首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Beldih open cast mine of the South Purulia Shear Zone in Eastern India is well known for apatite deposits associated with Nb–rare‐earth‐element–uranium mineralization within steeply dipping, altered ferruginous kaolinite and quartz–magnetite–apatite rocks with E–W strikes at the contact of altered mafic–ultramafic and granite/quartzite rocks. A detailed geophysical study using gravity, magnetic, and gradient resistivity profiling surveys has been carried out over ~1 km2 area surrounding the Beldih mine to investigate further the dip, depth, lateral extension, and associated geophysical signatures of the uranium mineralization in the environs of South Purulia Shear Zone. The high‐to‐low transition zone on the northern part and high‐to‐low anomaly patches on the southeastern and southwestern parts of the Bouguer, reduced‐to‐pole magnetic, and trend‐surface‐separated residual gravity–magnetic anomaly maps indicate the possibility of highly altered zone(s) on the northern, southeastern, and southwestern parts of the Beldih mine. The gradient resistivity survey on either side of the mine has also revealed the correlation of low‐resistivity anomalies with low‐gravity and moderately high magnetic anomalies. In particular, the anomalies and modeled subsurface features along profile P6 perfectly match with subsurface geology and uranium mineralization at depth. Two‐dimensional and three‐dimensional residual gravity models along P6 depict the presence of highly altered vertical sheet of low‐density material up to a depth of ~200 m. The drilling results along the same profile confirm the continuation of uranium mineralization zone for the low‐density material. This not only validates the findings of the gravity model but also establishes the geophysical signatures for uranium mineralization as low‐gravity, moderate‐to‐high magnetic, and low‐resistivity values in this region. This study enhances the scope of further integrated geophysical investigations along the South Purulia Shear Zone to delineate suitable target areas for uranium exploration.  相似文献   

2.
首先对岩石的速度、密度、磁化率、电阻率等物性资料进行统计分析 ,寻找它们之间的内在联系 ,在此基础上综合各种有用信息建立统一的物理 -地质模型。在统一的物理 -地质模型之上 ,进行重、磁、电、震单一方法的反演 ,分析各种物探方法反演结果的相容性与相背性 ,重新修改模型并进行重、磁、电、震的联合反演 ,最终确定深部地层的地质属性  相似文献   

3.
交叉梯度联合反演方法通过对多种地球物理模型实现结构耦合,在岩石物性关系不确定的情况下,既能提高反演结果的可靠性,又能减少反演的多解性,还能减少不同方法解释结果之间的矛盾.当不同的模型观测数据覆盖范围不一致时,交叉梯度联合反演通常需要取出重叠区域数据进行联合反演,并且建模时还要扩展一些模型范围.本文首先提出并实现了部分区域约束下的交叉梯度多重地球物理数据联合反演算法;接着进行了算法的模型试算;最后,我们将该反演算法用于本溪—集安深部地质调查重磁电综合地质地球物理解释中.结果表明:该算法不但能在重叠区域内很好地恢复结构相似的模型,而且在非重叠区域与重叠区域的边界处仍然可以得到平滑变化的模型;在本溪—集安10号剖面所获得的结构上相似的电阻率、密度及磁化率模型较好地反映了该区的深部地质结构,对于确定深部地质体的性质提供了有力的证据.  相似文献   

4.
We propose a Bayesian fusion approach to integrate multiple geophysical datasets with different coverage and sensitivity. The fusion strategy is based on the capability of various geophysical methods to provide enough resolution to identify either subsurface material parameters or subsurface structure, or both. We focus on electrical resistivity as the target material parameter and electrical resistivity tomography (ERT), electromagnetic induction (EMI), and ground penetrating radar (GPR) as the set of geophysical methods. However, extending the approach to different sets of geophysical parameters and methods is straightforward. Different geophysical datasets are entered into a trans-dimensional Markov chain Monte Carlo (McMC) search-based joint inversion algorithm. The trans-dimensional property of the McMC algorithm allows dynamic parameterisation of the model space, which in turn helps to avoid bias of the post-inversion results towards a particular model. Given that we are attempting to develop an approach that has practical potential, we discretize the subsurface into an array of one-dimensional earth-models. Accordingly, the ERT data that are collected by using two-dimensional acquisition geometry are re-casted to a set of equivalent vertical electric soundings. Different data are inverted either individually or jointly to estimate one-dimensional subsurface models at discrete locations. We use Shannon's information measure to quantify the information obtained from the inversion of different combinations of geophysical datasets. Information from multiple methods is brought together via introducing joint likelihood function and/or constraining the prior information. A Bayesian maximum entropy approach is used for spatial fusion of spatially dispersed estimated one-dimensional models and mapping of the target parameter. We illustrate the approach with a synthetic dataset and then apply it to a field dataset. We show that the proposed fusion strategy is successful not only in enhancing the subsurface information but also as a survey design tool to identify the appropriate combination of the geophysical tools and show whether application of an individual method for further investigation of a specific site is beneficial.  相似文献   

