首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Atmospheric hydroxyl (OH), hydroperoxy (HO2), total peroxy (HO2 and organic peroxy radicals, RO2) mixing ratios and OH reactivity (first order OH loss rate) were measured at a rural site in central Pennsylvania during May and June 2002. OH and HO2 mixing ratios were measured with laser induced fluorescence (LIF); HO2 + RO2 mixing ratios were measured with chemical ionization mass spectrometry (CIMS). The daytime maximum mixing ratios were up to 0.6 parts per trillion by volume (pptv) for OH, 30 pptv for HO2, and 45 pptv for HO2 + RO2. A parameterized RACM (Regional Atmospheric Chemistry Mechanism) box model was used to predict steady state OH, HO2 and HO2 + RO2 concentrations by constraining the model to the measured OH reactivity and previously measured volatile organic compound (VOC) distributions. The averaged model calculations are generally in good agreement with the observations. For OH, the model matched the observations for day and night, with an average observed-to-modeled ratio of 0.80. In previous studies such as PROPHET98, nighttime NO was near 0 pptv and observed nighttime OH was significantly larger than modeled OH. In this study, nighttime observed and modeled OH agree to within measurement and model uncertainties because the main source of the nighttime OH was the reaction HO2 + NO → OH + NO2, with the NO being continually emitted from the surrounding fertilized corn field. The observed-to-modeled ratio for HO2 is 1.0 on average, although daytime HO2 is underpredicted by a factor of 1.2 and nighttime HO2 is over-predicted by a factor of ∼2. The average measured and modeled HO2 + RO2 agree well during daytime, but the modeled value is about twice the measured value during nighttime. While measured HO2 + RO2 values agree with modeled values for NO mixing ratios less than a few parts per billion by volume (ppbv), it increases substantially above the expected value for NO greater than a few ppbv. This observation of the higher-than-expected HO2 + RO2 with the CIMS technique confirms the observed increase of HO2 above expected values at higher NO mixing ratios in HO2 measurements with the LIF technique. The maximum instantaneous O3 production rate calculated from HO2 and RO2 reactions with NO was as high as 10–15 ppb h−1 at midday; the total daily O3 production varied from 13 to 113 ppbv d−1 and was 48 ppbv d−1 on average during this campaign.  相似文献   

2.
Experiments were conducted during the growing season of 1993 at a mixed deciduous forest in southern Ontario, Canada to investigate the atmospheric abundance of hydrocarbons from phytogenic origins, and to measure emission rates from foliage of deciduous trees. The most abundant phytogenic chemical species found in the ambient air were isoprene and the monoterpenes -pinene and -pinene. Prior to leaf-bud break during spring, ambient hydrocarbon mixing ratios above the forest remained barely above instrument detection limit (20 parts per trillion), but they became abundant during the latter part of the growing season. Peak isoprene mixing ratios reached nearly 10 parts per billion (ppbv) during mid-growing season while maximum monoterpene mixing ratios were close to 2 ppbv. Both isoprene and monoterpene mixing ratios exhibited marked diurnal variations. Typical isoprene mixing ratios were highest during mid-afternoon and were lowest during nighttime. Peak isoprene mixing ratios coincided with maximum canopy temperature. The diurnal pattern of ambient isoprene mixing ratio was closely linked to the local emissions from foliage. Isoprene emission rates from foliage were measured by enclosing branches of trees inside environment-controlled cuvette systems and measuring the gas mixing ratio difference between cuvette inlet and outlet airstream. Isoprene emissions depended on tree species, foliage ontogeny, and environmental factors such as foliage temperature and intercepted photosynthetically active radiation (PAR). For instance, young (<1 month old) aspen leaves released approximately 80 times less isoprene than mature (>3 months old) leaves. During the latter part of the growing season the amount of carbon released back to the atmosphere as isoprene by big-tooth and trembling aspen leaves accounted for approximately 2% of the photosynthetically fixed carbon. Significant isoprene mixing ratio gradients existed between the forest crown and at twice canopy height above the ground. The gradient diffusion approach coupled with similarity theory was used to estimate canopy isoprene flux densities. These canopy fluxes compared favorably with values obtained from a multilayered canopy model that utilized locally measured plant microclimate, biomass distribution and leaf isoprene emission rate data. Modeled isoprene fluxes were approximately 30% higher compared to measured fluxes. Further comparisons between measured and modeled canopy biogenic hydrocarbon flux densities are required to assess uncertainties in modeling systems that provide inventories of biogenic hydrocarbons.  相似文献   

