首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
Wind erosion is a dominant geomorphological process in arid and semi-arid regions with major impacts on regional climate and desertification. The erosion process occurs when the wind speed exceeds a certain threshold value, which depends on a number of factors including surface soil moisture. The understanding and modelling of aeolian erosion requires a better understanding of the soil erodibility associated with different moisture conditions. In arid regions during the dry season, the atmospheric humidity plays an important role in determining the surface moisture content and the threshold shear velocity. By a series of wind tunnel tests and theoretical analyses, this dependence of threshold velocity on near surface air humidity is shown for three soils of different textures: sand, sandy loam, and clay loam. The results show that the threshold shear velocity decreases with increasing values of relative humidity for values of relative humidity between about 40% and 65%, while above and below this range the threshold shear velocity increases with air humidity. A theoretical framework is developed to explain these dependencies assuming an equilibrium between the surface soil moisture and the humidity of the overlying atmosphere. The conditions under which soil-atmosphere equilibrium occurs were tested experimentally in the laboratory for different soils in order to determine the effect of grain surface area and texture on the time required to reach equilibrium starting from different initial conditions.  相似文献   

2.
Grass cover is considered as a sustainable means of controlling soil erosion and enhancing durability of soil slopes. A number of grass species are commonly available for soil bioengineering in Hong Kong, but their capacities to control soil erosion have not been characterized quantitatively. The main objectives of this paper are to study the influence of soil density on characteristics of grass roots, to measure the erodibility parameters of the root-permeated soils at two growth stages, and to select the proper Hong Kong grass species that effectively control soil erosion. Three types of Hong Kong turf grass including Cynodon Dactylon, Paspalum Notatum, and Zoysia Matrella were planted on three soil grounds with degrees of compaction of 80, 90, and 100 %, respectively. The featural parameters of grass roots on each compacted ground, including root mass density, root volume density, and root depth, were measured in two growth stages. A jet index apparatus was applied to measure two erodibility properties (i.e., coefficient of erodibility and critical shear stress) of these vegetated soils in the two test stages. Cynodon Dactylon and Zoysia Matrella have higher root mass density values than Paspalum Notatum does, and reduce the susceptibility of soil erosion more effectively. Therefore, the two grass species are suggested for soil bioengineering in Hong Kong.  相似文献   

3.
Wind erosion is a serious problem throughout the world which results in soil and environment degradation and air pollution. The main objective of this study was to evaluate feasibility of microbial-induced carbonate precipitation, as a novel soil-strengthening technique, to reduce wind erosion risk of a sandy soil. For this purpose, the erosion of biocemented soil samples was investigated experimentally in a wind tunnel under the condition of wind velocity of 45 km h?1. The weight loss of treated samples relative to the weight loss of control treatment was 1.29 and 0.16 % for low and high bacterial mix concentrations, respectively, indicating a significant improvement in erosion control in biologically treated samples. The effect of biological treatment on wind erosion control was even superior at the higher velocities. Thereafter, the penetration resistance of the surface layers as a simple index of resistance against wind erosion was measured. Significant improvements in the penetration resistance of the treated soil samples were observed. Although low bacterial mix concentrations did not significantly improve the penetration resistance of the samples, significant improvements in the penetration resistance of the treated soil samples were observed reaching to the highest measured strength (56 kPa) in high bacterial mix concentrations samples. Finally, the morphology of precipitated CaCO3 crystals using scanning electron microscopy and X-ray powder diffraction analysis showed that the CaCO3 was mainly precipitated as vaterite crystals forming point-to-point contacts between the sand granules.  相似文献   

4.
几种土壤的细沟侵蚀过程及其影响因素   总被引:15,自引:0,他引:15       下载免费PDF全文
通过间隔为11h的二次人工模拟降雨和冲蚀槽试验研究了10种土壤的侵蚀过程,发现在第2次降雨中大多数土壤出现了细沟侵蚀形式。采样微形态观察发现,在第1次降雨中形成结皮的土壤在第2次降雨中出现了细沟侵蚀;产流产沙观测发现所有出现细沟侵蚀的土壤在第1次降雨中径流含沙量逐渐减少,而第2次降雨中有一个先剧增后减少的过程。土壤理化分析及多元逐步回归分析结果表明,土壤颗粒组成、有机质含量、铁铝含量等因素对细沟侵蚀的影响表现不明显,而与土壤团聚体有关结构指标、细沟侵蚀、产流产沙速率及总量呈显著相关关系。分析表明,团聚体分散度、崩解速率与渗透系数之比两个指标能较好地预测细沟侵蚀发生的可能性,同时也能很好地预测侵蚀产沙量。  相似文献   

