首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Agricultural land use is expanding and at an accelerated rate. In Ethiopia, most of this expansion has occurred in highland areas and involve deforestation of natural riparian vegetation. However, the impacts on the water quality of streams are poorly understood, especially with regard to the influence of land use patterns on highland streams. In this study, we investigated the effects of land use modifications on the water quality and riparian condition of highland streams and examined whether the preservation of riparian vegetation would help mitigate the negative impacts of intensive agriculture practices. Our results show significant differences in the water quality of streams with different land use. Several parameters commonly used to indicate water quality, such as the concentrations of orthophosphate, turbidity, and suspended solids were significantly higher in the agricultural streams than in the forest stream. The preservation of riparian vegetation in the surrounding highland streams was associated with overall better riparian condition, floristic quality, and water quality such as lower turbidity, total suspended solids, orthophosphate, and higher dissolved oxygen. We conclude, that increases in vegetation cover improved riparian condition and water quality relative to other non-vegetated areas. Therefore, we strongly recommend the preservation of riparian vegetation in tropical highland streams surrounded by intensive agriculture. More studies on the effects of best management practices in areas dominated by agriculture can greatly improve our capacity to prevent the degradation of water quality in tropical highland streams of Africa.  相似文献   

2.
The current practice of water resources use in irrigated agriculture in the Republic of Azerbaijan has some specific features and causes problems in the management of irrigation systems of different levels, associated with the existing land use and cropping patterns in the country. This article substantiates the need to implement a system of measures for improving water resources management in irrigation aimed to prevent the further depletion of their reserves through modernization of irrigation–reclamation systems and improvement of agricultural practices. The article proposes principles for protection of water resources and measures to mitigate the aftereffects of intense irrigation under anticipated increase in the internal consumption of freshwater and a decrease in transboundary river inflow into the Republic of Azerbaijan in the context of increasing water intake in the countries in Kura–Aras basin and global climate changes.  相似文献   

3.
Elevated sediment and nutrient concentrations have long been regarded as the pre-eminent water quality threats to the Great Barrier Reef, with the potential risk posed by other pollutants such as heavy metals, persistent chlorohydrocarbons, PCBs and petroleum related compounds considered to be of lesser consequence. However, the management focus on these latter types of pollutants has recently shifted to acknowledge the potential impact posed by diuron, dioxins, dieldrin, and mercury and cadmium concentrations detected in sediments and biota along the Great Barrier Reef and southern Queensland coastline. In general, these threats originate from areas dominated by intensive cropping agriculture and are exacerbated by high rainfall and erosion rates in the wet tropics region of the Queensland coast. Maintenance of long-term monitoring programmes, which utilize innovative data acquisition techniques will enable assessment of change in environmentally relevant pollutant concentrations over time. However, improved land management practices, which include an immediate minimization of vegetation clearance and responsible use of pesticides and fertilizers in Queensland are essential if water quality in the Great Barrier Reef World Heritage Area is to be maintained and protected.  相似文献   

4.
The assessment of agricultural impacts on water quality are now being redirected to include both ground water and surface water. Mathematical models have enhanced the ability of scientists'to evaluate these impacts. A variety of public domain models are available that can aid in evaluating the effects of managerial activities on pesticide movement to ground water. However, the ideal non-point source (NPS) pollution management model does not exist. Current models fail to adequately describe the transport of chemicals to ground water and, simultaneously, the effect of managerial practices on transport mechanisms. Much more work is necessary to develop a model that can describe water quality impacts of agricultural practices in a holistic framework that includes ground water and surface water concerns.  相似文献   

5.
Detection of agricultural chemicals in ground water has prompted numerous studies. Federal, state, and regional studies were conducted in the last 10 years in order to assess the occurrence of agricultural chemicals in ground water. The results of the studies present the number or percentage of samples with agricultural chemicals above the drinking water standard or health advisory levels as well as samples with detections of one or more compounds. Data comparison from one state or region to another are frequently referred to by regulatory and agency personnel involved in water quality and agriculture issues. Unless the history of pesticide use, method of chemical analyses, detection limits, statistical design of the sampling plan, well type, well depth, geology of the formation material, and typical land use around the wellhead are known, such comparisons can be misleading. Reporting the limitations or presenting a disclaimer should be a key element for a study so that "apples and oranges" are not compared.  相似文献   

6.
Understanding phosphorus (P) transport from agricultural land is essential to the development of effective management strategies that reduce the impact of agriculture on inland water quality. This paper describes the development and application of a process based model describing P transfer down a farm scale irrigation drain.  相似文献   

