首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
徐磊  任青文 《岩土力学》2011,32(Z1):217-224
对于涉及需要单独考虑岩体结构面的工程岩体结构分析,采用能反映岩体结构面主要力学特性的合理的本构模型是取得合理解答的关键问题之一。针对在经典连续介质力学理论框架内建立岩体结构面本构模型的缺点,基于岩体结构面的实际受力变形特性,采用直接法建立了一种新型岩体结构面本构模型。所建立的模型依据岩体结构面切向应力变形曲线及剪胀曲线的实际特征,将其分为峰前线性段、峰前非线性段以及峰后软化段,并分别给出了用于描述岩体结构面变形和强度等主要力学特性的数学模型,进而推导建立了结构面各变形阶段的增量型本构模型。最后,编写相关计算程序,采用所建立的新型本构模型以及被广泛采用的Plesha模型对经典的岩体结构面直剪试验成果进行拟合分析。结果表明,所建立的新型本构模型能更为合理的描述岩体结构面的主要力学特性,且模拟能力优于Plesha模型  相似文献   

3.
温勇  杨光华  汤连生  钟志辉  姚捷 《岩土力学》2016,37(5):1324-1332
广义位势理论从数学角度出发建立土的本构模型,可克服传统本构理论的不足,而又同时包含了传统理论作为其特例,从而为土的本构模型研究提供新的和适用性更广的理论。以广义虎克定律为基础的邓肯-张模型以其简单方便、参数确定容易且有明确的物理意义而得到广泛的应用,而其最大缺点则是不能反映土的剪胀性;此外,邓肯-张模型采用双曲线函数拟合试验曲线也有一定的局限性。为保留其参数确定简便的优点,并弥补其不足,基于广义位势理论建立了数值弹塑性模型。该模型保留了邓肯-张模型在参数确定方面的简单性,同时由于采用了广义位势理论来建模,不再受广义虎克定律的限制,因而可弥补邓肯-张模型在反映土体剪胀性方面的缺陷。此外,该模型采用数值手段来表示试验曲线的建模方法,可以克服邓肯-张模型采用双曲线函数表示试验曲线方法的局限性,具有更为广泛的适应性。通过对一碎石桩复合土体三轴试验结果的数值模拟表明:基于广义位势理论的数值弹塑性模型计算与试验结果吻合良好,且在反映碎石的剪胀特性方面优于邓肯-张模型,从而初步证明了该模型的合理性及优越性。  相似文献   

4.
杨璐  沈新普 《岩土力学》2008,29(12):3318-3322
以连续介质不可逆热力学为基础,采用了Mohr-Coulomb屈服准则,提出混凝土塑性损伤耦合的新的本构方程。在该模型中采用了塑性应变 、各向同性损伤标量D作为内变量。这个新的本构关系模型严格满足热力学的基本方程。以不同围压作用下混凝土试件的单轴压缩行为为例,采用开发的程序进行了局部水平上本构模型数值验证。结果表明,模型损伤演化数值结果符合试验趋势。  相似文献   

5.
On the basis of fundamental constitutive laws such as elasticity, perfect plasticity, and pure viscosity, many elasto‐viscoplastic constitutive relations have been developed since the 1970s through phenomenological approaches. In addition, a few more recent micro‐mechanical models based on multi‐scale approaches are now able to describe the main macroscopic features of the mechanical behaviour of granular media. The purpose of this paper is to compare a phenomenological constitutive relation and a micro‐mechanical model with respect to a basic issue regularly raised about granular assemblies: the incrementally non‐linear character of their behaviour. It is shown that both phenomenological and micro‐mechanical models exhibit an incremental non‐linearity. In addition, the multi‐scale approach reveals that the macroscopic incremental non‐linearity could stem from the change in the regime of local contacts between particles (from plastic regime to elastic regime) in terms of the incremental macroscopic loading direction. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
The paper presents a review of constitutive modelling of unsaturated soils. After a brief historical perspective, a number of existing constitutive models are classified and discussed according to the type of stress variables adopted in their formulation. Afterwards, attention is given to recent developments in the proposal of coupled hydraulic-mechanical models and the possibility of casting them in a sound thermodynamical framework. Finally, a double structure model for expansive soils is described. The incorporation of microstructural considerations and its use as a platform for incorporating the influence of new variables are highlighted.  相似文献   