5.
Environmental degradations caused by erosion and landslide within an area in the South-eastern part of Nigeria were assessed, and also an attempt to characterize the underlying soils based on their degree of susceptibility to erosion and landslide. Factors affecting soil erodibility such as physical and chemical properties of soil, as well as vegetation density and slope gradient was determined in 20 different areas. Simple linear regression and principal component analysis were employed to relate the factors controlling erosion and landslide to the erosion and slide densities, and to determine the pattern that exists in the data and as well express the data in such a way as to highlight their similarities and differences. Four vertical horizons and two horizontal zones of soil were distinguished based on their degree of weathering as well as their chemical and mineralogical composition; hence the soils were classified into six different types based on their degree of susceptibility to erosion and landslide. Variations in their degree of susceptibility to erosion and landslide were majorly controlled by its chemical and mineralogical composition rather than its particle size distribution.  相似文献   

6.
文章对近年来基于生物固土技术的防风固沙研究进行了回顾和分析。常用于防风固沙的生物过程包括基于微生物或酶诱导碳酸钙沉积(MICP或EICP)的矿化固土技术,加入黄原胶等生物高聚物作为辅助剂,可获得更好的固土效果。土壤风蚀过程中,除了风力本身,风携带的跃移颗粒对土的撞击,也是侵蚀破坏的重要因素,这在生物固化土风蚀试验中体现明显。生物固化防风固沙的处理过程简单易行,以尿素和钙盐作为处理材料,用细菌或脲酶作为催化诱导媒介,对土体进行单遍喷洒处理即可获得很好的抗风效果。室内抗风试验中,将风蚀速率与临界起动风速两个指标结合是较为合理的评估方法。在室内和现场条件下,表面贯入强度测试可用来快速测定处理效果和抗风性能。目前的现场试验研究表明,生物固化土中植物可以生长,但是极端条件下生长受限。为了将该方法推向实用,需要从多重侵蚀因子作用下的抗风力侵蚀能力、生态恢复能力和现场施工技术等方面进一步研究探索。  相似文献   

7.
Monitoring of soil properties is a significant process and plays an important role about how it can be used sustainably. This study was performed in a local area in Sawda Mountains KSA to map out some soil properties and assess their variability within the area under different land cover. Soil sampling was carried out in four different sites using the grid sampling technique. Ten samples were collected in each location within a 10 by 10 km area; soil was sampled at 0–30-cm depth. The soil samples were air-dried, crushed, and passed through a 2-mm sieve before analyzing it for pH, EC, CaCO3, organic matter contents, and bulk density. The thematic maps of these characteristics were produced using ArcGIS 10.0 software. Finally, the land degradation was assessed using three factors: soil salinization, compaction, and edibility. The obtained results showed that the high risk of soil compaction, salinization, and erodibility occupied an area 5.6 ha (17.5%), 3.7 ha (11.54%), and 8.1 ha (25.3%), respectively, in the surface soil layer. The land degradation risk in the study area due to salinization was low to high; however, the degree of soil compaction was moderate to very high. The K-factor (soil erodibility) in the area ranged between 0.1 and 0.35 Mg h MJ?1 mm?1, and most of the study area was located in moderate to high erodibility classes.  相似文献   

8.
Aeolian (wind) erosion is most common in arid regions. The resulted emission of PM10 (particulate matter that is smaller than 10 μm in diameter) from the soil has many environmental and socioeconomic consequences such as soil degradation and air pollution. Topsoil resistance to aeolian transport highly depends on the surface composition. The study aim was to examine variations in PM10 fluxes in a desert-dust source due to surface composition and topsoil disturbance. Aeolian field experiments using a boundary layer wind tunnel alongside soil composition analysis were integrated in this study. The results show variations in PM10 fluxes (ranging from 9.5 to 524.6 mg m?2 min?1) in the studied area. Higher wind velocity increased significantly the PM10 fluxes in all surface compositions. A short-term natural disturbance caused changes in the aggregate soil distribution (ASD) and increased significantly PM10 emissions. Considering that PM10 contains clays, organic matter, and absorbed elements, the recorded PM10 fluxes are indicative of the potential soil loss and degradation by wind erosion in such resource-limited ecosystems. The findings have implications in modeling dust emission from a source area with complex surfaces.  相似文献   