5.
基于交叉梯度结构约束的不同数据的联合反演可以提高地球物理成像的可靠度,但是由于不同观测数据对地下介质的灵敏度不同以及不同反演系统灵敏度矩阵元素的数值可能存在较大的差异,导致构建和求解联合反演系统存在很大的挑战.针对以上问题,本文提出一种新的基于单独反演模型更新量与交叉梯度结构约束相结合的联合反演策略.该策略利用单独反演系统分别确定出各个模型的更新量,然后利用它们约束交叉梯度系统的反演,得出新的模型更新量.通过这样的方式,有效实现了数据拟合与结构约束的平衡,实现了基于交叉梯度联合反演的目标.新的联合反演策略不需要对原来单独反演程序修改即可实现联合反演,减小了联合反演实现的难度,极大地提高了联合反演的易实现性,而且避免了联合反演矩阵存储及结构过于复杂难以求解的问题.基于新的策略,本文首次实现了基于交叉梯度结构约束的三维地震走时与直流电阻率联合反演.合成模型测试表明,与单一成像相比,联合成像减少了地震走时反演中出现的干扰异常并提高了电阻率反演的分辨率.  相似文献   

6.
为了降低单一地球物理方法反演的多解性及受噪声的影响程度,本文围绕重力、磁法和大地电磁法开展了三维联合反演的研究.重、磁采用基于对数障碍法的正则化反演算法,大地电磁使用limited-memory BroydenFletcher-Goldfarb-Shanno(L-BFGS)反演算法,引入交叉梯度函数实现了三种物性结构的相互耦合,最终开发出一套重磁电三维联合反演算法,并实现MPI并行加速计算.通过理论模型算例验证了算法的准确性,结果表明:不论是单棱柱体模型还是组合棱柱体模型,联合反演结果相较单独反演对于异常体的空间形态刻画以及物性数值恢复具有较好的提升;单棱柱体模型算例使得异常体的物性参数(密度、磁化率和电阻率)更加接近于真实的物性参数;组合棱柱体模型的联合反演结果不仅仅消除了围岩物性参数的假异常,而且还增强了异常体边界结构的恢复程度.  相似文献   

7.
Electrical imaging provides important subsurface information for the construction of hypervelocity impact models. We here provide an overview and evaluation of the current electrical imaging methods used in impact cratering studies. Although apparent resistivity models are commonly used in the geoelectrical imaging of impact structures, the reliability of these models has not hitherto been determined. In order to assess these imaging approaches in impact cratering, we investigate for the first time the discrepancies between the apparent resistivity and true resistivity models of an impact structure. To this end, we present (1) a new true resistivity model of the Araguainha impact structure in central Brazil by applying L2-norm inversion to previously published data, (2) apparent resistivity model of the impact structure, and (3) models obtained from different stages of the iterative tomographic inversions. Our results show that changes in vertical resistivity gradient are significantly better defined in the true resistivity models than in the apparent resistivity model. On the basis of these results, we outline a new approach that true resistivity models can be effectively assessed by applying both L1- and L2-norm inversion schemes together with the monitoring of intermediate models from iterative inversion. The results of our study highlight the importance of tomographic inversion of resistivity data in impact cratering studies, and they provide a data modeling framework and foundation for cost-effective subsurface imaging of impact structures in the future.  相似文献   