7.
冯世进  邓英军 《岩土力学》2014,35(9):2455-2463
城市固体废弃物(MSW)是由多种无机和有机成分组成的复合材料,具有高压缩性和可降解性。随着时间的变化,基本的物理力学特性发生变化,与传统土体相比,性质差异较大。城市固体废弃物的本构模型对于垃圾填埋场中土工问题的研究极其重要,考虑不同因素的影响,系统总结了国内外一些学者对MSW本构模型的研究现状,指出已有的研究成果主要考虑了荷载引起的瞬时变形、机械蠕变、生物降解、纤维物质的加筋作用等,但这些都是考虑单个因素或者将几个因素简单叠加的本构模型,并未考虑不同因素的耦合作用。结合土体本构模型的发展特点,指出了今后城市固体废弃物本构模型的研究方向和发展趋势:应当综合考虑各种因素对MSW应力-应变关系的影响,从工程实践出发,通过岩土工程、环境工程、化学工程和生物工程等学科的交叉寻求突破,形成考虑生化反应-骨架变形-水气运移-溶质迁移耦合作用的理论框架。  相似文献   

8.
Rock joint constitutive modelling is discussed through two new rock joint constitutive relations and a discrete numerical model. Regarding the constitutive relations, we emphasise the number of ‘tensorial zones’, that is, domains of constitutive incremental linearity; they involve four zones for the first (called ‘quadrilinear’) and an infinite number for the second one (called ‘incrementally nonlinear’). Using these formulations, a large class of loading paths can be considered. Hardening through shearing and relations between the normal and tangential directions of the joint (e.g., dilatancy) can be described. Their predictive abilities are checked. Plastic features are included even if the relations are defined outside the elasto‐plastic formalism. These relations obey, hence, the physical evidence as the plastic limit criterion and flow rule. The flow rule is nonassociated, and the corresponding link with the nonsymmetry of the constitutive matrix is examined. Comparisons between the two relations and the discrete numerical model, that is, a direct numerical simulation, which is fundamentally different, also are discussed within the context of infilled rock joints. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Yao  YangPing  He  Guan  Liu  Lin  Zhang  Jianmin  Luo  Ting 《Acta Geotechnica》2022,17(5):2021-2027
Acta Geotechnica - The modified Cam-clay model has been widely adopted as the theoretical framework for constitutive modelling of clays. However, there is so far no such model for sands on the...  相似文献   

10.
Data assimilation, using the particle filter and incorporating the soil‐water coupled finite element method, is applied to identify the yield function of the elastoplastic constitutive model and corresponding parameters based on the sequential measurements of hypothetical soil tests and an actual construction sequence. In the proposed framework of the inverse analysis, the unknowns are both the particular parameter within the exponential contractancy model, nE, which parameterizes various shapes for the yield function of the competing constitutive models, including the original/the modified Cam‐Clay models and in‐between models and the parameters of the corresponding constitutive model. An appropriate set, consisting of the yield function of the constitutive model and the parameters of the constitutive model, can be simultaneously identified by the particle filter to describe the most suitable soil behavior. To examine the validity of the proposed procedure, hypothetical and actual measurements for the displacements of a soil specimen were obtained for consolidated and undrained tests through a synthetic FEM computation and for consolidated and drained tests, respectively. After examining the applicability of the proposed procedure to these test results, the present paper then focuses on the actual measured data, ie, the settlement behavior including the lateral deformation of the Kobe Airport Island constructed on reclaimed land.  相似文献   

11.
It is well known that soil is inherently anisotropic and its mechanical behavior is significantly influenced by its fabric anisotropy. Hypoplasticity is increasingly being accepted in the constitutive modeling for soils, in which many salient features, such as nonlinear stress-strain relations, dilatancy, and critical state failure, can be described by a single tensorial equation. However, within the framework of hypoplasticity, modeling fabric anisotropy remains challenging, as the fabric and its evolution are often vaguely assumed without a sound basis. This paper presents a hypoplastic constitutive model for granular soils based on the newly developed anisotropic critical state theory, in which the conditions of fabric anisotropy are concurrently satisfied along with the traditional conditions at the critical state. A deviatoric fabric tensor is introduced into the Gudehus-Bauer hypoplastic model, and a scalar-valued anisotropic state variable signifying the interplay between the fabric and the stress state is used to characterize its impact on the dilatancy and strength of the soils. In addition, fabric evolution during shearing can explicitly be addressed. Modifications have also been undertaken to improve the performance of the undrained response of the model. The anisotropic hypoplastic model can simulate experimental tests for sand under various combinations of principle stress direction, intermediate principal stress (or mode of shearing), soil densities, and confining pressures, and the associated drastic effect of different principal stress orientations in reference to the material axes of anisotropy can be well captured.  相似文献   