9.
Characteristics and distributions of humic acid (HA) and soil organic matter (SOM) in a yellow soil profile and a limestone soil profile of the southwest China Karst area were systematically investigated to reveal their evolutions in different soils of the study area. The results showed that characteristics and distribution of SOM along the two soil profiles were notably different. Total organic carbon (TOC) contents of soil samples decreased just slightly along the limestone soil profile but sharply along the yellow soil profile. TOCs of the limestone soils were significantly higher than those of the corresponding yellow soils, and C/N ratios of SOMs showed a similar variation trend to that of TOCs, indicating that SOM can be better conserved in the limestone soil than in the yellow soil. The soil humic acids were exhaustively extracted and further fractionated according to their apparent molecular weights using ultrafiltration techniques to explore underlying conservation mechanisms. The result showed that C/N ratios of HAs from different limestone soil layers were relatively stable and that large molecular HA fractions predominated the bulk HA of the top soil, indicating that HA in the limestone profile was protected while bio and chemical degradations were retarded. Combined with organic elements contents and mineral contents of two soils, we concluded that high calcium contents in limestone soils may play a key role in SOM conservation by forming complexation compounds with HAs or/and enclosing SOMs with hypergene CaCO3 precipitation.  相似文献   

10.
Scour and erosion potential of a soil are closely related to each other. Similarities or differences between them have not been defined fully and the terms are often used interchangeably or in association with one another. Erodibility is a property of soil that describes erosion potential. Therefore, a proper understanding of erodibility should help predict scour more accurately. In the past, researchers have looked into erosion of soils with the ultimate objective of understanding the erodibility with respect to the standard geotechnical properties. Most research has shown the difficulties associated with correlating erodibility to any one or more soil properties. The research described in this paper is mainly focused on the relationship between erodibility and dry unit weight of soil with varying fractions of fines. Soils tested using laboratory Jet Erosion Test (JET) indicated that the logarithm of erodibility makes a linear inverse relationship with the dry unit weight. In situ JETs confirmed the range of erodibilities established by the laboratory JETs. The best correlations between erodibility and dry unit weight appeared within a single category of soil as classified by the Unified Soil Classification System. In addition, it was also determined that the logarithm of erodibility is inversely related to the angle of internal friction of the fluvial soils tested during this investigation.  相似文献   

11.
Abstract Reliable predictions of wind erosion depend on the accuracy of determining whether erosion occurs or not. Among the several factors that govern the initiation of soil movement by wind, surface moisture is one of the most significant. Some widely used models that predict the threshold shear velocity for particle detachment of wet soils by wind were critically reviewed and evaluated. Wind‐tunnel experiments were conducted on pre‐wetted dune sand with moisture contents ranging from 0·00 to 0·04 kg kg?1. Sand samples were exposed to different wind speeds for 2 min. Moisture content was determined gravimetrically before and after each experiment, and the saltation of sand particles was recorded electronically with a saltiphone. Shear velocities were deduced from the wind speed profiles. For each moisture content, the experiments were repeated at different shear velocities, with the threshold shear velocity being determined by least‐squares analysis of the relationships between particle number rates and shear velocity. Within the 2‐min test runs, temporal changes in particle number rates and moisture contents were detected. A steep increase in the threshold shear velocity with moisture content was observed. When comparing the models, large differences between the predicted results became apparent. At a moisture content of 0·007 kg kg?1, which is half the moisture content retained to the soil matrix at a water tension (or matric potential) of ?1·5 MPa, the increase in ‘wet’ threshold shear velocity predicted with the different models relative to the dry threshold shear velocity ranged from 117% to 171%. The highest care should therefore be taken when using current models to predict the threshold shear velocity of wet sediment. Nevertheless, the models of Chepil (1956; Proc. Soil Sci. Soc. Am., 20, 288–292) and Saleh & Fryrear (1995; Soil Sci., 160, 304–309) are the best alternatives available.  相似文献   

12.
Interface erosion is one of the main phenomena in dams, dikes and their foundations which may increase their failure risk. In laboratories, the jet erosion test (JET) and the hole erosion test (HET) are commonly used for the evaluation of the sensibility of interface erosion of fine soils. The results are interpreted by two distinct methods that are valid for one test only. A new energy analysis of the tests is developed, relating the total eroded mass to the dissipated fluid energy, and a new erosion resistance index is proposed. Seven naturally occurring fine-grained soils, covering a large range of erodibility, are compacted with the Proctor protocol, and they are tested with the two devices. It was shown that by using the commonly used methods, the values of the erosion coefficient are systematically higher with the JET than with the HET and the HET critical shear stress is about fifty times higher than the JET critical shear stress. Thus, the relative soil classifications yielded by the two erodimeters are not exactly the same. Based on energy analysis, values of erosion resistance index are roughly the same for each tested soil with the two apparatuses and a single classification of soil erodibility is obtained.  相似文献   

