首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In certain seismic data processing and interpretation tasks such as spiking deconvolution, tuning analysis, impedance inversion, and spectral decomposition, it is commonly assumed that the vertical direction is normal to reflectors. This assumption is false in the case of dipping layers and may therefore lead to inaccurate results. To overcome this limitation, we propose a coordinate system in which geometry follows the shape of each reflector and the vertical direction corresponds to normal reflectivity. We call this coordinate system stratigraphic coordinates. We develop a constructive algorithm that transfers seismic images into the stratigraphic coordinate system. The algorithm consists of two steps. First, local slopes of seismic events are estimated by plane‐wave destruction; then structural information is spread along the estimated local slopes, and horizons are picked everywhere in the seismic volume by the predictive‐painting algorithm. These picked horizons represent level sets of the first axis of the stratigraphic coordinate system. Next, an upwind finite‐difference scheme is used to find the two other axes, which are perpendicular to the first axis, by solving the appropriate gradient equations. After seismic data are transformed into stratigraphic coordinates, seismic horizons should appear flat, and seismic traces should represent the direction normal to the reflectors. Immediate applications of the stratigraphic coordinate system are in seismic image flattening and spectral decomposition. Synthetic and real data examples demonstrate the effectiveness of stratigraphic coordinates.  相似文献   

2.
Radial‐trace time–frequency peak filtering filters a seismic record along the radial‐trace direction rather than the conventional channel direction. It takes the spatial correlation of the reflected events between adjacent channels into account. Thus, radial‐trace time–frequency peak filtering performs well in denoising and enhancing the continuity of reflected events. However, in the seismic record there is often random noise whose energy is concentrated in certain directions; the noise in these directions is correlative. We refer to this kind of random noise (that is distributed randomly in time but correlative in the space) as directional random noise. Under radial‐trace time–frequency peak filtering, the directional random noise will be treated as signal and enhanced when this noise has same direction as the signal. Therefore, we need to identify the directional random noise before the filtering. In this paper, we test the linearity of signal and directional random noise in time using the Hurst exponent. The time series of signals with high linearity lead to large Hurst exponent value; however, directional random noise is a random series in time without a fixed waveform and thus its linearity is low; therefore, we can differentiate the signal and directional random noise by the Hurst exponent values. The directional random noise can then be suppressed by using a long filtering window length during the radial‐trace time–frequency peak filtering. Synthetic and real data examples show that the proposed method can remove most directional random noise and can effectively recover the reflected events.  相似文献   

3.
Synthesis of a seismic virtual reflector*   总被引:1,自引:0,他引:1  
We describe a method to process the seismic data generated by a plurality of sources and registered by an appropriate distribution of receivers, which provides new seismic signals as if in the position of the receivers (or sources) there was an ideal reflector, even if this reflector is not present there. The data provided by this method represent the signals of a virtual reflector. The proposed algorithm performs the convolution and the subsequent sum of the real traces without needing subsurface model information. The approach can be used in combination with seismic interferometry to separate wavefields and process the reflection events. The application is described with synthetic examples, including stationary phase analysis and with real data in which the virtual reflector signal can be appreciated.  相似文献   

4.
Seismic noise attenuation is very important for seismic data analysis and interpretation, especially for 3D seismic data. In this paper, we propose a novel method for 3D seismic random noise attenuation by applying noncausal regularized nonstationary autoregression (NRNA) in f–x–y domain. The proposed method, 3D NRNA (f–x–y domain) is the extended version of 2D NRNA (f–x domain). f–x–y NRNA can adaptively estimate seismic events of which slopes vary in 3D space. The key idea of this paper is to consider that the central trace can be predicted by all around this trace from all directions in 3D seismic cube, while the 2D f–x NRNA just considers that the middle trace can be predicted by adjacent traces along one space direction. 3D f–x–y NRNA uses more information from circumjacent traces than 2D f–x NRNA to estimate signals. Shaping regularization technology guarantees that the nonstationary autoregression problem can be realizable in mathematics with high computational efficiency. Synthetic and field data examples demonstrate that, compared with f–x NRNA method, f–x–y NRNA can be more effective in suppressing random noise and improve trace-by-trace consistency, which are useful in conjunction with interactive interpretation and auto-picking tools such as automatic event tracking.  相似文献   

