首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The present study aims to investigate the relationships between several soil parameters (texture, organic matter and CaCO3 content) and the threshold wind velocity and erodibility of different soil types. Our aim was to determine the role of these soil parameters play in soil loss due to wind erosion and also to statistically evaluate these correlations. The erodibility studies were carried out in wind tunnel experiments, and the resulting data were analysed with multiple regression analysis and the Kruskal-Wallis test. We found that both the threshold wind speed and the erodibility of soils were mostly determined by silt fraction (0.05–0.02 mm), while sand fractions had a lesser effect on it. Our experiences with organic matter and CaCO3 similar, i.e. in spite of their correlation with the erosion, their contribution was not significant in the multivariate regression model. Consequently, based on mechanical composition of soils, one can predict threshold wind velocity and erodibility of soils.  相似文献   

2.
Meng  Hao  Shu  Shuang  Gao  Yufeng  He  Jia  Wan  Yukuai 《Acta Geotechnica》2021,16(12):4045-4059

Kitchen waste and wind erosion are two worldwide environmental concerns. This study investigated the feasibility of using kitchen waste for Sporosarcina pasteurii cultivation and its application in wind erosion control of desert soil via microbially induced carbonate precipitation (MICP). Enzymatic hydrolysis was adopted to improve the release and recovery of protein in kitchen waste for subsequent microorganism production. After conditions optimized, the maximum biomass concentration (OD600) and urease activity of Sporosarcina pasteurii in the kitchen waste-based medium reached 4.19, and 14.32 mM urea min?1, respectively, which were comparable to those obtained in conventional standard media. The harvested Sporosarcina pasteurii was then used to catalyze the precipitation of calcium carbonate in the desert soil, and its performance in wind erosion control was evaluated through wind tunnel tests. The microbially mediated calcium carbonate could significantly decrease wind erosion loss of the desert soil even after 12 wet–dry or freeze–thaw cycles. Scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX) confirmed the bridge effect of calcium carbonate crystals in the soil matrix. The kitchen waste, as a cost-effective alternative nutrient for bacterial cultivation and carbonate precipitation, showed great potential for large-scale applications in wind erosion control of desert soils.

  相似文献   

3.
Aeolian (wind) erosion is most common in arid regions. The resulted emission of PM10 (particulate matter that is smaller than 10 μm in diameter) from the soil has many environmental and socioeconomic consequences such as soil degradation and air pollution. Topsoil resistance to aeolian transport highly depends on the surface composition. The study aim was to examine variations in PM10 fluxes in a desert-dust source due to surface composition and topsoil disturbance. Aeolian field experiments using a boundary layer wind tunnel alongside soil composition analysis were integrated in this study. The results show variations in PM10 fluxes (ranging from 9.5 to 524.6 mg m?2 min?1) in the studied area. Higher wind velocity increased significantly the PM10 fluxes in all surface compositions. A short-term natural disturbance caused changes in the aggregate soil distribution (ASD) and increased significantly PM10 emissions. Considering that PM10 contains clays, organic matter, and absorbed elements, the recorded PM10 fluxes are indicative of the potential soil loss and degradation by wind erosion in such resource-limited ecosystems. The findings have implications in modeling dust emission from a source area with complex surfaces.  相似文献   

4.
文章对近年来基于生物固土技术的防风固沙研究进行了回顾和分析。常用于防风固沙的生物过程包括基于微生物或酶诱导碳酸钙沉积(MICP或EICP)的矿化固土技术,加入黄原胶等生物高聚物作为辅助剂,可获得更好的固土效果。土壤风蚀过程中,除了风力本身,风携带的跃移颗粒对土的撞击,也是侵蚀破坏的重要因素,这在生物固化土风蚀试验中体现明显。生物固化防风固沙的处理过程简单易行,以尿素和钙盐作为处理材料,用细菌或脲酶作为催化诱导媒介,对土体进行单遍喷洒处理即可获得很好的抗风效果。室内抗风试验中,将风蚀速率与临界起动风速两个指标结合是较为合理的评估方法。在室内和现场条件下,表面贯入强度测试可用来快速测定处理效果和抗风性能。目前的现场试验研究表明,生物固化土中植物可以生长,但是极端条件下生长受限。为了将该方法推向实用,需要从多重侵蚀因子作用下的抗风力侵蚀能力、生态恢复能力和现场施工技术等方面进一步研究探索。  相似文献   