13.
Soil erosion is one of most widespread process of degradation. The erodibility of a soil is a measure of its susceptibility to erosion and depends on many soil properties. Soil erodibility factor varies greatly over space and is commonly estimated using the revised universal soil loss equation. Neglecting information about estimation uncertainty may lead to improper decision-making. One geostatistical approach to spatial analysis is sequential Gaussian simulation, which draws alternative, equally probable, joint realizations of a regionalised variable. Differences between the realizations provide a measure of spatial uncertainty and allow us to carry out an error analysis. The objective of this paper was to assess the model output error of soil erodibility resulting from the uncertainties in the input attributes (texture and organic matter). The study area covers about 30 km2 (Calabria, southern Italy). Topsoil samples were collected at 175 locations within the study area in 2006 and the main chemical and physical soil properties were determined. As soil textural size fractions are compositional data, the additive-logratio (alr) transformation was used to remove the non-negativity and constant-sum constraints on compositional variables. A Monte Carlo analysis was performed, which consisted of drawing a large number (500) of identically distributed input attributes from the multivariable joint probability distribution function. We incorporated spatial cross-correlation information through joint sequential Gaussian simulation, because model inputs were spatially correlated. The erodibility model was then estimated for each set of the 500 joint realisations of the input variables and the ensemble of the model outputs was used to infer the erodibility probability distribution function. This approach has also allowed for delineating the areas characterised by greater uncertainty and then to suggest efficient supplementary sampling strategies for further improving the precision of K value predictions.  相似文献   

14.
Evaluation of soil erodibility is an important task for Mediterranean lands, in which fertility and crop yield are significantly affected by soil erosion. The soil physicochemical parameters affecting soil erodibility are highly variable in space and, as for many other environmental variables, sample measurements are generally not enough for assessing its spatial variability with an acceptable level of uncertainty at the scales of practical interest. This study illustrates the procedure applied for estimating the pattern of soil erodibility across the Sele Basin (Southern Italy), where soil properties have been measured on a limited number of sparse samples. Sampled data were integrated with other sparse data estimated by local regression functions, which relate soil erodibility to auxiliary variables, such as terrain attributes and land system class memberships. Sampled and estimated data were merged in a composed data set to assess the spatial pattern of soil erodibility by ordinary kriging. The proposed approach offers effective spatial predictions, and it is exportable to regions where financial costs for soil sampling are not feasible.  相似文献   

15.
Intermittent saltation   总被引:11,自引:0,他引:11  
During a typical wind erosion event, large variations in wind strength produce temporal variations in saltation activity. The focus of this paper is on a special type of unsteady behaviour - intermittent saltation - a process characterized by bursts of blowing soil interspersed with periods of inactivity. We report here measurements from a field study designed to measure intermittent saltation during three separate 1-h periods. Our measurements show that natural wind erosion events consist of intermittent bursts of blowing soil often occupying a small fraction of the total time. We have managed to describe the level of intermittency by a simple and universal mathematical expression. We find that the level of intermittency is governed by whether typical wind fluctuations span the gap between the mean wind speed and threshold wind speed. We propose a nondimensional number which expresses the ratio of these velocity scales, called the relative wind strength, and find that the level of intermittency can be described by a simple distribution function of the relative wind strength.  相似文献   

16.
Volatilization properties of gasoline components in soils   总被引:1,自引:0,他引:1  
Understanding the volatilization properties of gasoline components in soils is of fundamental importance in the field of geoenvironments. A series of experiments were performed to investigate the effects of temperature, soil water content, soil organic matter content, as well as mean particle size on volatilization rate of total petroleum hydrocarbons (TPH) and the paraffin (n-paraffin and isoparaffin), olefin, naphthene, and aromatic (PONA) components in four typical Japanese soils. The results of this study can be summarized as follows. (1) Volatilization rate of gasoline in a soil is concentration-dependent; extensive volatilization occurs above a certain threshold, while volatilization becomes very slow below this threshold. (2) Compared to other factors, temperature and soil organic matter content have greater effects on volatilization rate of gasoline in soils. The volatilization rate is proportional to temperature, but inversely related to soil organic matter content. (3) The characteristics of time-dependent decreases of TPH and PONA components in soils are similar. The volatilization rate of olefin is higher than those of other components. In addition, volatilization of olefin is also more sensitive to temperature as well as organic matter content.  相似文献   