12.
This paper presents a simple concept which can be used for simulating a range of soil mechanics problems. The study is motivated by the observation that many experimental results are commonly described in terms of lines or curves according to a phenomenological approach. Frequently, these relations are based on rather different formulations from one application to another, and in complex forms for some cases. This leads to complications for the calibration of parameters as well as constitutive modelling. Thus, a general framework referred to as “reference curves” has been developed. This framework provides a unique treatment of the macroscopically observed behaviour of clays, sands, and structured materials under isotropic compression, as well as the water retention characteristics of granular materials and geotextiles. Several examples are provided illustrating the good accuracy of models developed with this concept. The proposed framework may be equally applied to any other behaviour where reference lines are easily identifiable from a macroscopic scope, such as some non-linear failure envelopes for granular materials. In addition, we show that the incorporation of the proposed equations into constitutive models is quite straightforward.  相似文献   

13.
This paper presents an advanced constitutive model for unsaturated soils, using Bishop’s effective stress (σ′) and the effective degree of saturation (Se) as two fundamental constitutive variables in the proposed constitutive model. A sub-loading surface and a unified hardening parameter (H) are introduced into the σ′–Se modelling framework to interpret the effects of initial density on coupled hydro-mechanical behaviour of compacted soils. Compared with existing models in the literature, the main advantage of the proposed model that it is capable of modelling hydro-mechanical behaviour of unsaturated soils compacted to different initial densities, such as the dependence of loading–collapse volume on initial void ratio and density effect on the shearing-induced saturation change. The proposed model requires 13 material parameters, all of which can be calibrated through conventional laboratory tests. Numerical studies are conducted to assess the performance of the model for a hypothetical soil under two typical hydro-mechanical loading scenarios. The proposed advanced unsaturated soil model is then validated against a number of experimental results for both isotropic and triaxial conditions reported in the literature.  相似文献   

14.
田雨  姚仰平  罗汀 《岩土力学》2018,39(6):2035-2042
从发挥面的角度出发,分析论证各向异性是引起岩土材料出现非共轴现象的根本原因,得到与材料力学一致的结论。当共轭的两发挥面与沉积面的夹角不相等时,主应力面上将出现塑性应变增量的切向分量,所以塑性应变增量的主方向与应力的主方向非共轴。按照这一结论,对非共轴的数值模拟,也应当根据各向异性本构模型进行。为考虑各向异性影响新近提出的各向异性变换应力法,改变了各应力分量的相对大小,得到的各向异性变换应力张量与真实应力张量的主方向不一致,因此也能反映非共轴。利用各向异性变换应力法,能够在现有的弹塑性本构模型的框架下,描述土的非共轴现象。以各向异性UH模型为例,预测各种加载条件下的非共轴变形,验证了该方法的有效性。  相似文献   

15.
Thermodynamic and physical principles are applied in conjunction with the concepts of endochronic plasticity to develop a theory of constitutive behaviour of soils with dilatant capability. Three separate constitutive models are derived within the framework of the proposed theory, all capable of accounting for shear–volume coupling of soil within the context of endochronic plasticity. One specific model is singled out as the most appropriate on the basis of its analytical simplicity and the plausibility of its thermodynamic and physical foundations. A simple example is worked out for the purposes of illustration.  相似文献   

16.
饱和土变形过程模拟的统计损伤方法研究   总被引:1,自引:0,他引:1  
针对传统损伤理论的不足与局限性,从研究岩土材料损伤的合理定义入手,并通过深入探讨饱和土损伤的微观力学机制,建立了适合于饱和土的新型损伤模型。在此基础上,引进统计损伤理论,建立了模拟特定围压下饱和土变形全过程的统计损伤本构模型及其参数确定方法。通过探讨饱和土损伤统计本构模型参数与围压的关系,建立了该模型的合理修正方法,从而建立了反映不同围压条件的统一饱和土损伤统计本构模型。理论与试验结果分析表明了该模型的合理性,该模型不仅能反映饱和土的变形全过程,而且能反映孔隙水压力对饱和土变形的影响。  相似文献   