8.
高级  张海江 《地球物理学报》2016,59(11):4310-4322
在利用不同的地球物理勘探方法对地下复杂介质成像时,因观测系统的非完备性及数据本身对某些岩石物性的不敏感性,单独成像的结果存在较大的不确定性和不一致性.对于地震体波走时成像与直流电阻率成像,均面临着成像阴影区问题.对于地震走时成像,地震射线对低速区域覆盖较差形成阴影区,造成低速区域分辨率降低.对于电阻率成像,电场线在高阻区域分布较少,造成高阻区域分辨率较低.为了提高地下介质成像的精度,Gallado和Meju(2003)提出了基于交叉梯度结构约束的联合地球物理成像方法.在要求不同的物性模型拟合各自对应的数据同时,模型之间的结构要求一致,即交叉梯度趋于零.为了更有效地实现基于交叉梯度的结构约束,我们提出了一种新的交替结构约束的联合反演流程,即交替反演不同的数据而且在反演一种数据时要求对应的模型与另一个模型结构一致.新的算法能够更容易地把单独的反演系统耦合在一起,而且也更容易建立结构约束和数据拟合之间的平衡.基于新的联合反演流程,我们测试了基于交叉梯度结构约束的二维跨孔地震走时和直流电阻率联合成像.合成数据测试表明,我们提出的交替结构约束流程能够很好地实现基于交叉梯度结构约束的联合成像.与单独成像结果相比,地震走时和全通道电阻率联合成像更可靠地确定了速度和电阻率异常.  相似文献   

9.
基于非结构网格的电阻率三维带地形反演   总被引:6,自引:3,他引:3       下载免费PDF全文
吴小平  刘洋  王威 《地球物理学报》2015,58(8):2706-2717
地表起伏地形在野外矿产资源勘察中不可避免,其对直流电阻率法勘探影响巨大.近年来,电阻率三维正演取得诸多进展,特别是应用非结构网格我们能够进行任意复杂地形和几何模型的电阻率三维数值模拟,但面向实际应用的起伏地形下电阻率三维反演依然困难.本文基于非结构化四面体网格,并考虑到应用GPS/GNSS时,区域地球物理调查中可非规则布设测网的实际特点,实现了任意地形(平坦或起伏)条件下、任意布设的偶极-偶极视电阻率数据的不完全Gauss-Newton三维反演.合成数据的反演结果表明了方法的有效性,可应用于复杂野外环境下的三维电法勘探.  相似文献   

10.
Salt water intrusion models are commonly used to support groundwater resource management in coastal aquifers. Concentration data used for model calibration are often sparse and limited in spatial extent. With airborne and ground‐based electromagnetic surveys, electrical resistivity models can be obtained to provide high‐resolution three‐dimensional models of subsurface resistivity variations that can be related to geology and salt concentrations on a regional scale. Several previous studies have calibrated salt water intrusion models with geophysical data, but are typically limited to the use of the inverted electrical resistivity models without considering the measured geophysical data directly. This induces a number of errors related to inconsistent scales between the geophysical and hydrologic models and the applied regularization constraints in the geophysical inversion. To overcome these errors, we perform a coupled hydrogeophysical inversion (CHI) in which we use a salt water intrusion model to interpret the geophysical data and guide the geophysical inversion. We refer to this methodology as a Coupled Hydrogeophysical Inversion‐State (CHI‐S), in which simulated salt concentrations are transformed to an electrical resistivity model, after which a geophysical forward response is calculated and compared with the measured geophysical data. This approach was applied for a field site in Santa Cruz County, California, where a time‐domain electromagnetic (TDEM) dataset was collected. For this location, a simple two‐dimensional cross‐sectional salt water intrusion model was developed, for which we estimated five uniform aquifer properties, incorporating the porosity that was also part of the employed petrophysical relationship. In addition, one geophysical parameter was estimated. The six parameters could be resolved well by fitting more than 300 apparent resistivities that were comprised by the TDEM dataset. Except for three sounding locations, all the TDEM data could be fitted close to a root‐mean‐square error of 1. Possible explanations for the poor fit of these soundings are the assumption of spatial uniformity, fixed boundary conditions and the neglecting of 3D effects in the groundwater model and the TDEM forward responses.  相似文献   