3.
Summary Non-uniform mixing of gas-phase trace species may limit the accuracy of the predictions of Eulerian transport/transformation models if the chemical reactions are rapid enough to be diffusion limited. If a reaction is diffusion limited, its average reaction rate might not be accurately represented by those models that assume instantaneous uniform mixing. One possible consequence of this artificial dilution is the overprediction of ozone and hydroxyl radicals. We have determined which reactions in the Regional Acid Deposition Model Gas-Phase Chemical Mechanism (Stockwell et al., 1990) are diffusion limited for a typical atmospheric condition through the calculation of Damköhler numbers. Damköhler numbers are defined to be the ratio of the diffusion mixing time to the chemical reaction time for a given chemical reaction (McRae et al., 1982; Hill, 1976). The reactions of hydroxyl radicals and the reactions of peroxy radicals with NO are diffusion limited under typical atmospheric conditions. Both sets of reactions are especially significant because NOx and organic species strongly affect ozone and hydroxyl radical concentrations. It is suggested that Damköhler numbers could be used to help determine the placement of Eulerian model boundaries and to determine model grid structure.With 2 Figures  相似文献   

4.
Summer and winter campaigns for the chemical compositions and sources of nonmethane hydrocarbons(NMHCs)and oxygenated volatile organic compounds(OVOCs)were conducted in Xi’an.Data from 57 photochemical assessment monitoring stations for NMHCs and 20 OVOC species were analyzed.Significant seasonal differences were noted for total VOC(TVOC,NMHCs and OVOCs)concentrations and compositions.The campaign-average TVOC concentrations in winter(85.3±60.6 ppbv)were almost twice those in summer(47.2±31.6 ppbv).Alkanes and OVOCs were the most abundant category in winter and summer,respectively.NMHCs,but not OVOCs,had significantly higher levels on weekends than on weekdays.Total ozone formation potential was higher in summer than in winter(by 50%)because of the high concentrations of alkenes(particularly isoprene),high temperature,and high solar radiation levels in summer.The Hybrid Environmental Receptor Model(HERM)was used to conduct source apportionment for atmospheric TVOCs in winter and summer,with excellent accuracy.HERM demonstrated its suitability in a situation where only partial source profile data were available.The HERM results indicated significantly different seasonal source contributions to TVOCs in Xi’an.In particular,coal and biomass burning had contributions greater than half in winter(53.4%),whereas traffic sources were prevalent in summer(53.1%).This study’s results highlight the need for targeted and adjustable VOC control measures that account for seasonal differences in Xi’an;such measures should target not only the severe problem with VOC pollution but also the problem of consequent secondary pollution(e.g.,from ozone and secondary organic aerosols).  相似文献   

5.
A detailed photochemical box model was used to investigate the key reaction pathways between OH, HO2 and RO2 radicals during the summer and winter PUMA field campaigns in the urban city-centre of Birmingham in the UK. The model employed the most recent version of the Master Chemical Mechanism and was constrained to 15-minute average measurements of long-lived species determined in situ at the site. The results showed that in the summer, OH initiation was dominated by the reactions of ozone with alkenes, nitrous acid (HONO) photolysis and the reaction of excited oxygen atoms atoms with water. In the winter, ozone+alkene reactions were the primary initiation route, with a minor contribution from HONO photolysis. Photolysis of aldehydes was the main initiation route for HO2, in both summer and winter. RO2 initiation was dominated by the photolysis of aldehydes in the summer with a smaller contribution from ozone+alkenes, a situation that was reversed in the winter. At night, ozone+alkene reactions were the main radical source. Termination, under all conditions, primarily involved reactions with NO (OH) and NO2 (OH and RCO3). These results demonstrate the importance of ozone+alkene reactions in urban atmospheres, particularly when photolysis reactions were less important during winter and at nighttime. The implications for urban atmospheric chemistry are discussed.  相似文献   