5.
The study of seismic body waves is an integral aspect in global, exploration and engineering scale seismology, where the forward modeling of waves is an essential component in seismic interpretation. Forward modeling represents the kernel of both migration and inversion algorithms as the Green’s function for wavefield propagation and is also an important diagnostic tool that provides insight into the physics of wave propagation and a means of testing hypotheses inferred from observational data. This paper introduces the one-way wave equation method for modeling seismic wave phenomena and specifically focuses on the so-called operator-root one-way wave equations. To provide some motivation for this approach, this review first summarizes the various approaches in deriving one-way approximations and subsequently discusses several alternative matrix narrow-angle and wide-angle formulations. To demonstrate the key strengths of the one-way approach, results from waveform simulation for global scale shear-wave splitting modeling, reservoir-scale frequency-dependent shear-wave splitting modeling and acoustic waveform modeling in random heterogeneous media are shown. These results highlight the main feature of the one-way wave equation approach in terms of its ability to model gradual vector (for the elastic case) and scalar (for the acoustic case) waveform evolution along the underlying wavefront. Although not strictly an exact solution, the one-way wave equation shows significant advantages (e.g., computational efficiency) for a range of transmitted wave three-dimensional global, exploration and engineering scale applications.  相似文献   

6.
The study of the stress-strain state of a medium in seismically quiet areas is difficult because of the absence of strong events. Under such circumstances, each earthquake, even relatively weak, is of high importance. In this case, all possible information on tectonic stresses and their dynamics, e.g., information on time, location, and magnitude of aftershocks, should be obtained from available seismic data. The earthquake near the town of Mariupol which occurred on August 7, 2016, had a body wave magnitude of 4.5–4.9 from the data of the different seismological centers. We detected 12 aftershocks that occurred within 5 days after the main shock using two seismic arrays (AKASG and BRTR) and one three-component station (KBZ) of the International Monitoring System, as well as two array stations of the Institute of Geosphere Dynamics, Russian Academy of Sciences. For six aftershocks, signals were found at three or more stations. The other aftershocks were detected from the data at two out of three nearest stations. Signal detection and association with aftershocks of the main shock, as well as estimation of magnitude and relative location of the found aftershocks, were carried out using the method of waveform cross-correlation (WFCC). The signals from the main shock that acted as the only master event (ME) for the WFCC method were used as waveform templates. To increase the signal-to-noise ratio and to determine the exact onset time of regular seismic waves from aftershocks, we used waveform templates of different length, from 10 to 180 s depending on the wave type and distance to the station, as well as band filtering in narrow frequency bands. The highest sensitivity of the detector and accuracy of the P-wave onset time estimates were reached when a waveform template included all regular waves from P to L g . Association of signals with aftershocks was based on back projection of signal arrival times to origin times using the travel time from a master event to the station, which was measured with a very low error, being equal to almost half of the digitization step length. To develop a seismic event hypothesis, the origin times at two or more stations should be spaced within a 2-s interval.  相似文献   

7.
Recent advances in seismic reflection amplitude analysis (e.g., amplitude versus offset-AVO, bright spot mapping) technology to directly detect the presence of subsurface DNAPL (e.g., CCl4) were applied to 216-Z-9 crib, 200 West Area, DOE Hanford Site, Washington. Modeling to determine what type of anomaly might be present was performed. Model results were incorporated in the interpretation of the seismic data to determine the location of any seismic amplitude anomalies associated with the presence of high concentrations of CCl4. Seismic reflection profiles were collected and analyzed for the presence of DNAPL. Structure contour maps of the contact between the Hanford fine unit and the Plio/Pleistocene unit and between the Plio/Pleistocene unit and the caliche layer were interpreted to determine potential DNAPL flow direction. Models indicate that the contact between the Plio/Pleistocene unit and the caliche should have a positive reflection coefficient. When high concentrations of CCl4 are present, the reflection coefficient of this interface displays a noticeable positive increase in the seismic amplitude (i.e., bright spot). Amplitude data contoured on the Plio/Pleistocene-caliche boundary display high values indicating the presence of DNAPL to the north and east of the crib area. The seismic data agree well with the well control in areas of high concentrations of CCl4.  相似文献   