11.
Z‐axis tipper electromagnetic and broadband magnetotelluric data were used to determine three‐dimensional electrical resistivity models of the Morrison porphyry Cu–Au–Mo deposit in British Columbia. Z‐axis tipper electromagnetic data are collected with a helicopter, thus allowing rapid surveys with uniform spatial sampling. Ground‐based magnetotelluric surveys can achieve a greater exploration depth than Z‐axis tipper electromagnetic surveys, but data collection is slower and can be limited by difficult terrain. The airborne Z‐axis tipper electromagnetic tipper data and the ground magnetotelluric tipper data show good agreement at the Morrison deposit despite differences in the data collection method, spatial sampling, and collection date. Resistivity models derived from individual inversions of the Z‐axis tipper electromagnetic tipper data and magnetotelluric impedance data contain some similar features, but the Z‐axis tipper electromagnetic model appears to lack resolution below a depth of 1 km, and the magnetotelluric model suffers from non‐uniform and relatively sparse spatial sampling. The joint Z‐axis tipper electromagnetic inversion solves these issues by combining the dense spatial sampling of the airborne Z‐axis tipper electromagnetic technique and the deeper penetration of the lower frequency magnetotelluric data. The resulting joint resistivity model correlates well with the known geology and distribution of alteration at the Morrison deposit. Higher resistivity is associated with the potassic alteration zone and volcanic country rocks, whereas areas of lower resistivity agree with known faults and sedimentary units. The pyrite halo and ≥0.3% Cu zone have the moderate resistivity that is expected of disseminated sulphides. The joint Z‐axis tipper electromagnetic inversion provides an improved resistivity model by enhancing the lateral and depth resolution of resistivity features compared with the individual Z‐axis tipper electromagnetic and magnetotelluric inversions. This case study shows that a joint Z‐axis tipper electromagnetic–magnetotelluric approach effectively images the interpreted mineralised zone at the Morrison deposit and could be beneficial in exploration for disseminated sulphides at other porphyry deposits.  相似文献   

12.
Many synthetic model studies suggested that the best way to obtain good 3D interpretation results is to distribute the MT sites at a 2D grid array with regular site spacing over the target area. However, MT 3D inversion was very difficult about 10 years ago. A lot of MT data were collected along one profile and then interpreted with 2D inversion. How to apply the state-of-the-art 3D inversion technique to interpret the accumulated mass MT profiles data is an important topic. Some studies on 3D inversion of measured MT profile data suggested that 2D inversions usually had higher resolution for the subsurface than 3D inversions. Meanwhile, they often made their interpretation based on 2D inversion results, and 3D inversion results were only used to evaluate whether the overall resistivity structures were correct. Some researchers thought that 3D inversions could not resolute the local structure well, while 2D inversion results could agree with the surface geologic features much well and interpret the geologic structures easily. But in the present paper, we find that the result of 3D inversion is better than that of 2D inversion in identifying the location of the two local faults, the Shade Fault(SDF)and the Yunongxi Fault(YNXF), and the deep structures. In this paper, we first studied the electrical structure of SDF and YNXF based on a measured magnetotelluric(MT) profile data. Besides, from the point of identifying active faults, we compared the capacity of identifying deep existing faults between 2D inversion models and 3D models with different inversion parameters. The results show that both 2D and 3D inversion of the single-profile data could obtain reasonable and reliable electrical structures on a regional scale. Combining 2D and 3D models, and according to our present data, we find that both SDF and YNXF probably have cut completely the high resistivity layer in the upper crust and extended to the high conductivity layer in the middle crust. In terms of the deep geometry of the faults, at the profile's location, the SDF dips nearly vertically or dips southeast with high dip angle, and the YNXF dips southeast at depth. In addition, according to the results from our measured MT profile, we find that the 3D inversion of single-profile MT data has the capacity of identifying the location and deep geometry of local faults under present computing ability. Finally, this research suggests that appropriate cell size and reasonable smoothing parameters are important factors for the 3D inversion of single-profile MT data, more specifically, too coarse meshes or too large smoothing parameters on horizontal direction of 3D inversion may result in low resolution of 3D inversions that cannot identify the structure of faults. While, for vertical mesh size and data error thresholds, they have limited effect on identifying shallow tectonics as long as their changes are within a reasonable range. 3D inversion results also indicate that, to some extent, adding tippers to the 3D inversion of a MT profile can improve the model's constraint on the deep geometry of the outcropped faults.  相似文献   

