confidence intervals, and the residual mean square errors about the paths, for six reconstructions.A quantitative assessment of the six reconstructions of Gondwanaland is made on the basis of the consistency of palaeomagnetic pole positions using a new statistical technique. Smith and Hallam's [1] Gondwanan reconstruction is the most effective in accounting for the distribution of the palaeomagnetic data and is used in calculating our preferred apparent polar wander path.  相似文献   

20.
Rapid polar shifts relative to Gondwanaland are identified in the Late Ordovician and Carboniferous. These shifts form part of the “Common polar wander path” interpretation of the palaeomagnetic poles for the Gondwana continents during the Palaeozoic. For western Europe a transition occurs between the Ordovician and Silurian poles, but is of smaller magnitude than the Late Ordovician Gondwana shift. Similarly Carboniferous shifts with respect to Europe and North America are smaller than the Gondwana shifts. A third shift in Europe is dated as mid-Devonian, but could be as old as Late Silurian, and has no counterpart in Gondwanaland. The differences in timing and magnitudes of these shifts provide evidence of the predominant role of continental drift rather than polar wandering. Attempts to explain the data exclusively in terms of polar wandering lead to geologically and geometrically untenable conclusions. Whilst there were one or perhaps two supercontinents in most of the upper Palaeozoic, it seems Laurasia was itself a set of separate fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号