6.
Three online coupled chemical transport model simulations were analyzed for three summer months of 2015 in Poland. One of them was run with default emission inventory, the other two with NOx and VOC emissions reduced by 30%, respectively. Obtained ozone concentrations were evaluated with data from air quality measurement stations and ozone sensitivity to precursor emissions was estimated by ozone concentration differences between simulations and with the use of indicator ratios. They were calculated based on modeled mixing ratios of ozone, total reactive nitrogen and its components, nitric acid and hydrogen peroxide. The results show that the model overestimates ozone concentrations with the largest errors in the morning and evening, which is primarily related to the way vertical mixing is resolved by the model. Better model performance for ozone is achieved in rural than urban environment, as PBL and mixing mechanisms play more significant role in urban areas. Modeled ozone shows mixed sensitivity to precursor concentrations, similarly to other European regions, but indicator ratios have different values than are found in literature, particularly H2O2/HNO3 is larger than in southern Europe. However, indicator ratios often differ between locations and transition values need to be established individually for a given region.  相似文献   

7.
The chemical composition of regional background aerosols, and the time variability and sources in the Western Mediterranean are interpreted in this study. To this end 2002–2007 PM speciation data from an European Supersite for Atmospheric Aerosol Research (Montseny, MSY, located 40 km NNE of Barcelona in NE Spain) were evaluated, with these data being considered representative of regional background aerosols in the Western Mediterranean Basin. The mean PM10, PM2.5 and PM1 levels at MSY during 2002–2007 were 16, 14 and 11 µg/m3, respectively. After compiling data on regional background PM speciation from Europe to compare our data, it is evidenced that the Western Mediterranean aerosol is characterised by higher concentrations of crustal material but lower levels of OM + EC and ammonium nitrate than at central European sites. Relatively high PM2.5 concentrations due to the transport of anthropogenic aerosols (mostly carbonaceous and sulphate) from populated coastal areas were recorded, especially during winter anticyclonic episodes and summer midday PM highs (the latter associated with the transport of the breeze and the expansion of the mixing layer). Source apportionment analyses indicated that the major contributors to PM2.5 and PM10 were secondary sulphate, secondary nitrate and crustal material, whereas the higher load of the anthropogenic component in PM2.5 reflects the influence of regional (traffic and industrial) emissions. Levels of mineral, sulphate, sea spray and carbonaceous aerosols were higher in summer, whereas nitrate levels and Cl/Na were higher in winter. A considerably high OC/EC ratio (14 in summer, 10 in winter) was detected, which could be due to a combination of high biogenic emissions of secondary organic aerosol, SOA precursors, ozone levels and insolation, and intensive recirculation of aged air masses. Compared with more locally derived crustal geological dusts, African dust intrusions introduce relatively quartz-poor but clay mineral-rich silicate PM, with more kaolinitic clays from central North Africa in summer, and more smectitic clays from NW Africa in spring.  相似文献   