8.
利用新疆和田地震台阵3 km孔径范围内架设的9个子台(包括1套宽频带和9套短周期地震仪)记录的3年远震波形数据,对比研究和分析了短周期地震仪接收函数的稳定性和可靠性.通过比较和分析短周期和长周期地震仪获取的接收函数波形,结果发现:(1)短周期地震仪记录与宽频带地震仪记录得到的接收函数有很好的一致性,且具有较高的稳定性,无论α取值为1.5还是2.5,短周期地震仪接收函数与宽频带地震仪接收函数都具有较强的线性相关性(相关系数0.9),但Ps震相均存在小幅的振幅差(约20%);(2)采用接收函数震相到时信息的方法(如H-κ叠加搜索),短周期地震仪可以代替宽频带地震仪;(3)由于短周期地震仪缺乏0.155 Hz以下的低频信号和在1 Hz以下频段非线性的振幅响应,仅仅采用短周期地震仪接收函数波形反演台站下方S波速度结构,获得下地壳到上地幔顶部的速度偏差较大(约0.3 km/s),可能会造成错误解释(如下地壳低速层),因此需要和其它对波速值敏感的数据(如面波频散)进行联合分析.  相似文献   

9.
Fault and fracture interpretation is a fundamental but essential tool for subsurface structure mapping and modelling from 3D seismic data. The existing methods for semi-automatic/automatic fault picking are primarily based on seismic discontinuity analysis that evaluates the lateral changes in seismic waveform and/or amplitude, which is limited by its low resolution on subtle faults and fractures without apparent vertical displacements in seismic images. This study presents an innovative workflow for computer-aided fault/fracture interpretation based on seismic geometry analysis. First, the seismic curvature and flexure attributes are estimated for highlighting both the major faults and the subtle fractures in a seismic volume. Then, fault probability is estimated from the curvature and flexure volumes for differentiation between the potential faults and non-faulting features in the geometric attributes. Finally, the seeded fault picking is implemented for interpreting the target faults and fractures guided by the knowledge of interpreters to avoid misinterpretation and artefacts in the presence of faulting complexities as well as coherent seismic noises. Applications to two 3D seismic volumes from the Netherlands North Sea and the offshore New Zealand demonstrate the added values of the proposed method in imaging and picking the subtle faults and fractures that are often overlooked in the conventional seismic discontinuity analysis and the following fault-interpretation procedures.  相似文献   

10.
周衍  饶莹 《地球物理学报》2018,61(1):284-292
塔里木盆地塔河地区的奥陶系碳酸盐岩储层埋藏深,其深度超过5000 m,储集体类型以裂缝、缝洞为主,储层的纵向和横向上都具有极强的非均质性.这些特点导致反射地震数据的信噪比低、分辨率低,从而使得碳酸盐岩储层特征描述的难度增大.针对这些问题,本文运用稳定化反Q滤波方法对塔河地区的三维地震数据进行提高分辨率处理,同步实现地震振幅补偿和子波相位校正.处理结果与原始地震数据进行地震剖面面貌、储层内幕信息、断裂缝洞刻画等方面的直接对比,一方面展示反Q滤波方法在提高分辨率、提高弱反射能量、以及增强反射同相轴的空间连续性等方面的优势,同时展示稳定化反Q滤波方法能够提高对奥陶系碳酸盐岩缝洞储集体的特征描述精度.  相似文献   