5.
The reuse of waste materials as soil additives could be a welcome development in soil remediation. The mobility of Cd, Pb and As in a contaminated soil was investigated using natural and calcined poultry wastes (eggshell and chicken bone), CaCO3 and CaO at different application rates (0, 1, 3 and 5 %). The chemical composition accompanied with mineralogical composition indicated that CaCO3 and CaO were the major components in natural and calcined eggshells, respectively, while hydroxyapatite (HAP) dominated the natural and calcined chicken bones. The results showed that soil pH tended to increase in response to increasing application rates of all soil additives. The effectiveness of the additives in reducing Cd, Pb and As mobility was assessed by means of chemical extractions with 0.1 N HCl for Cd and Pb or 1 N HCl for As, according to Korean Standard Test (KST) method. Both calcined eggshell and chicken bone were equally effective with CaO or CaCO3 in reducing the concentration of 0.1 N HCl-extractable Cd from 6.17 mg kg?1 to below warning level of 1.5 mg kg?1, especially at the highest application rate. The application of calcined eggshell, CaO and CaCO3 also decreased the concentration of 0.1 N HCl-extractable Pb from 1,012 mg kg?1 to below warning level of 100 mg kg?1. The Pb concentration decreased significantly with an increasing application rate of chicken bone, but remained above warning level even at the highest application rate. On the contrary, natural and calcined chicken bones led to a significant increase in the mobility of As when compared with the control soil. These findings illustrate that calcined eggshell in particular is equally effective as pure chemical additives in stabilizing Cd and Pb in a contaminated agricultural soil. The presence of As in metal-contaminated soils should be taken into consideration when applying phosphate-containing materials as soil additives, because phosphate can compete with arsenate on adsorption sites and result in As mobilization.  相似文献   

6.
Optimization of calcium-based bioclogging and biocementation of sand   总被引:1,自引:0,他引:1  
Bioclogging and biocementation can be used to improve the geotechnical properties of sand. These processes can be performed by adsorption of urease-producing bacterial cells on the sand grain surfaces, which is followed by crystallization of calcite produced from the calcium salt and urea solution due to bacterial hydrolysis of urea. In this paper, the effect of intact cell suspension of Bacillus sp. strain VS1, suspension of the washed bacterial cells, and culture liquid without bacterial cells on microbially induced calcite precipitation in sand was studied. The test results showed that adsorption/retention of urease activity on sand treated with washed cells of Bacillus sp. strain VS1 was 5–8 times higher than that treated with culture liquid. The unconfined compressive strength of sand treated with the suspension of washed cells was 1.7 times higher than that treated with culture liquid. This difference could be due to fast inactivation of urease by protease which was present in the culture liquid. The adsorption of bacterial cells on sand pretreated with calcium, aluminum, or ferric salts was 29–37 % higher as compared with that without pretreatment. The permeability of sand varied with the content of precipitated calcium. For bioclogging of sand, the content of precipitated calcium had to be 1.3 % (w/w) or higher. The shear strength of biotreated sand was also dependent on the content of precipitated calcium. To achieve an unconfined compressive strength of 1.5 MPa or higher, the content of precipitated calcium in the treated sand had to be 4.2 % (w/w) or higher. These data can be used as the reference values for geotechnical applications such as bioclogging for reducing the permeability of sand and biocementation for increasing the shear strength of soil.  相似文献   

7.
The unique natural environment of the Qinghai–Tibet Plateau has led to the development of widespread permafrost and desertification. However, the relationship between desertification and permafrost is rarely explored. Here we study the interaction between desertification and permafrost using a combination of simulations, experiments, and field observations in the Qinghai–Tibet Plateau. Results show the cohesion values of the test samples that experienced 1, 3, and 6 freeze–thaw cycle times decreased by 65.9, 46.0, and 35.5 %, respectively, and the compressive strength of the test samples decreased by 69.6, 39.6, and 34.7 %, respectively, compared to the test samples that did not experience freeze–thaw cycles. The wind erosion rate of the test block eroded by sand-bearing wind was far larger than that by clean wind under the same conditions; the maximum value was 50 times higher than that by clean wind. The wind erosion rate increased with an increasing number of freeze–thaw cycles, water content, and freeze–thaw temperature difference. The ground temperature below the sand layer was decreased, compared to the natural ground surface that without sand layer covering, the drop amplitude of yearly average temperature was roughly maintained at 0.2 °C below the thick sand layer (1.2 m), and the maximum drop of yearly average temperature was 0.7 °C below the thin sand layer (0.1 m). Therefore, with the presence of water, the destruction of surface soil structure caused by repeated and fierce freeze–thaw actions is the main cause of wind erosion desertification in the permafrost region of Qinghai–Tibet Plateau, and sand-bearing wind is the main dynamic force. The development of eolian sand deposits after the desertification emerges. As a result, the properties of the underlying surface are altered. Due to the high reflectivity and poor heat conductivity of the sand layer, the heat exchange of the land–atmosphere system is impeded, causing a drop in the ground temperature of the underlying permafrost that subsequently preserves the permafrost.  相似文献   