8.
Automobile exhaust emissions are becoming increasingly serious with the drastic increase of the number of vehicles in Beijing. In order to investigate the air pollution level and characteristics in the areas near the main traffic lines in Beijing and to identify the contributions from traffic and other sources, gaseous pollutants including NOx, CO, O3, SO2, and meteorological parameters have been monitored at a monitoring site and a contrasting site in winter and summer in 2006. The volumes of vehicles on Beiyuan Road were recorded. The average concentrations of NO, NO2, NOx, CO, O3, and SO2 at the monitoring site were 0.148 mg/m3, 0.107 mg/m3, 0.333 mg/m3, 5.110 mg/m3, 0.006 mg/m3, and 0.157 mg/m3, respectively during the sampling period in winter and 0.021 mg/m3, 0.068 mg/m3, 0.101 mg/m3, 4.170 mg/m3, 0.083 mg/m3, and 0.056 mg/m3, respectively in summer. The high concentrations of CO and O3 reflect the influence of vehicles emission near the traffic lines evidently. The higher concentrations of CO, NO and O3 in summer may indicate that the characteristics of traffic pollution were more pronounced in summer. Results of regression analysis showed that in winter the concentrations of SO2 and CO were significantly positively correlated with the emission of heating boilers at night and negatively correlated with wind speed in daytime. The concentrations of NO and NOx were negatively correlated with wind speed, positively correlated with emission of heating boilers in daytime and positively correlated with traffic density at nighttime. The concentrations of NO2 were positively correlated with the emission of heating boilers in daytime and traffic density at nighttime. In summer, the air quality at the monitoring site and the contrasting site was mainly influenced by the traffic emissions.  相似文献   

9.
Variation of 222Rn, its short-lived daughters and 212Pb concentrations in the atmosphere, and conditions of the lower atmosphere were observed simultaneously at Kamisaibara Village in Japan. The variation of 222Rn concentration and the ratio of the concentrations of 212Pb and the short-lived daughters of 222Rn during nighttime is explained by sodar echoes and temperature profiles obtained by an instrumented tethered balloon. Depths of the convective mixing layer estimated using the 222Rn concentration, using the surface sensible heat flux, and obtained by low-level sondes are compared and found to be in approximate agreement.  相似文献   

10.
Airborne measurements of volatile organic compounds (VOC) were performed overthe tropical rainforest in Surinam (0–12 km altitude,2°–7° N, 54°–58° W) using the proton transferreaction mass spectrometry (PTR-MS) technique, which allows online monitoringof compounds like isoprene, its oxidation products methyl vinyl ketone,methacrolein, tentatively identified hydroxy-isoprene-hydroperoxides, andseveral other organic compounds. Isoprene volume mixing ratios (VMR) variedfrom below the detection limit at the highest altitudes to about 7 nmol/molin the planetary boundary layer shortly before sunset. Correlations betweenisoprene and its product compounds were made for different times of day andaltitudes, with the isoprene-hydroperoxides showing the highest correlation.Model calculated mixing ratios of the isoprene oxidation products using adetailed hydrocarbon oxidation mechanism, as well as the intercomparisonmeasurement with air samples collected during the flights in canisters andlater analysed with a GC-FID, showed good agreement with the PTR-MSmeasurements, in particular at the higher mixing ratios.Low OH concentrations in the range of 1–3 × 105molecules cm-3 averaged over 24 hours were calculated due to lossof OH and HO2 in the isoprene oxidation chain, thereby stronglyenhancing the lifetime of gases in the forest boundary layer.  相似文献   

11.
Samples of interstitial air from within the snow pack on an ice floe on the Arctic Ocean were collected during the April 1994 Polar Sunrise Experiment. The concentrations of C2-C7 hydrocarbons are reported for the first time in the snow pack interstitial air. Alkane concentrations tended to be higher than concentrations in free air samples above the snow but very similar to winter measurements at various locations in the Arctic archipelago. However, ethyne concentrations in both interstitial and free air were highly correlated with ozone mixing ratios, consistent with previous demonstrations of the effects of Br atom chemistry. The analysis of total bromine within the snow pack indicate an enrichment in total Br at the interface layer between snow and free troposphere. The mixing ratios of some brominated compounds, such as CHBr3 and CHBr2Cl, are found to be higher in this top layer of snow relative to the boundary layer. Results were inconclusive due to the limited number of samples, but suggest the possible presence of active bromine in the snow pack and also that some differences exist between chemical reactions occurring in interstitial air compared to air in the boundary layer.  相似文献   