11.
Finite-offset seismic reflection modeling of acoustic waves, propagating in a two-dimensional depth section of arbitrary complexity, is discussed. The procedure developed employs the principles of simplified (far-field) diffractor theory and ray tracing. Each reflector is represented by a set of discrete secondary sources or diffractors and the wavefield associated with each diffractor is calculated directly in the time domain by ray tracing. Reflections and diffractions are subsequently built up by the numerical superposition of these wavefields. This superposition is nondispersive for all frequencies for which the Fresnel zones are large compared with the diffractor separation. All primary travel paths connecting the shot to diffractor and diffractor to geophone are accounted for together with phase changes induced by focal events. The method allows the modeling of arbitrary trace gathers for energy originating from selected reflectors. The nonsequential nature of the algorithm makes it suited to machines capable of carrying out many similar operations in parallel or concurrently. Diffractor theory also provides physical insight into wave scattering and focusing. In particular, the half-differential waveform associated with a line diffractor leads to an explanation of the 90° phase lead induced by a cylindrical focus and, similarly, the full differential waveform of a point diffractor can be used to explain the 180° phase shift induced by a point focus.  相似文献   

12.
An earthquake is regarded as a fracture from the viewpoint of continuum mechanics, in which stress and strain play key roles in understanding the nature of a seismic source. This review briefly outlines the mechanics of a seismic source in terms of the dislocation model and crack model. The introduction includes the Coulomb failure criterion, static stress drop, dynamic stress drop, the Griffith criterion, and the scaling of source parameters. The selection of topics in the introduction emphasizes the application of seismic data, i.e., in practice, the mechanical parameters introduced here are measurable in the interpretation and analysis of seismic waveform data.  相似文献   

13.
Understanding fracture orientations is important for optimal field development of fractured reservoirs because fractures can act as conduits for fluid flow. This is especially true for unconventional reservoirs (e.g., tight gas sands and shale gas). Using walkaround Vertical Seismic Profiling (VSP) technology presents a unique opportunity to identify seismic azimuthal anisotropy for use in mapping potential fracture zones and their orientation around a borehole. Saudi Aramco recently completed the acquisition, processing and analysis of a walkaround VSP survey through an unconventional tight gas sand reservoir to help characterize fractures. In this paper, we present the results of the seismic azimuthal anisotropy analysis using seismic traveltime, shear‐wave splitting and amplitude attenuation. The azimuthal anisotropy results are compared to the fracture orientations derived from dipole sonic and image logs. The image log interpretation suggests that an orthorhombic fracture system is present. VSP data show that the P‐wave traveltime anisotropy direction is NE to SW. This is consistent with the cemented fractures from the image log interpretation. The seismic amplitude attenuation anisotropy direction is NW to SE. This is consistent with one of the two orientations obtained using transverse to radial amplitude ratio analysis, with the dipole sonic and with open fracture directions interpreted from image log data.  相似文献   

14.
地震信号的复地震道分析及应用   总被引:8,自引:3,他引:5       下载免费PDF全文
石颖  刘洪 《地球物理学进展》2008,23(5):1538-1543
复地震道分析又称三瞬分析,该分析方法可将反映地震信号局部变化情况的地震波的瞬时振幅、瞬时相位和瞬时频率等信息分离开.本文应用Hilbert变换求解虚地震记录,用复地震道分析方法求取"三瞬"信息,并用该方法计算了理论合成地震记录的瞬时振幅、瞬时相位和瞬时频率,获得了较好的效果.同时,本文也利用该方法对某区块实际地震资料进行了处理,结果表明,复地震道分析方法获得的"三瞬"信息可反映地震信号的局部变化,有助于进行地震薄互层分析,并能提高数据的解释精度.  相似文献   