7.
Nonpoint source water pollution generated by agricultural production is considered a major environmental issue in the United States and Europe. One strategy in the United States has been to adopt various measures, called best management practices (BMPs), to reduce water pollution. Our research addresses legal institutions and the applied use of BMPs, and discusses compensatory payments to reduce nitrogen fertilization levels. Models employed in Georgia and Baden-Wuerttemberg evaluate institutional constraints of payments to reduce nitrogen usage, penalties for excessive leaching, and financial incentives for meeting minimum mineralized nitrogen levels. By modeling net returns, preferred economic strategies for producers are identified. Results show that while BMPs can reduce agricultural nonpoint contamination, pollution abatement may be costly to producers. Thus, reduced pollution probably will require some type of government intervention.  相似文献   

8.
9.
Regional nitrate contamination in groundwater is a management challenge involving multisector benefits. There is always conflict between restricting anthropogenic activities to protect groundwater quality and prioritizing economic development, especially in productive agriculture dominated areas. To mitigate the nitrate contamination in groundwater, it is necessary to develop management alternatives that simultaneously support environmental protection and sustainable economic development. A regional transport modeling framework is applied to evaluate nitrate fate and transport in the Dagu Aquifer, a shallow sandy aquifer that supplies drinking water and irrigation water for a thriving agricultural economy in Shandong Province in east coastal China. The aquifer supports intensive high-value vegetable farms and nitrate contamination is extensive. Detailed land-use information and fertilizer use data were compiled and statistical approaches were employed to analyze nitrogen source loadings and the spatiotemporal distribution of nitrate in groundwater to support model construction and calibration. The evaluations reveal that the spatial distribution and temporal trends of nitrate contamination in the Dagu Aquifer are driven by intensive fertilization and vertical water exchange, the dominant flow pattern derived from intensive agricultural pumping and irrigation. The modeling framework is employed to assess the effectiveness of potentially applicable management alternatives. The predictive results provide quantitative comparisons for the trend and extent of groundwater quality mitigation under each scenario. Recommendations are made for measures that can both improve groundwater quality and sustain productive agricultural development.  相似文献   

10.
Anthropogenic agricultural chemicals of concern in ground water include nitrate and pesticides. Increased legislation and regulation of contaminant levels in ground water can be expected. Ground water contamination should be prevented from getting worse, but more research is necessary so as to base regulations on sound criteria. Health effects and acceptable risks must be better formulated. More research on chemical movement in the vadose zone is necessary for accurate predictive modeling of pesticide transport to ground water. Best management practices need to be developed so that farmers will be able to farm profitably while complying with regulations for maximum contaminant levels in underlying ground water. People from all concerned disciplines, citizens'groups, and policy-makers need to work together to develop realistic regulatory policies and management practices that will effectively protect public health while ensuring a viable and sustainable agriculture.  相似文献   

11.
ABSTRACT

Santa agricultural area is a key production site for crops in Cameroon. This study aimed to look at the risk factors, knowledge and health implications of water pollution across 10 villages, in the area: 140 water points were visited and questionnaires randomly administered to water users, while health data were collected from the two local hospitals. Water sources are tap, stream, rain, well and spring and the water is used for agriculture, domestic activities, hygiene and sanitation. Pesticide pollution was illustrated by activities such as spraying, mixing and management of waste containers and purification methods are chlorination, boiling, sedimentation, filtration and refrigeration. Waterborne diseases are cholera, typhoid (the most prevalent), diarrhea, dysentery and skin diseases. Many water sources are close to toilets, farms and dumping sites. We found that 75% of respondents were not satisfied with the quality of water. Our results will be interest for water management, and to educate users on the risks linked to current practices.  相似文献   

12.
The increasing drought due to climate change poses a threat to issues such as safe and accessible drinking water, food safety, and protection from diseases. The provision of water supply is vital for agricultural and livestock activities, which are commonly practiced around natural ore deposits. Examining traditional “irrigation water quality” methods alone is insufficient; investigating potentially toxic metal content in the region's waters is vital, especially around metallic ore deposits. This study focused on the Kiraz district in Turkey, known for its agricultural activities, to assess the impact of geogenic water pollution on irrigation water quality and its implications for food safety and human health. Geology determines nutrient availability, water resources, and land suitability for agriculture. Conventional irrigation water quality parameters indicate groundwater suitability for irrigation in the study area, considering Na%, sodium adsorption ratio, residual sodium carbonate, permeability index, Kelly ratio, magnesium hazard, and potential salinity. However, when examining the potential toxic metal content in the region, it was determined that the values of Al ranged from 96 to 8676 ppb, Ni values ranged from 27 to 360 ppb, and Sb concentrations varied between 9 and 53 432 ppb. Utilizing geogenically contaminated water for irrigation and its indiscriminate use in livestock, dairy, and food industries can lead to foodborne illnesses (cancer, endocrine disruptors, tuberculosis, antimony spots, thyroid tumors, goiter, neurologic and cardiovascular diseases) that endanger human health. The use of low-quality water throughout the agricultural sector and food production chain increases food safety risks.  相似文献   