12.
By means of a three-dimensional meteorological model (MM5) and a chemical model,the distributions of tropospheric ozone and its precursors over China have been simulated in summer and winter time,16-18 August 1994 and 7-9 January 1995.The distribution of ozone over the Tibetan Plateau in summer time is deeply discussed.The simulated results indicate that thedistributions of surface ozone and NOx are in good agreement with observed results,and human activities and photochemical reactions are the main factors controlling the surface ozone and NOx concentrations.In addition,higher ozone concentrations are coincided with the air convergence,and the lower concentrations are related to the air divergence.In summer,over the Tibetan Plateau the strong flow convergence results in higher ozone concentrations in the lower troposphere:and the strong flow divergence results in lower ozone concentrations in the upper troposphere.In winter time ozone concentrations show large-scale characteristics controlled by westerly flow,and in the jet area they are lower than those outside the jet.  相似文献   

13.
This paper analyzes seasonal and diurnal variations of MODerate resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) data at ~1.1 km for the period of 2003–2011 over a region in West-Central Texas, where four of the world’s largest wind farms are located. Seasonal anomalies are created from MODIS Terra (~10:30 a.m. and 10:30 p.m. local solar time) and Aqua (~1:30 a.m. and 1:30 p.m. local solar time) LSTs, and their spatiotemporal variability is analyzed by comparing the LST changes between wind farm pixels (WFPs) and nearby non wind farm pixels (NNWFPs) using different methods under different quality controls. Our analyses show consistently that there is a warming effect of 0.31–0.70 °C at nighttime for the nine-year period during which data was collected over WFPs relative to NNWFPs, in all seasons for both Terra and Aqua measurements, while the changes at daytime are much noisier. The nighttime warming effect is much larger in summer than winter and at ~10:30 p.m. than ~1:30 a.m. and hence the largest warming effect is observed at ~10:30 p.m. in summer. The spatial pattern and magnitude of this warming effect couple very well with the geographic distribution of wind turbines and such coupling is stronger at nighttime than daytime and in summer than winter. Together, these results suggest that the warming effect observed in MODIS over wind farms are very likely attributable to the development of wind farms. This inference is consistent with the increasing number of operational wind turbines with time during the study period, the diurnal and seasonal variations in the frequency of wind speed and direction distribution, and the changes in near-surface atmospheric boundary layer (ABL) conditions due to wind farm operations. The nocturnal ABL is typically stable and much thinner than the daytime ABL and hence the turbine enhanced vertical mixing produces a stronger nighttime effect. The stronger wind speed and the higher frequency of the wind speed within the optimal power generation range in summer than winter and at nighttime than daytime likely drives wind turbines to generate more electricity and turbulence and consequently results in the strongest warming effect at nighttime in summer. Similarly, the stronger wind speed and the higher frequency of optimal wind speed at ~10:30 p.m. than that at ~1:30 a.m. might help explain, to some extent, why the nighttime LST warming effect is slightly larger at ~10:30 p.m. than ~1:30 a.m. The nighttime warming effect seen in spring and fall are smaller than that in summer and can be explained similarly.  相似文献   