17.
Erodibility indices are important parameter that can be used to describe the intensity of the soil erosion problems causing environmental concerns. These indices are convenient to estimate the susceptibility to erosion where physical measurement is very difficult. Sikkim is one such state in India where measuring erosion is a tedious process due to its difficult and inaccessible terrain conditions. In the present study, spatial variation of susceptibility of erosion in East district of Sikkim was estimated by using indices such as clay ratio, dispersion ratio, mod clay ratio and critical level of soil organic matter. The result indicates soils in East district are mostly dominated by sand particles (40.5–81.06%) in majority of soil samples. The dispersion ratio values in most of the soils were >15% indicating very high vulnerability to erosion. The values of clay ratio (3.44–9), modified clay ratio (mean value of 6.9) and critical level of soil organic matter content (<5%) indicated high susceptibility to erosion. The trends of indices were generated by IDW interpolation method to understand the spatial variation of the susceptibility to erosion. The interpolated maps were overlaid on subwatershed maps to prioritize the subwatershed for planning treatment measures.  相似文献   

18.
The watershed of the Ningxia–Inner Mongolia reach of the Yellow River suffers serious wind erosion hazards and the areas with high wind erosion probabilities need to be identified to help in the building of the correct wind-sand blown hazard protection systems. In this study, the Integrated Wind-Erosion Modelling System model and Normalized Difference Vegetation Index (NDVI) data set were used to identify the distributions of threshold wind speeds and wind erosion occurrence probabilities. Through field observations, the relationships among NDVI, vegetation cover, frontal area (lateral cover), roughness length, and threshold friction velocity were obtained. Then, using these relationships, the spatial distributions of threshold wind speeds for wind erosion at a height of 10 m for the different months were mapped. The results show that the threshold wind speed ranged from 7.91 to 35.7 m/s. Based on the threshold wind speed distributions, the wind erosion occurrence probabilities of different months were calculated according to the current wind speed. The results show that the distributions of wind erosion occurrence probabilities and threshold wind speeds were related to each other. The resulting maps of threshold wind speeds and wind erosion occurrence probabilities would help environmental and agricultural researchers in determining some strategies for mitigating or adapting from wind erosion hazards.  相似文献   

19.
The reuse of nutrients and organic matter in wastewater sludge via on agricultural lands application is a desirable goal. However, trace or heavy metals present in sludge pose the risk of human or phytotoxicity from land application. The aim of this research is possibility of ground water pollution of south of Tehran because of ten years irrigation with Ni, Cd and Pb borne waste water. For this purpose, 6 soil samples from southern parts of Tehran city and 2 ones from Zanjan city without lime and organic matter were selected. The soils differed in their texture from sandy to clayey. Each soil sample in duplicate and uniformly packed into PVC columns. Soil samples were irrigated with Cd, Pb and Ni-added wastewater. After irrigating, the columns were cut and the soils separated from sectioned pieces and their heavy metal concentrations (Pb, Cd and Ni) were measured by atomic absorption spectrophotometer by use of HNO3 4N solution. Because of high sorption capacity of these elements by soils, these metals were accumulated in surface layer of the soils. Movement in the soils without lime and organic matter were as low as other samples. Ni has had the most accumulation or the least vertical movement, and Pb the opposite ones.  相似文献   

20.
The aim of this study was to investigate the influences of land use, parent materials (rock types) and soil properties on total arsenic and cadmium concentrations in the agricultural soils. A total of 87 surface (0–20 cm) soil samples were collected from four types of land use: irrigated farming, rangeland, dry farming and orchard. The average concentrations of the analyzed elements in topsoil were 84.426 mg As/kg and 3.289 mg Cd/kg. In addition, the pH, organic matter (OM), cation exchange capacity (CEC), soil grain sizes and CaCO3 were measured for each sample. The results indicated that land use had no significant effect on As and Cd concentrations. Our findings indicated that the Cd concentrations were influenced by bedrock composition, but for As there were no significant differences between various soil parent materials (bedrocks). Soil pollution was assessed on the basis of pollution index (PI), comprehensive pollution index (P n ) and geoaccumulation index (I geo). Calculated indices showed high-pollution levels for As and low- to moderate-pollution levels for Cd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号