8.
Monitoring of soil properties is a significant process and plays an important role about how it can be used sustainably. This study was performed in a local area in Sawda Mountains KSA to map out some soil properties and assess their variability within the area under different land cover. Soil sampling was carried out in four different sites using the grid sampling technique. Ten samples were collected in each location within a 10 by 10 km area; soil was sampled at 0–30-cm depth. The soil samples were air-dried, crushed, and passed through a 2-mm sieve before analyzing it for pH, EC, CaCO3, organic matter contents, and bulk density. The thematic maps of these characteristics were produced using ArcGIS 10.0 software. Finally, the land degradation was assessed using three factors: soil salinization, compaction, and edibility. The obtained results showed that the high risk of soil compaction, salinization, and erodibility occupied an area 5.6 ha (17.5%), 3.7 ha (11.54%), and 8.1 ha (25.3%), respectively, in the surface soil layer. The land degradation risk in the study area due to salinization was low to high; however, the degree of soil compaction was moderate to very high. The K-factor (soil erodibility) in the area ranged between 0.1 and 0.35 Mg h MJ?1 mm?1, and most of the study area was located in moderate to high erodibility classes.  相似文献   

9.
Estimation of spatial extent of soil erosion, one of the most serious forms of land degradation, is critical because soil erosion has serious implications on soil fertility, water ecosystem, crop productivity and landscape beauty. The primary objective of the current study was to assess and map the soil erosion intensity and sedimentation yield of Potohar region of Pakistan. Potohar is the rainfed region with truncated and complex topography lying at the top of the Indus Basin, the world’s largest irrigation networks of canals and barrages. Spatially explicit Revised Universal Soil Loss Equation (RUSLE) Model integrated with Remote Sensing-GIS techniques was used for detecting/mapping of erosion prone areas and quantification of soil losses. The results show that the Potohar region is highly susceptible to soil erosion with an average annual soil loss of 19 tons ha?1 year?1 of which the maximum erosion (70–208 tons ha?1 year?1) was near the river channels and hilly areas. The sediment yield due to the erosion is as high as 148 tons ha?1 year?1 with an average of 4.3 tons ha?1 year?1. It was found that 2.06% of the total area falls under severe soil erosion, 13.34% under high erosion, 15.35% under moderate soil erosion while 69.25% of the area lies in the low (tolerable) soil erosion. Chakwal and Jhelum districts of the region are seriously affected by erosion owing to their topography and soil properties. The information generated in this study is a step forward towards proper planning and implementation of strategies to control the erosion and for protection of natural resources. It is, hence, necessary that suitable water harvesting structures be made to control water to prevent soil erosion and provision of water in the lean season in this region. Tree plantation and other erosion control practices such as strip cropping can also minimize soil erosion in this region.  相似文献   

10.
This study investigates the performance of artificial materials used for erosion control on steep slopes under high rainfall intensity. Soil samples were laid on a 300 × 100 cm platform inclined at either 35° or 45°, after which the soil was covered with various materials and subjected to a rainfall intensity of 130 mm/h for an hour. A wooden-block net covered with a jute net resulted in the greatest erosion resistance, providing 83% resistance at 35° and 76% at 45°. On the 35° slope, the artificial materials showed relatively good erosion resistance. As the slope was raised to 45°, some of the materials did not attach effectively to the soil surface. Thus, the runoff velocity increased and erosion became severe. For optimum erosion resistance, the material used to protect soil must attach to the soil surface well and have structural properties, such as a high coverage ratio to reduce the impact of rainfall on the soil and uniformly distributed transverse structures to reduce runoff energy and trap soil.  相似文献   