13.
In order to interpret field data from small-loop electromagnetic (EM) instruments with fixed source–receiver separation, 1D inversion method is commonly used due to its efficiency with regard to computation costs. This application of 1D inversion is based on the assumption that small-offset broadband EM signals are insensitive to lateral resistivity variation. However, this assumption can be false when isolated conductive bodies such as man-made objects are embedded in the earth. Thus, we need to clarify the applicability of the 1D inversion method for small-loop EM data. In order to systematically analyze this conventional inversion approach, we developed a 2D EM inversion algorithm and verified this algorithm with a synthetic EM data set. 1D and 2D inversions were applied to synthetic and field EM data sets. The comparison of these inversion results shows that the resistivity distribution of the subsurface constructed by the 1D inversion approach can be distorted when the earth contains man-made objects, because they induce drastic variation of the resistivity distribution. By analyzing the integrated sensitivity of the small-loop EM method, we found that this pitfall of 1D inversion may be caused by the considerable sensitivity of the small-loop EM responses to lateral resistivity variation. However, the application of our 2D inversion algorithm to synthetic and field EM data sets demonstrate that the pitfall of 1D inversion due to man-made objects can be successfully alleviated. Thus, 2D EM inversion is strongly recommended for detecting conductive isolated bodies, such as man-made objects, whereas this approach may not always be essential for interpreting the EM field data.  相似文献   

14.
Fractures are deformations in rocks with discontinuity. They are important in a number of ways. Their presence significantly influences the strength and engineering properties as well as the hydraulic characteristics of rocks. Fractures may extend to the surface where they are observed and studied at outcrops. On the other hand, they may terminate in the subsurface or may be covered by overburden which makes them impossible to be studied and characterized at the ground surface. There has been an increasing interest in the location and characterization of fractures by earth scientists, engineers and other scientists, both at the surface and the subsurface. However, the unavailability or inaccessibility of good outcrops makes it imperative to develop methods and tools for studying fractures in the subsurface. Geophysical methods such as the resistivity methods have been very useful in this regard. The Azimuthal Square Array Resistivity Survey was used in this project to locate and characterize subsurface fractures in the crystalline rocks at Igarra. Results from the analysis and interpretation of the field data showed that the dominant fracture strike orientation is in the NNW–SSE direction. This compares well with the results of surface geologic mapping data which gave the general fracture strike orientation as N–S; however, the major large and extensive fractures are striking NNW–SSE. This information is very useful in modeling groundwater flow and contaminant transport; planning proper waste management programs as well as the Environmental Impact Assessment analysis for the study area. This study once more illustrates the satisfactory use of non-invasive geophysical methods in characterizing fractures in the subsurface especially where quality outcrops are not available or inaccessible.  相似文献   

15.
The study presents a fast imaging technique for the very low‐frequency data interpretation. First, an analytical expression was derived to compute the vertical component of the magnetic field at any point on the Earth's surface for a given current density distribution in a rectangular block on the subsurface. Current density is considered as exponentially decreasing with depth, according to the skin depth rule in a particular block. Subsequently, the vertical component of the magnetic field due to the entire subsurface was computed as the sum of the vertical component of the magnetic field due to an individual block. Since the vertical component of the magnetic field is proportional to the real part of very low‐frequency anomaly, an inversion program was developed for imaging of the subsurface conductors using the real very low‐frequency anomaly in terms of apparent current density distribution in the subsurface. Imaging results from the presented formulation were compared with other imaging techniques in terms of apparent current density and resistivity distribution using a standard numerical forward modelling and inversion technique. Efficacy of the developed approach was demonstrated for the interpretation of synthetic and field very low‐frequency data. The presented imaging technique shows improvement with respect to the filtering approaches in depicting subsurface conductors. Further, results obtained using the presented approach are closer to the results of rigorous resistivity inversion. Since the presented approach uses only the real anomaly, which is not sensitive to very small isolated near‐surface conducting features, it depicts prominent conducting features in the subsurface.  相似文献   

16.
Full waveform inversion algorithms are widely used in the construction of subsurface velocity models. In the following study, we propose a Laplace–Fourier-domain waveform inversion algorithm that uses both Laplace-domain and Fourier-domain wavefields to achieve the reconstruction of subsurface velocity models. Although research on the Laplace–Fourier-domain waveform inversion has been published recently that study is limited to fluid media. Because the geophysical targets of marine seismic exploration are usually located within solid media, waveform inversion that is approximated to acoustic media is limited to the treatment of properly identified submarine geophysical features. In this study, we propose a full waveform inversion algorithm for isotropic fluid–solid media with irregular submarine topography comparable to a real marine environment. From the fluid–solid system, we obtained P and S wave velocity models from the pressure data alone. We also suggested strategies for choosing complex frequency bands constructed of frequencies and Laplace coefficients to improve the resolution of the restored velocity structures. For verification, we applied our Laplace–Fourier-domain waveform inversion for fluid–solid media to synthetic data that were reconstructed for fluid–solid media. Through this inversion test, we successfully restored reasonable velocity structures. Furthermore, we successfully extended our algorithm to a field data set.  相似文献   