15.
Rockbursts and mining-induced seismic events have serious socio-economic consequences for the Canadian mining industry, as their mines are extended to greater depths. Automatic multichannel monitoring systems (Electro-Lab MP250s) are routinely, used to detect the arrival times of seismic waves radiated by mining-induced events and sensed on an array of single component transducers installed throughout a mine. These arrival times are then used to locate the events and produce maps of areas of high activity for use in mine planning and design. This approach has limitations in that, it does not allow a detailed analysis of source mechanisms, which could be extracted if whole waveform signals are recorded and analyzed.A major research project, sponsored by the Natural Sciences and Engineering Research Council of Canada (NSERC) with the collaboration of the Canadian mining industry, is aimed at enhancing existing mine seismic monitoring technology in Canada, in order to carry out more advanced processing of data to obtain fundamental scientific information on mining-induced seismic events This paper describes preliminary results from seismic monitoring experiments carried out in a hard rock nickel mine in Sudbury, Canada. Existing seismic monitoring instrumentation was enhanced with a low cost microcomputer-based whole waveform seismic acquisition system. Some of the signals recorded during this experiment indicate anisotropic wave propagation through the mine rock masses, as observed by the splitting of shear waves and the relative arrival of two shear waves polarized in directions which may be related to the structural fabric and/or state of stress in the rock mass. Analysis of compressional wave first motion shows the predominance of shear events, as indicated by focal mechanism studies and is confirmed by spectral analysis of the waveforms. The source parameters were estimated fro typical low magnitude localized microseismic events during the initial monitoring experiments. The seismic moment of these events varied between 106 N.m and 2.108 N.m. with a circular source radius of between 1 m and 2 m with an estimated stress drop of the order of 1 MPa.  相似文献   

16.
垂直地震剖面(Vertical Seismic Profiling,VSP)资料处理中波场分离是关键问题之一.随着属性提取技术的发展,新的属性参数(例如Q值)提取技术对波场分离的保真性要求越来越高.本文改进了传统奇异值分解(Singular Value Decomposition,SVD)法,给出了一种对波场的动力学特征具有更好的保真性,可以作为Q值提取的预处理步骤的零偏VSP资料上下行波场分离方法.该方法通过两步奇异值分解变换实现:第一步,排齐下行波同相轴,利用SVD变换压制部分下行波能量;第二步,在剩余波场中排齐上行波同相轴,使用SVD变换提取上行波场.在该方法的实现过程中,压制部分下行波能量后的剩余波场中仍然存在较强的下行波干扰,使得上行波同相轴的排齐比较困难.本文给出了一种通过极大化多道数据线性相关程度(Maximize Coherence,MC)排齐同相轴的算法,在一定程度上解决了低信噪比下排齐同相轴的问题.将本文提出的方法用于合成数据和实际资料的处理,并与传统SVD法的处理结果进行对比,结果表明本文提出的波场分离方法具有良好的保真性,得到波场的质量明显优于传统SVD法.通过对本文方法和传统SVD法处理合成数据得到的下行波场提取Q值,然后进行对比可知,本文方法可以有效提高所提取Q值的准确性,适合作为Q值提取的预处理步骤.  相似文献   

17.
This paper presents the first controlled‐source electromagnetic survey carried out in the German North Sea with a recently developed seafloor‐towed electrical dipole–dipole system, i.e., HYDRA II. Controlled‐source electromagnetic data are measured, processed, and inverted in the time domain to estimate an electrical resistivity model of the sub‐seafloor. The controlled‐source electromagnetic survey targeted a shallow, phase‐reversed, seismic reflector, which potentially indicates free gas. To compare the resistivity model to reflection seismic data and draw a combined interpretation, we apply a trans‐dimensional Bayesian inversion that estimates model parameters and uncertainties, and samples probabilistically over the number of layers of the resistivity model. The controlled‐source electromagnetic data errors show time‐varying correlations, and we therefore apply a non‐Toeplitz data covariance matrix in the inversion that is estimated from residual analysis. The geological interpretation drawn from controlled‐source electromagnetic inversion results and borehole and reflection seismic data yield resistivities of ~1 Ωm at the seafloor, which are typical for fine‐grained marine deposits, whereas resistivities below ~20 mbsf increase to 2–4 Ωm and can be related to a transition from fine‐grained (Holocene age) to unsorted, coarse‐grained, and compacted glacial sediments (Pleistocene age). Interface depths from controlled‐source electromagnetic inversion generally match the seismic reflector related to the contrast between the different depositional environments. Resistivities decrease again at greater depths to ~1 Ωm with a minimum resistivity at ~300 mbsf where a seismic reflector (that marks a major flooding surface of late Miocene age) correlates with an increased gamma‐ray count, indicating an increased amount of fine‐grained sediments. We suggest that the grain size may have a major impact on the electrical resistivity of the sediment with lower resistivities for fine‐grained sediments. Concerning the phase‐reversed seismic reflector that was targeted by the survey, controlled‐source electromagnetic inversion results yield no indication for free gas below it as resistivities are generally elevated above the reflector. We suggest that the elevated resistivities are caused by an overall decrease in porosity in the glacial sediments and that the seismic reflector could be caused by an impedance contrast at a thin low‐velocity layer. Controlled‐source electromagnetic interface depths near the reflector are quite uncertain and variable. We conclude that the seismic interface cannot be resolved with the controlled‐source electromagnetic data, but the thickness of the corresponding resistive layer follows the trend of the reflector that is inclined towards the west.  相似文献   