11.
Assessing desertification by using soil indices   总被引:1,自引:0,他引:1  
Desertification generally refers to land degradation in arid, semiarid, and dry semi-humid climatic zones. It involves five principal processes: vegetation degradation, water erosion, wind erosion, salinization and waterlogging, and soil crusting and compaction. The aim of this study is assessing desertification using soil criteria. For this purpose, nine indices including sodium absorption ratio (SAR), soil gypsum percentage, soil texture, the content of HCO3 ?, the percentage of the organic matter, electrical conductivity (EC), pH, the content of the soil sodium, and chloride were used. The soil samples were taken in the north of Zayandeh-Rood River in Isfahan province of Iran, using soil data randomly sampled in a depth of 0–20 cm. After assessing the normality of the samples using Kolmogorov-Smirnov test, indices were imported into GIS environment and interpolated with IDW and normal and discrete kriging methods for delineating soil characteristics maps based on MEDALUS model. In this model, the data were firstly changed from 100 to 200. Thus 100 and 200 are estimated as the best and worst quality, respectively. Then the final map of soil criteria has been created by geometric mean of its indicators. The results showed that the maximum area is related to the medium class of desertification and is equal to 44,746 ha. The areas of severe and very severe classes of desertification are equal to 30,949 and 351 ha, respectively. The results also revealed that the indices of the organic matter and soil gypsum percentage are the most influential indices which affect desertification phenomenon.  相似文献   

12.
The use of machinery in vineyards is increasing soil compaction and erosion. However, there is a lack of information about the impacts of different management practices on soil conditions of vineyards. Therefore, the aim of this study was to assess soil compaction in Croatian vineyards under four different management systems: no-tillage (NT) system, conventional tillage (CT), yearly inversed grass covered (INV-GC) and tillage managed (INV-T) treatments. Four key top-soil (0–20 cm) parameters were assessed in the different land uses: bulk density (BD), penetration resistance (PR), soil water content (SWC) and carbon dioxide (CO2) fluxes. Tractor traffic increased the BD and PR in all treatments, with exception of CT treatment, as consequence of tillage. SWC showed higher values in INV-GC treatment during the dry period; meanwhile, it was similar during the wet season in every management type. Lower CO2 fluxes were found in INV-GC and NT than in the CT and INV-T treatments.  相似文献   

13.
Haloxylon ammodendron Bge (C.A. Mey.) is a dominant shrub species in the Gurbantonggut Desert and plays an important role in preventing wind erosion and combating desertification, typically by developing fertile islands in desert ecosystems; however, such islands often depend on the scales. An experiment was conducted to determine the scale dependence for the soil spatial heterogeneity of H. ammodendron in the Gurbantonggut Desert using the soil pH, electrical conductivity (EC), soil organic carbon (SOC), and total nitrogen (TN). The results showed that the soil EC, SOC and TN were significantly higher at the individual scale than the population scale. Moreover, the coefficients of variation (CV %) of the soil parameters at the individual scale were greater than they were at the population scale, with all except for pH (CV = 4.35 % for individual scale and CV = 2.87 % for population scale) presenting a moderate degree of variability (10 % < CV < 100 %). A geostatistical analysis revealed a strong spatial dependence [C 0 /(C 0 + C) < 25 %] within the distance of ranges for the tested parameters at both scales. The kriging interpolation results presented significant accumulation of soil SOC and TN around the shrub center and formed a significant “fertile island” at the individual scale, whereas the soil EC was much lower at the shrub center. At the population scale, patch fragments of the soil chemical properties were observed; however, not all individuals presented significant fertile islands or salt islands, and the soil EC presented a similar distribution as SOC and TN. These differences suggested that different mechanisms controlled the spatial distribution of soil minerals at the two scales and that the spatial heterogeneities are scale-dependent in a desert ecosystem.  相似文献   

