首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
We implement the 3D Marchenko equations to retrieve responses to virtual sources inside the subsurface. For this, we require reflection data at the surface of the Earth that contain no free-surface multiples and are densely sampled in space. The required 3D reflection data volume is very large and solving the Marchenko equations requires a significant amount of computational cost. To limit the cost, we apply floating point compression to the reflection data to reduce their volume and the loading time from disk. We apply the Marchenko implementation to numerical reflection data to retrieve accurate Green's functions inside the medium and use these reflection data to apply imaging. This requires the simulation of many virtual source points, which we circumvent using virtual plane-wave sources instead of virtual point sources. Through this method, we retrieve the angle-dependent response of a source from a depth level rather than of a point. We use these responses to obtain angle-dependent structural images of the subsurface, free of contamination from wrongly imaged internal multiples. These images have less lateral resolution than those obtained using virtual point sources, but are more efficiently retrieved.  相似文献   

2.
常规虚源点Marchenko自聚焦多次波预测方法只适用于预测不含自由表面的多次波模型,局限于压制层间多次波,该方法在构建上下行格林函数场前,必须从反射响应中去除所有与表面相关的多次波.本文对构建上下行Marchenko格林函数方程进行改进,得到了包含一次波、层间多次波和自由表面多次波的格林函数,利用改进的Marchenko自聚焦预测方法预测自由表面多次波.本文利用水平层状模型数据及SMARRT模型数据证明,改进后的Marchenko法预测海底相关的自由表面多次波效果较为理想,该方法避免了常规SRME自由表面多次波预测方法需要近道重构的缺陷,能够有效提高地震资料的信噪比和分辨率.  相似文献   

3.
地震资料含有各种类型多次波,而传统成像方法仅利用地震一次反射波成像,在地震成像前需将多次波去除.然而,多次波携带了丰富的地下结构信息,多次波偏移能够提供除反射波外的额外地下照明.修改传统逆时偏移方法,用包含一次反射波和多次波的原始记录代替震源子波,将SRME方法预测的表面多次波代替一次反射波作为输入数据,可将表面多次波成像.多次波成像的挑战和困难在于大量串扰噪声的产生,针对表面多次波成像中的成像噪声问题,将最小二乘逆时偏移方法与多次波分阶思想结合起来,发展可控阶数的表面多次波反演成像方法,有望初步实现高精度的表面多次波成像.在消除原始记录中的表面多次波后,通过逆散射级数方法预测得到层间多次波,将层间多次波作为逆时偏移方法的输入数据可将其准确归位到地下反射位置.数值实验表明,多次波成像能够有效地为地下提供额外照明,而可控阶表面多次波最小二乘逆时偏移成像方法几乎完全避免成像噪声.  相似文献   

4.
Interferometric redatuming is a data‐driven method to transform seismic responses with sources at one level and receivers at a deeper level into virtual reflection data with both sources and receivers at the deeper level. Although this method has traditionally been applied by cross‐correlation, accurate redatuming through a heterogeneous overburden requires solving a multidimensional deconvolution problem. Input data can be obtained either by direct observation (for instance in a horizontal borehole), by modelling or by a novel iterative scheme that is currently being developed. The output of interferometric redatuming can be used for imaging below the redatuming level, resulting in a so‐called interferometric image. Internal multiples from above the redatuming level are eliminated during this process. In the past, we introduced point‐spread functions for interferometric redatuming by cross‐correlation. These point‐spread functions quantify distortions in the redatumed data, caused by internal multiple reflections in the overburden. In this paper, we define point‐spread functions for interferometric imaging to quantify these distortions in the image domain. These point‐spread functions are similar to conventional resolution functions for seismic migration but they contain additional information on the internal multiples in the overburden and they are partly data‐driven. We show how these point‐spread functions can be visualized to diagnose image defocusing and artefacts. Finally, we illustrate how point‐spread functions can also be defined for interferometric imaging with passive noise sources in the subsurface or with simultaneous‐source acquisition at the surface.  相似文献   