17.
Studies in the past have tried to reproduce the mechanical behaviour of granular materials by proposing constitutive relations based on a common assumption that model parameters and parameters describing the properties, including gradation of individual grains are inevitably linked. However successful these models have proved to be, they cannot account for the changes in granular assembly behaviour if the grains start to break during mechanical loading. This paper proposes to analyse the relation between grading change and the mechanical behaviour of granular assembly. A way to model the influence of grain breakage is to use a critical state‐based model. The influence of the amount of grain breakage during loading, depending on the individual grain strength and size distribution, can be introduced into constitutive relations by means of a new parameter that controls the evolution of critical state with changes in grain size distribution. Experimental data from a calcareous sand, a quartz sand, and a rockfill material were compared with numerical results and good‐quality simulations were obtained. The main consequences of grain breakage are increased compressibility and a gradual dilatancy disappearance in the granular material. The critical state concept is also enriched by considering its overall relation to the evolution of the granular material. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper a constitutive model for soils incorporating small strain stiffness formulated in the multilaminate framework is presented. In the multilaminate framework, the stress–strain behaviour of a material is obtained by integrating the mechanical response of an infinite number of randomly oriented planes passing through a material point. Such a procedure leads to a number of advantages in describing soil behaviour, the most significant being capture of initial and induced anisotropy due to plastic flow in a physically meaningful manner. In the past, many soil models of varying degree of refinement in the multilaminate framework have been presented by various authors. However, the issue of high initial soil stiffness in the range of very small strains and its degradation with straining, commonly referred to as ‘small strain stiffness’, has not been addressed within the multilaminate framework. In this paper, we adopt a micromechanics‐based approach to derive small strain elastic stiffness of the soil mass. Comparison of laboratory test data with results obtained from numerical simulations based on the proposed constitutive model incorporating small strain stiffness is performed to demonstrate its predictive capabilities. The model is implemented in a finite element code and numerical simulations of a deep excavation are presented with and without incorporation of small strain stiffness to demonstrate its importance in predicting profiles of deformation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Stability analysis of slopes in soils with strain-softening behaviour   总被引:1,自引:0,他引:1  
This paper presents a numerical approach to analyse the stability of slopes in soils with strain-softening behaviour. In these materials, a progressive failure can occur owing to a reduction of strength with increasing strain. Such a phenomenon can be analysed using methods that are able to simulate the formation and development of the shear zones in which strain localises. From a computational point of view, this presents many difficulties because the numerical procedures currently used are often affected by a lack of convergence, and the solution may depend strongly on the mesh adopted. In order to overcome these numerical drawbacks, in the present study use is made of a non-local elasto-viscoplastic constitutive model within the framework of the finite element method. The Mohr–Coulomb yield function is adopted, and the strain-softening behaviour of the soil is simulated by reducing the strength parameters with the increasing deviatoric plastic strain. To assess the reliability of the proposed approach, some comparisons with the results obtained using other constitutive models for soils with strain-softening behaviour are presented. Finally, a slope subjected to a prescribed process of weathering is considered, and the effects of this process on the slope stability are discussed.  相似文献   

20.
堆石料三维边界面模型在FLAC3D中的开发与验证   总被引:1,自引:0,他引:1  
陶惠  陈育民  肖杨  刘汉龙 《岩土力学》2014,35(6):1801-1808
堆石料三维边界面模型结合了统一非线性强度准则,可以反映三维应力空间堆石料的应变硬化、软化以及体积收缩和剪胀等传统本构模型难以反映的力学特性。基于三维边界面模型的基本理论,通过FLAC3D提供的二次开发平台,在VC++环境下实现了三维边界面本构模型的二次开发,并给出基于FLAC3D程序的边界面本构模型开发的关键步骤、编程要点和调试方法。利用开发的本构模型,开展了三轴压缩试验的数值模拟计算,并与理论值进行了对比分析。结果表明,嵌入在FLAC3D中的三维边界面本构模型能够较好地反映设定试验条件下的材料性能,而且三维边界面本构模型模型参数简单,都可从常规三轴试验获得,从而验证了三维边界面模型二次开发程序的优越性与合理性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号