14.
Reaction rims of dolomite (CaMg[CO3]2) were produced by solid-state reactions at the contacts of oriented calcite (CaCO3) and magnesite (MgCO3) single crystals at 400 MPa pressure, 750–850 °C temperature, and 3–146 h annealing time to determine the reaction kinetics. The dolomite reaction rims show two different microstructural domains. Elongated palisades of dolomite grew perpendicular into the MgCO3 interface with length ranging from about 6 to 41 µm. At the same time, a 5–71 µm wide rim of equiaxed granular dolomite grew at the contact with CaCO3. Platinum markers showed that the original interface is located at the boundary between the granular and palisade-forming dolomite. In addition to dolomite, a 12–80 µm thick magnesio-calcite layer formed between the dolomite reaction rims and the calcite single crystals. All reaction products show at least an axiotactic crystallographic relationship with respect to calcite reactant, while full topotaxy to calcite prevails within the granular dolomite and magnesio-calcite. Dolomite grains frequently exhibit growth twins characterized by a rotation of 180° around one of the $[11\bar{2}0]$ equivalent axis. From mass balance considerations, it is inferred that the reaction rim of dolomite grew by counter diffusion of MgO and CaO. Assuming an Arrhenius-type temperature dependence, activation energies for diffusion of CaO and MgO are E a (CaO) = 192 ± 54 kJ/mol and E a (MgO) = 198 ± 44 kJ/mol, respectively.  相似文献   

15.
The aim of this study was to investigate the influences of land use, parent materials (rock types) and soil properties on total arsenic and cadmium concentrations in the agricultural soils. A total of 87 surface (0–20 cm) soil samples were collected from four types of land use: irrigated farming, rangeland, dry farming and orchard. The average concentrations of the analyzed elements in topsoil were 84.426 mg As/kg and 3.289 mg Cd/kg. In addition, the pH, organic matter (OM), cation exchange capacity (CEC), soil grain sizes and CaCO3 were measured for each sample. The results indicated that land use had no significant effect on As and Cd concentrations. Our findings indicated that the Cd concentrations were influenced by bedrock composition, but for As there were no significant differences between various soil parent materials (bedrocks). Soil pollution was assessed on the basis of pollution index (PI), comprehensive pollution index (P n ) and geoaccumulation index (I geo). Calculated indices showed high-pollution levels for As and low- to moderate-pollution levels for Cd.  相似文献   

16.
Different bacterial and fungal strains, isolated from petroleum hydrocarbon-contaminated soil, were tested, in isolation as well as in combination, for their ability to degrade total petroleum hydrocarbon (TPH) in soil samples spiked with crude oil (2, 5 or 10 %, w/w) for 30 days. The selected combination of bacterial and fungal isolates, i.e., Pseudomonas stutzeri BP10 and Aspergillus niger PS9, exhibited the highest efficiency of TPH degradation (46.7 %) in soil spiked with 2 % crude oil under control condition. Further, when this combination was applied under natural condition in soil spiked with 2 % (w/w) crude oil along with inorganic fertilizers (NPK) and different bulking agents such as rice husk, sugarcane, vermicompost or coconut coir, the percent degradation of TPH was found to be maximum (82.3 %) due to the presence of inorganic fertilizers and rice husk as bulking agent. Further, results showed that the presence of NPK and bulking agents induced the activity of degradative enzymes, such as catalase (0.718 m mol H2O2 g?1), laccase (0.77 µmol g?1), dehydrogenase (37.5 µg g?1 h?1), catechol 1, 2 dioxygenase (276.11 µ mol g?1) and catechol 2, 3 dioxygenase (15.15 µ mol g?1) as compared to control (without bioaugmentation). It was inferred that the selected combination microbes along with biostimulants could accentuate the crude oil degradation as evident from the biostimulant-induced enhanced activity of degradative enzymes.  相似文献   

17.
The present analysis adjusts previous estimates of global ocean CaCO3 production rates substantially upward, to 133 × 1012 mol yr?1 plankton production and 42 × 1012 mol yr?1 shelf benthos production. The plankton adjustment is consistent with recent satellite-based estimates; the benthos adjustment includes primarily an upward adjustment of CaCO3 production on so-called carbonate-poor sedimentary shelves and secondarily pays greater attention to high CaCO3 mass (calcimass) and turnover of shelf communities on temperate and polar shelves. Estimated CaCO3 sediment accumulation rates remain about the same as they have been for some years: ~20 × 1012 mol yr?1 on shelves and 11 × 1012 mol yr?1 in the deep ocean. The differences between production and accumulation of calcareous materials call for dissolution of ~22 × 1012 mol yr?1 (~50 %) of shelf benthonic carbonate production and 122 × 1012 mol yr?1 (>90 %) of planktonic production. Most CaCO3 production, whether planktonic or benthonic, is assumed to take place in water depths of <100 m, while most dissolution is assumed to occur below this depth. The molar ratio of CO2 release to CaCO3 precipitation (CO2↑/CaCO3↓) is <1.0 and varies with depth. This ratio, Ψ, is presently about 0.66 in surface seawater and 0.85 in ocean waters deeper than about 1000 m. The net flux of CO2 associated with CaCO3 reactions in the global ocean in late preindustrial time is estimated to be an apparent influx from the atmosphere to the ocean, of +7 × 1012 mol C yr?1, at a time scale of 102–103 years. The CaCO3-mediated influx of CO2 is approximately offset by CO2 release from organic C oxidation in the water column. Continuing ocean acidification will have effects on CaCO3 and organic C metabolic responses to the oceanic inorganic C cycle, although those responses remain poorly quantified.  相似文献   