5.
The South China Sea where water depth is up to 5000 m is the most promising oil and gas exploration area in China in the future.The seismic data acquired in the South China Sea contain various types of multiples that need to be removed before imaging can be developed.However,compared with the conventional reflection migration,multiples carry more information of the underground structure that helps provide better subsurface imaging.This paper presents a method to modify the conventional reverse time migration so that multiple reflections can migrate to their correct locations in the subsurface.This approach replaces the numerical impulsive source with the recorded data including primaries and multiples on the surface,and replaces the recorded primary reflection data with multiples.In the reverse time migration process,multiples recorded on the surface are extrapolated backward in time to each depth level,while primaries and multiples recorded on the surface are extrapolated forward in time to the same depth levels.By matching the difference between the primary and multiple images using an objective function,this algorithm improves the primary resultant image.Synthetic tests on Sigsbee2 B show that the proposed method can obtain a greater range and better underground illumination.Images of deep water in the South China Sea are obtained using multiples and their matching with primaries.They demonstrate that multiples can make up for the reflection illumination and the migration of multiples is an important research direction in the future.  相似文献   

6.
In this paper, we built upon the estimating primaries by sparse inversion (EPSI) method. We use the 3D curvelet transform and modify the EPSI method to the sparse inversion of the biconvex optimization and L1-norm regularization, and use alternating optimization to directly estimate the primary reflection coefficients and source wavelet. The 3D curvelet transform is used as a sparseness constraint when inverting the primary reflection coefficients, which results in avoiding the prediction subtraction process in the surface-related multiples elimination (SRME) method. The proposed method not only reduces the damage to the effective waves but also improves the elimination of multiples. It is also a wave equationbased method for elimination of surface multiple reflections, which effectively removes surface multiples under complex submarine conditions.  相似文献   

7.
In recent years, a variety of Marchenko methods for the attenuation of internal multiples has been developed. These methods have been extensively tested on two-dimensional synthetic data and applied to two-dimensional field data, but only little is known about their behaviour on three-dimensional synthetic data and three-dimensional field data. Particularly, it is not known whether Marchenko methods are sufficiently robust for sparse acquisition geometries that are found in practice. Therefore, we start by performing a series of synthetic tests to identify the key acquisition parameters and limitations that affect the result of three-dimensional Marchenko internal multiple prediction and subtraction using an adaptive double-focusing method. Based on these tests, we define an interpolation strategy and use it for the field data application. Starting from a wide azimuth dense grid of sources and receivers, a series of decimation tests are performed until a narrow azimuth streamer geometry remains. We evaluate the effect of the removal of sail lines, near offsets, far offsets and outer cables on the result of the adaptive double-focusing method. These tests show that our method is most sensitive to the limited aperture in the crossline direction and the sail line spacing when applying it to synthetic narrow azimuth streamer data. The sail line spacing can be interpolated, but the aperture in the crossline direction is a limitation of the acquisition. Next, we apply the adaptive Marchenko double-focusing method to the narrow azimuth streamer field data from the Santos Basin, Brazil. Internal multiples are predicted and adaptively subtracted, thereby improving the geological interpretation of the target area. These results imply that our adaptive double-focusing method is sufficiently robust for the application to three-dimensional field data, although the key acquisition parameters and limitations will naturally differ in other geological settings and for other types of acquisition.  相似文献   

8.
9.
数据自相关多次波偏移成像   总被引:1,自引:1,他引:0       下载免费PDF全文
在常规偏移方法中一般都需要压制地震数据中的多次波,仅利用一次波信息成像,把自由表面反射的多次波视为噪声,但是在多次波中也包含着地下结构信息,应该将其充分利用到成像中来.事实上,已经有不少成像方法试图利用多次波信息,但是大部分方法都需要对多次波进行预测.本文提出了基于傅里叶有限差分偏移算子的数据自相关偏移方法.在这种偏移方法中,对含有一次波和多次波的地震数据,分别进行下行和上行延拓,然后直接利用常规的互相关成像条件成像.由于波场延拓采用了傅里叶有限差分算子,其计算效率高,能够很好地对复杂介质中的地震数据进行延拓.在数值试验中,使用了一个含散射点的三层模型和Marmousi模型.合成数据测试结果表明,这种方法可以对更大范围的地下构造成像,比常规的只利用一次波的傅里叶有限差分法照明度更好,并且在浅层可以提供更高的分辨率.我们提出的数据自相关策略易于实现且避免了繁杂的多次波预测,这对于复杂地下构造成像可能有着重大意义.  相似文献   