14.
In this study, we used satellite data (GOME and MOPITT) together with a global chemical-transport-model of atmosphere (MOZART-2) to characterize the chemical/aerosol composition over eastern China. We then estimated the effects of local emissions in China on the chemical budgets in other regions of the world. Likewise, we also investigated the effects of air pollution from other regions on the chemical budget over eastern China. The study shows that the column CO and NO x concentrations are also high in eastern China. The high CO and NO x concentrations produce modest levels of O3 concentrations during summer (about 40 to 50 ppbv) and very low O3 during winter (about 10 to 20 ppbv) in eastern China. The calculated NO2 column is fairly consistent from the GOME measurement. The calculated CO column is underestimated from the MOPITT measurement. One of the reasons of the underestimation of the predicted CO is due to a fact that the CO emissions were taken without considering the rapid increase of emissions from 1990 to 2000. The calculated surface O3 is consistent with the measured values, with strong seasonal variations. However, the measurement is very limited, and more measurements in eastern China will be needed. The column NO2 has a very strong seasonal variation in eastern China, with the highest concentrations during winter and the lowest concentrations during summer. The cause of this seasonal variability is mainly due to the seasonal changes in the chemical loss of NO x , which is very high in summer and very low during winter. The effects of the local emissions in China and long-range transport from other regions on the chemical distributions in eastern China are studied. The results show that NO x concentrations in eastern China are mostly caused by the local emissions in China, especially during the winter. The CO concentration over eastern China is from both the local emissions (30% to 40%) and the transport from other regions. Likewise, the CO emissions in China have an important effect on the other regions of the world, but the effect is limited in the northern hemisphere. The local emissions in China also have an important effect on surface O3 concentrations. During winter, the local emissions reduce the surface O3 concentrations by 30 to 50%. During summer, the local emissions produce about 50 to 70% of the O3 concentration in eastern China.  相似文献   

15.
Isoprene peroxy radical isomerizations (1,5- and 1,6-H shifts) have recently been proposed as important pathways regenerating and recycling HOx (OH?+?HO2) in the atmosphere under low-NOx conditions (Peeters et al. Phys. Chem. Chem. Phys. 28: 5935?C5939 2009; da Silva et al. Environ. Sci. Technol. 44:250?C256 2010). Evaluation and comparison of the isoprene peroxy radical isomerization mechanisms from recent studies have been performed against isoprene-NOx experiments conducted in the UNC dual outdoor smog chambers. Five different kinetic mechanisms were tested in this study, including the original Master Chemical Mechanism (MCM) v3.1; two modified MCM mechanisms both implementing isoprene peroxy radical isomerization reactions but with different rate coefficients; the Carbon Bond 6 (CB6) mechanism; and the ISO-UNC mechanism. Sensitivity analyses of the unsaturated hydroxyperoxy aldehydes (HPALDs) reaction mechanisms under fast isomerization have also been performed. The results indicate that the fast isomerization mechanism and the mechanisms with high OH yields from HPALDs photolysis both significantly enhance HOx estimates with increasing isoprene/NOx ratios. However, O3 predictions, as well the isoprene decay rates are substantially overestimated. Our results suggest that given the current state of our knowledge, it is difficult to improve both HOx levels and maintain reasonable O3 simulations using the Peeters et al. (Peeters et al. Phys. Chem. Chem. Phys. 28: 5935?C5939 2009) mechanism.  相似文献   

16.
This study examines the processes controlling the diurnal variability of ozone (O3) in the marine boundary layer of the Kwajalein Atoll, Republic of the Marshall Islands (latitude 8° 43′ N, longitude 167° 44′ E), during July to September 1999. At the study site, situated in the equatorial Pacific Ocean, O3 mixing ratios remained low, with an overall average of 9–10 parts per billion on a volume basis (ppbv) and a standard deviation of 2.5 ppbv. In the absence of convective storms, daily O3 mixing ratios decreased after sunrise and reached minimum during the afternoon in response to photochemical reactions. The peak-to-peak amplitude of O3 diurnal variation was approximately 1–3 ppbv. During the daytime, O3 photolysis, hydroperoxyl radicals, hydroxyl radicals, and bromine atoms contributed to the destruction of O3, which explained the observed minimum O3 levels observed in the afternoon. The entrainment of O3-richer air from the free troposphere to the local marine boundary layer provided a recovery mechanism of surface O3 mixing ratio with a transport rate of 0.04 to 0.2 ppbv per hour during nighttime. In the presence of convection, downward transport of O3-richer tropospheric air increased surface O3 mixing ratios by 3–12 ppbv. The magnitude of O3 increase due to moist convection was lower than that observed over the continent (as high as 20–30 ppbv). Differences were ascribed to the higher O3 levels in the continental troposphere and weaker convection over the ocean. Present results suggest that moist convection plays a role in surface-level O3 dynamics in the tropical marine boundary layer.  相似文献   