18.
The effect of glucose, chicken manure, and filter mud on the ammonium and nitrate concentrations, ammonia-oxidizing bacterial community and bacterial community in latosolic red soils during the incubation of microcosms was investigated. The soil nitrate concentration was significantly lower in the glucose-treated soil than in the filter mud or chicken manure-treated soil from days 2 and 5 to 21 of incubation. The ammonia-oxidizing bacteria community composition, measured by terminal restriction fragment length polymorphism analysis, was different among the treatments 9 days after incubation, suggesting that the control soil without external fertilization had a low 283-bp (Nitrosospira) fragment relative abundance (27 %) compared with the glucose-treated (62 %), filter mud (73 %) and chicken manure (78 %) samples. Additionally, 491-bp fragments (Nitrosomonas) were detected in all the soil treatments except for the control soil, and 48-bp fragments (from different Nitrosomonas) were detected in the chicken manure-treated soil. The bacterial community structure was markedly changed in the glucose-treated soil on day 9 and in the filter mud-treated soil on day 31, indicating that the effect of filter mud on the bacterial community is delayed compared to the effect of glucose. The chicken manure-treated soil showed less change, similar to that of the control soil. Glucose fertilization greatly increased the soil bacterial abundance and functional diversity; however, the chicken manure and filter mud did not stimulate soil bacterial activity on day 9. These results indicated that nitrification may have been somewhat suppressed in the glucose-treated soils, which was possibly related to the improving ammonia-oxidizing bacterial community, bacterial community and activity via the available carbon application. The filter manure and chicken manure treatments demonstrated fewer effects. These results suggest that organic carbon quality, e.g., increasing the available carbon, regulates the nitrification process and is beneficial to reducing soil nitrogen losses.  相似文献   

19.
This study evaluated the efficiency of naturally occurring lime-based waste materials (oyster shells, eggshells, and mussel shells) on immobilization of selected heavy metals (Cd and Pb) and a metalloid (As) in a contaminated agricultural soil. A 30-day incubation experiment was performed using soil mixture with natural liming materials or calcite (CaCO3) at 0, 1, 3, 5, and 10 wt %. Soil biochemical properties including pH, electrical conductivity (EC), exchangeable cations, organic matter (OM), total nitrogen (TN), microbial populations, and enzyme activities were determined to ensure the changes in soil quality during incubation. The results showed that the application of natural liming materials led to an increase in soil pH similar to that of CaCO3. Soil concentrations of Cd, Pb, and As extracted with 0.1 or 1 M HCl, and diethylene triamine pentacetic acid (DTPA) were decreased significantly after adding liming materials, accompanied by increased microbial population and enzyme activities of dehydrogenase, phosphatase, β-glucosidase, and arylsulfatase. Additionally, eggshells and mussel shells induced significant increases in OM and TN in the soil. Application of natural liming materials offers a cost-effective way to immobilize heavy metals and metalloids in soils.  相似文献   

20.
Formation and development of salt crusts on soil surfaces   总被引:2,自引:0,他引:2  
The salt concentration gradually increases at the soil free surface when the evaporation rate exceeds the diffusive counter transport. Eventually, salt precipitates and crystals form a porous sodium chloride crust with a porosity of 0.43 ± 0.14. After detaching from soils, the salt crust still experiences water condensation and salt deliquescence at the bottom, brine transport across the crust driven by the humidity gradient, and continued air-side precipitation. This transport mechanism allows salt crust migration away from the soil surface at a rate of 5 μm/h forming salt domes above soil surfaces. The surface characteristics of mineral substrates and the evaporation rate affect the morphology and the crystal size of precipitated salt. In particular, substrate hydrophobicity and low evaporation rate suppress salt spreading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号