10.
基于波射线路径偏移压制多次波   总被引:24,自引:10,他引:14       下载免费PDF全文
波射线路径压制多次波的反射波成像是在偏移过程去除多次波同时仅对反射波成像.通过在共炮道集和共检波点道集分别计算炮点射线的入射角和检波点射线的出射角计算射线的路径.从炮点入射的射线与从检波点出射的射线的交点形成的走时,若等于观测走时,可以判断此条射线是反射波;反之,若不相等,则是多次波.数值实验表明此方法可以有效地去掉由于多次波能量产生的假成像点和压制多次波,因此界面可以正确归位,同时去掉由于多次波引起的假成像位置.  相似文献   

11.
In the field of seismic interferometry, researchers have retrieved surface waves and body waves by cross‐correlating recordings of uncorrelated noise sources to extract useful subsurface information. The retrieved wavefields in most applications are between receivers. When the positions of the noise sources are known, inter‐source interferometry can be applied to retrieve the wavefields between sources, thus turning sources into virtual receivers. Previous applications of this form of interferometry assume impulsive point sources or transient sources with similar signatures. We investigate the requirements of applying inter‐source seismic interferometry using non‐transient noise sources with known positions to retrieve reflection responses at those positions and show the results using synthetic drilling noise as source. We show that, if pilot signals (estimates of the drill‐bit signals) are not available, it is required that the drill‐bit signals are the same and that the phases of the virtual reflections at drill‐bit positions can be retrieved by deconvolution interferometry or by cross‐coherence interferometry. Further, for this case, classic interferometry by cross‐correlation can be used if the source power spectrum can be estimated. If pilot signals are available, virtual reflection responses can be obtained by first using standard seismic‐while‐drilling processing techniques such as pilot cross‐correlation and pilot deconvolution to remove the drill‐bit signatures in the data and then applying cross‐correlation interferometry. Therefore, provided that pilot signals are reliable, drill‐bit data can be redatumed from surface to borehole depths using this inter‐source interferometry approach without any velocity information of the medium, and we show that a well‐positioned image below the borehole can be obtained using interferometrically redatumed reflection responses with just a simple velocity model. We discuss some of the practical hurdles that restrict the application of the proposed method offshore.  相似文献   

12.
Recent advances in survey design have led to conventional common‐midpoint‐based analysis being replaced by subsurface‐based seismic acquisition analysis, with emphasis on advanced techniques of illumination analysis. Among them is the so‐called focal beam method, which is a wave‐equation‐based seismic illumination analysis method. The objective of the focal beam method is to provide a quantitative insight into the combined influence of acquisition geometry, overburden structure, and migration operators on the resolution and angle‐dependent amplitude fidelity of the image. The method distinguishes between illumination and sensing capability of a particular acquisition geometry by computing the focal source beam and the focal detector beam, respectively. Sensing is related to the detection properties of a detector configuration, whereas illumination is related to the emission properties of a source configuration. The focal source beam analyses the incident wavefield at a specific subsurface grid point from all available sources, whereas the focal detector beam analyses the sensing wavefield reaching at the detector locations from the same subsurface grid point. In the past, this method could only address illumination by primary reflections. In this paper, we will extend the concept of the focal beam method to incorporate the illumination due to the surface and internal multiples. This in fact complies with the trend of including multiples in the imaging process. Multiple reflections can illuminate a target location from other angles compared with primary reflections, resulting in a higher resolution and an improved illumination. We demonstrate how an acquisition‐related footprint can be corrected using both the surface and the internal multiples.  相似文献   