17.
The effect of different planetary boundary-layer (PBL) parameterization schemes on the spatial distribution of atmospheric pollution over the complex topography of the greater Athens area is investigated. Four PBL schemes originally implemented in a numerical meteorological model and a fifth one simulating the urban effect are examined. Two different atmospheric conditions are analyzed; a typical summer and a typical winter pollution episode. The relative importance of chemical and physical processes of the pollution predictions is discussed using process analysis. It is revealed that, for primary pollutants, a local scheme seems more adequate to represent the maximum observed concentrations while, completely different in structure, a non-local scheme reproduces the mean observed values in the basin. Concerning secondary pollutants, peak concentration differences, due to the different PBL schemes, are smoothed out. Nevertheless, the PBL scheme selection shapes the horizontal and the vertical extension of maximum values. The non-local and semi non-local schemes are superior to the others, favouring strong vertical mixing and transport towards the surface. The stronger turbulence accommodated effectively by the semi non-local urban scheme enhances ozone production along the sea-breeze axis and preserves the high ozone concentrations during the nighttime hours in the urban core.  相似文献   

18.
19.
Atmospheric particle-bound mercury levels were measured in PM10 aerosols (HgP) at a rural site (Mahasar, Haryana) during winter 2014–15 and summer 2015. The PM10 HgP was determined by using Differential Pulse Anodic Stripping Voltammetry through standard addition methods while the trace metals were determined by using an Atomic Absorption Spectroscopy. The mass concentrations of HgP varied from 591 to 1533 pg/m3 with an average of 1009?±?306 pg/m3 during the winter, while the mass concentrations of HgP varied from 43 to 826 pg/m3 with an average of 320?±?228 pg/m3 during the summer. However, it is difficult to assess whether these levels are harmful or not because there is no standard value available as National Ambient Air Quality Standard. The higher concentrations of HgP during winters were possibly due to favourable local meteorological conditions for the stagnation of particulate matter in the lower atmosphere and the increased emissions from existing natural or anthropogenic sources, regional sources and long-range transportation. Relatively low concentrations of HgP during summer might be due to increased mixing heights as well as scavenging effect because some light to heavy rain events were observed during summer time sampling. However, among other metals determined, the concentration of HgP was the lowest during both the seasons. The study may be useful in assessing the health impacts of PM10 HgP and other metals.  相似文献   

20.
Autoxidation of S(IV) initiated by manganese sulphate or potassium peroxydisulphate in alkaline aqueous solutions was significantly slowed down by dissolved isoprene, which decayed in the process. The laboratory experiments were carried out in a batch, perfectly mixed reactor, which had no gas space. The concentration–time profiles of oxygen were measured with a Clark-type electrode. The profiles of sulphite species and of isoprene were evaluated from the UV spectra of solutions. The kinetic analysis indicated that isoprene reacted directly with sulphate radical anions produced during the S(IV) autoxidation. A relative second-order rate constant of (2.12 ± 0.37) × 109 M–1 s–1 was determined for this reaction at 25 °C, pH (8.0–8.5) and ionic strength of (1.7–4.9) × 10–3 M (the reference rate constant of the reaction of sulphate radical anions with sulphite ions equalled 3.4 × 108 M–1 s–1). A tentative mechanism of isoprene oxidation during S(IV) autoxidation, which included formation of isoprene – SO 4 adduct, was based on the analogy to the gas-phase reactions of isoprene and to the liquid-phase reactions of sulphate radical anions with other compounds. Atmospheric significance of the aqueous-phase reaction of isoprene with sulphate radicals was discussed. Approximate analysis showed the reaction is a potential sink for isoprene in the aqueous phase and in the gas–liquid systems of high liquid water content (LWC > 10–5 m3 m–3). The aqueous-phase oxidation of isoprene can produce secondary pollutants, and influence transformation and the long-range transport of SO2 in the atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号