17.
We use Legendre polynomials to reparameterize geophysical inversions solved through a particle swarm optimization. The subsurface model is expanded into series of Legendre polynomials that are used as basis functions. In this framework, the unknown parameters become the series of expansion coefficients associated with each polynomial. The aim of this peculiar parameterization is threefold: efficiently decreasing the number of unknowns, inherently imposing a 1D spatial correlation to the recovered subsurface model and searching for maximally decoupled parameters. The proposed approach is applied to two highly non-linear geophysical optimization problems: seismic-petrophysical inversion and 1D elastic full-waveform inversion. In this work, with the aim to maintain the discussion at a simple level, we limit the attention to synthetic seismic data. This strategy allows us to draw general conclusions about the suitability of this peculiar parameterization for solving geophysical problems. The results demonstrate that the proposed approach ensures fast convergence rates together with accurate and stable final model predictions. In particular, the proposed parameterization reveals to be effective in reducing the ill conditioning of the optimization problem and in circumventing the so-called curse-of-dimensionality issue. We also demonstrate that the implemented algorithm greatly outperforms the outcomes of the more standard approach to global inversion in which each subsurface parameter is considered as an independent unknown.  相似文献   

18.
An ENE-WSW-trending localized basalt-diabase outcrop along the SE margin of Luk Ulo Mélange Complex has been suggested as intrusive rocks cut through the Paleogene Totogan and Karangsambung formations. However, the absolute dating of the volcanics is older than the inferred relative age of the sedimentary formations, hence the in-situ intrusion theory is less likely. A subsurface imaging should delineate the possibility of the in-situ nature of volcanic rock by looking at the continuation of the rocks to the depth. In this study, we did a subsurface imaging by electrical resistivity method. The electrical resistivity surveys were conducted at 3 (three) lines across the ENE-WSW trend of the volcanic distribution. From those three measurements, we obtained three inversion models that present the distribution of the resistivity. We could differentiate between the high resistivity of volcanic rocks and the low resistivity of the clay-dominated sediments. Instead of the deep-rooted intrusions, the geometry of the volcanic rocks is concordant with the sedimentary strata. Since we do not observe any spatial continuity of the bodies, both laterally and vertically, the volcanic rocks might be part of broken intrusive rocks. Furthermore, the size and the sporadically distributed of the rocks also indicated that they are more likely as fragments during the olistostrome deposition, transported from its original location.  相似文献   

19.
电阻率二维神经网络反演   总被引:32,自引:4,他引:28       下载免费PDF全文
由于非线性特性地球物理反演一直以来都是一个比较困难的问题. 近十年来,非线性反演方法如人工神经网络、遗传算法在地球物理数据解释中得到越来越多的应用,但目前基本仍限于一维反演问题. 对于二维反问题,反演参数较多,神经网络反演运用较少. 本文利用BP神经网络优化方法,实现了电阻率二维非线性反演. 与传统线性化的迭代反演比较,神经网络反演能够克服传统方法的不足、获得更好的反演结果.  相似文献   

20.
This paper discusses and addresses two questions in carbonate reservoir characterization: how to characterize pore‐type distribution quantitatively from well observations and seismic data based on geologic understanding of the reservoir and what geological implications stand behind the pore‐type distribution in carbonate reservoirs. To answer these questions, three geophysical pore types (reference pores, stiff pores and cracks) are defined to represent the average elastic effective properties of complex pore structures. The variability of elastic properties in carbonates can be quantified using a rock physics scheme associated with different volume fractions of geophysical pore types. We also explore the likely geological processes in carbonates based on the proposed rock physics template. The pore‐type inversion result from well log data fits well with the pore geometry revealed by a FMI log and core information. Furthermore, the S‐wave prediction based on the pore‐type inversion result also shows better agreement than the Greensberg‐Castagna relationship, suggesting the potential of this rock physics scheme to characterize the porosity heterogeneity in carbonate reservoirs. We also apply an inversion technique to quantitatively map the geophysical pore‐type distribution from a 2D seismic data set in a carbonate reservoir offshore Brazil. The spatial distributions of the geophysical pore type contain clues about the geological history that overprinted these rocks. Therefore, we analyse how the likely geological processes redistribute pore space of the reservoir rock from the initial depositional porosity and in turn how they impact the reservoir quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号