13.
基于虚源估计的复杂上覆地层下地震相干成像   总被引:2,自引:2,他引:0       下载免费PDF全文
在上覆地层比较复杂的情况下,常规地震勘探方法常常难以得到好的成像.本文研究了基于地震相干避开复杂上覆地层对地震波的影响,利用VSP数据估计地震虚源直接对目的地层进行成像的方法.在地震相干成像过程中,震源子波对分辨率有比较大的影响,尤其是存在薄层的条件下,两个非常近的反射同相轴将无法辨认.利用估计出虚源地震子波的性质,对...  相似文献   

14.
基于单程波偏移算子的地表相关多次波成像   总被引:3,自引:3,他引:0       下载免费PDF全文
在常规地震资料处理中,多次反射波被视为噪声并从地震数据中去除,以免在之后的地震资料解释中造成误解.而事实上,多次波也是地震信号,是照明波场的一部分,能够对地下构造成像的精度做出贡献.本文分析了多次波在传统单程波叠前深度偏移中产生构造假象的机制和表现,为实现基于单程波偏移算子的多次波成像,修改了单程波叠前深度偏移的边界条件,即将输入的震源波场用包含多次波的记录来替代,输入的记录波场用预测出的表层相关多次波来替代,实现了基于单程波偏移算子的地表相关多次波成像,并从理论上给出了其成像依据.通过基于二范式最小能量差原则求取的匹配因子,将多次波成像结果与一次波成像结果进行匹配叠加,应用多次波成像来弥补一次波成像的不足.简单模型验证了基于单程波偏移算子的多次波成像方法的有效性,最后对Sigsbee2B模型进行了一次波与多次波联合成像试算,盐边界高陡构造成像质量得到了明显改善.  相似文献   

15.
A field study was undertaken to evaluate the effectiveness of the high frequency seismic reflection technique for mapping of shallow and irregular bedrock. Bedrock reflections were obtained using a hammer source with both in-line and common offset field layouts. The recording equipment included 12-channel enhancement seismographs, 28 Hz vertical geo-phones and a microcomputer. The latter increased the overall versatility of the seismic system. Field sites for this study are typical of the geological settings of the tin mining areas of Malaysia. The topographical ‘lows’ of the irregular bedrock control the localization of tin ore. The subsurface geology consists of a thin low velocity layer (± 300 m/s) overlying the compact overburden (± 1700 m/s) which in turn lies on bedrock. This paper discusses various criteria for designing an optimum window for obtaining usable reflections between the first arrival and the leading edge of the ground roll cone. Detailed mapping of the overburden and the bedrock interface by the reflection method can be useful in delineating areas for exploratory drilling and for optimum planning of mining operations.  相似文献   

16.
The key processes in marine seismic imaging include (i) removing from seismic data all seismic events (free-surface multiples and ghosts) which contain at least one reflection at the sea surface in their wave-propagation path, and leaving those with no reflection at the free surface (internal multiples and primaries), (ii) removing events with at least two reflections in the subsurface (internal multiples), and leaving events with only one reflection in the subsurface (primaries), and then (iii) locating the scattering points and reflectors inside the subsurface which are the sources of primaries and internal multiple events. All these processes are here explained, derived, and optimized via scattering diagrams (diagrammatica) in a way similar to the way the quantum field theory is often explained via Feynman diagrams. Our discussion of the removal of events with free-surface reflections from the data will be brief, as the diagrammatica of these events are now well understood.The main focus of this paper is the diagrammatica of internal multiples and primaries. Although these events do not contain any reflection at the sea surface, it is important to reconstruct them with scattering points near the sea surface, where seismic data are recorded. So our diagrammatica of primaries and internal multiples include events which are not directly recorded in seismic data but which can be constructed from seismic data. These events have allowed us to construct scattering diagrams of primaries and internal multiples with scattering points near the sea surface. Furthermore, these new diagrammatica of internal multiples and primaries can be used to remove internal multiples from the data.  相似文献   