18.
东辛油田是一个典型的断块复杂构造。在这个油田上,地震精查的方法在搞清断裂系统方面,取得了较好的成效。本文简述了在该油田早期所采用的一套三维地震解释(立体归位)方法,其中有些方法对当前搞三维地震勘探,及断层面的地质解释方面都还有着参考价值。近年来,又用数字地震方法,在此浅层的复杂构造的下面,发现了比较简单的深层构造,在几张附图中展示了深浅层构造之间的关系。  相似文献   

19.
The use of data file systems within the areas of geological well log and reservoir analysis is now accepted as a necessity in the storage and correlation of large volumes of diverse information. Multi-channel and three-dimensional seismic recording techniques of various types result in a situation where the amount of processing parameters and derived seismic properties of a trace are rapidly approaching the amount of the recorded data themselves. The requirement to access these statistics efficiently has introduced the problems of data management to the seismic processing community. Much software effort has been expended in the design of algorithms for cross reference and indexing of the statistics required in signal processing. These efforts, however, are generally in the direction of a localized solution to a specific requirement and tend to ignore the data base concepts well developed within the commercial data processing community. This paper examines the applicability of commercial data base concepts to the problems of data handling in the area of geophysical exploration, sets forth some basic definitions and organizational characteristics, and describes a system for the integration of several earth disciplines within a single data base from which parameters and mapped information may be derived and indexed for the purpose of processing and interpretation.  相似文献   

20.
In this study we present the workflow and results of 2D frequency domain waveform tomography applied to the global‐offset seismic data acquired in central Poland along a 50‐km long profile during the GRUNDY 2003 experiment. The waveform tomography method allows full exploitation of the wide‐aperture content of these data and produces in a semi‐automatic way both the detailed P‐wave velocity model and the structural image (i.e., perturbations in respect to the starting model). Thirteen frequencies ranging from 4 to 16 Hz were inverted sequentially, gradually introducing higher wavenumbers and more details into the velocity models. Although the data were characterised by relatively large shot spacings (1.5 km), we obtained clear images both of the Mesozoic and Permian sedimentary cover. Velocity patterns indicated facies changes within the Jurassic and Zechstein strata. A high velocity layer (ca. 5500 m/s) was found near the base of Triassic (Scythian), which made the imaging of a deeper layer difficult. Nevertheless, we were able to delineate the base of the Permian (i.e., base of the Rotliegend), which was not possible to derive from conventional common‐depth‐point processing, as well as some deeper events, attributed to the Carboniferous. The sub‐Permian events formed a syn‐form which favoured our previous interpretation of a depression filled with Upper Carboniferous molasse. The validity of the waveform tomography‐derived model was confirmed by well‐log data. Forward ray‐tracing modelling and synthetic seismograms calculations provided another justification for the key structures present in the waveform tomography model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号