17.
受井中检波器串级数局限,垂直地震剖面(VSP)反射波成像范围窄,且不能对井中最浅接收点上方区域有效成像.虽然多次波成像能扩大成像范围,但在实际应用中尚有诸多困难和挑战.本文根据Wapenaar的地震干涉理论,基于上下行波场分离技术,研发了VSP地震干涉成像方法.该方法将VSP自由表面多次波重建为在地表震源位置激发(虚震源)接收的拟地面地震反射波,然后偏移成像,以达到对多次波间接成像的目的.通过数值模型实验,测试了VSP干涉成像的极限分辨率,并讨论了主要采集参数的影响,结果表明:该方法的垂向和水平极限分辨率分别达约10m和20m,且能分辨深度达6500m处的50m×100m溶洞;采用12至24道井中检波器串采集的VSP资料,其干涉成像结果显著优于VSP反射波成像,与相应的地面地震成像效果相当.将本文方法应用于新疆地区采集的VSP资料,结果表明:与VSP反射波成像相比,成像同相轴更加连续,成像范围显著扩大;与地面地震成像相比,成像结果相当,尤其在浅中部甚至更好.新方法不仅无需进行井中接收点静校正,且能显著增大成像范围,有利于成像同相轴的追踪对比、地震属性提取和地质解释,尤其对中国新疆地区深部缝洞型储层的成像,具有广泛的实际应用前景.  相似文献   

18.
The travel time inversion of wide-angle seismic data is a technique commonly used in the deep seismic sounding. We propose an application of this technique to a smaller scale of a sedimentary layer, where the characteristics of seismic observations changes significantly. Field observations confirmed by synthetic analysis recognize the dominant amplitudes of wide-angle post-critical reflections. A case study is presented in this paper, of a joint interpretation of conventional reflection seismic with reflection imaging, combined with the wide-angle travel time inversion of additional full-spread observations. A joint interpretation results in a precise recognition of the seismic velocity distribution, that is further used for the seismic depth conversion with the uncertainty analysis of the depth of the reflecting horizons. Despite the salt layer in the studied structure this method is able to precisely recognize the seismic velocities of the sub-salt structures.  相似文献   

19.
We use numerically modelled data sets to investigate the sensitivity of electromagnetic interferometry by multidimensional deconvolution to spatial receiver sampling. Interferometry by multidimensional deconvolution retrieves the reflection response below the receivers after decomposition of the fields into upward and downward decaying fields and deconvolving the upward decaying field by the downward decaying field. Thereby the medium above the receiver level is replaced with a homogeneous half‐space, the sources are redatumed to the receiver level and the direct field is removed. Consequently, in a marine setting the retrieved reflection response is independent of any effect of the water layer and the air above. A drawback of interferometry by multidimensional deconvolution is a possibly unstable matrix inversion, which is necessary to retrieve the reflection response. Additionally, in order to correctly separate the upward and the downward decaying fields, the electromagnetic fields need to be sampled properly. We show that the largest possible receiver spacing depends on two parameters: the vertical distance between the source and the receivers and the length of the source. The receiver spacing should not exceed the larger of these two parameters. Besides these two parameters, the presence of inhomogeneities close to the receivers may also require a dense receiver sampling. We show that by using the synthetic aperture concept, an elongated source can be created from conventionally acquired data in order to overcome these strict sampling criteria. Finally, we show that interferometry may work under real‐world conditions with random noise and receiver orientation and positioning errors.  相似文献   

20.
波路径偏移压制层间多次波的理论与应用   总被引:4,自引:4,他引:0       下载免费PDF全文
消除层间多次波是地震勘探资料处理研究领域的难题,尤其对于实际资料的处理,到目前为止还很难找到一种完全有效的方法. 本文给出了仅对一次波成像既波路径偏移方法压制层间多次波方法,在共炮道集和共检波点道集分别计算炮点射线的入射角和检波点射线的出射角,由此计算的角度作为射线追踪的初始角度,计算地震波射线的传播路径. 结合由程函方程计算的走时表,判断偏移范围是反射波还是多次波. 在前期偏移过程压制多次波的理论研究基础上,本文主要研究波路径偏移消除多次波的应用部分. 为了进一步说明效果的有效性,计算了在单炮和共成像点道集压制层间多次波,给出了实际资料的压制多次波的偏移结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号