13.
The paper describes a hydrological model for agricultural water intervention in a community watershed at Kothapally in India, developed through integrated management and a consortium approach. The impacts of various soil and water management interventions in the watershed are compared to no‐intervention during a 30‐year simulation period by application of the calibrated and validated ARCSWAT 2005 (Version 2.1.4a) modelling tool. Kothapally receives, on average, 800 mm rainfall in the monsoon period. 72% of total rainfall is converted as evaporation and transpiration (ET), 20% is stored by groundwater aquifer, and 8% exported as outflow from the watershed boundary in current water interventions. ET, groundwater recharge and outflow under no‐intervention conditions are found to be 64, 9, and 19%, respectively. Check dams helped in storing water for groundwater recharge, which can be used for irrigation, as well minimising soil loss. In situ water management practices improved the infiltration capacity and water holding capacity of the soil, which resulted in increased water availability by 10–30% and better crop yields compared to no‐intervention. Water outflows from the developed watershed were more than halved compared to no‐intervention, indicating potentially large negative downstream impacts if these systems were to be implemented on a larger scale. On the other hand, in the watershed development program, sediment loads to the streams were less than one‐tenth. It can be concluded that the hydrological impacts of large‐scale implementation of agricultural water interventions are significant. They result in improved rain‐fed agriculture and improved productivity and livelihood of farmers in upland areas while also addressing the issues of poverty, equity, and gender in watersheds. There is a need for case‐specific studies of such hydrological impacts along with other impacts in terms of equity, gender, sustainability, and development at the mesoscale. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Freshwater ecosystems in the Indo-Burma biodiversity hotspot face immediate threats through habitat loss and species extinction. Systems to monitor ecological status and trends in biodiversity are therefore crucially needed. Myanmar is part of Indo-Burma but with no past experience of biomonitoring in freshwaters. In this study, we aimed to assess the ecological and biodiversity status of a lowland river network in south-central Myanmar by identifying and quantifying pressures using macroinvertebrates as bioindicators. Novel data on water quality (nutrients, sediments and metals), hydromorphology (Morphological Quality Index; MQI), habitat quality (Litter-Siltation Index; LSI), land use, and macroinvertebrates were collected from 25 river sites. The dominant pressures on rivers were urban land use, inputs of untreated sewage, in-stream and riparian garbage littering, run-off from agricultural fields and plantations, as well as physical habitat degradation. Water chemistry data indicated inputs of sediments and nutrients to degraded streams, but no obvious metal pollution. The LSI and MQI indices indicated high perturbation in agricultural and urban areas, respectively. Ecological status was assessed using a first version of a modified Average Score per Taxon index (ASPT), while biodiversity was assessed by family richness within the orders Ephemeroptera, Plecoptera, Trichoptera, Coleoptera and Odonata (EPTCO), which was tested against the pressure gradient by principal component regressions. ASPT had high diagnostic capabilities (R2 = 0.68, p < 0.001) and showed that the index can be used to evaluate ecological water quality in this region. Biodiversity, expressed as family richness, also declined along the gradient (R2 = 0.59, p = 0.041), giving support to the fact that current land-use practices in this area are unsustainable.  相似文献   

15.
Serious water scarcity, low water-use efficiency, and over-exploitation of underground water have hindered socio-economic development and led to environmental degradation in the Heihe River basin, northwestern China. Price leveraging is an important tool in water demand management, and it is considered to be effective in promoting water conservation and improving water use efficiency on the premise that water demand is elastic. In the present study, we examine whether price is an effective and applicable instrument for restraining the increasing demand for agricultural irrigation water in the middle reaches of the Heihe River basin and how will it affect farmers’ decisions on irrigation and crop structure. Specifically, the price elasticity of agricultural water demand was estimated based on the irrigation water demand function. The results show that the agricultural irrigation water price is statistically significant, but its elasticity is very low under current low water price. Price leverage cannot play a significant role in the context of the current pricing regime and farmers’ response to price increase is intrinsically weak. To create incentives for conserving water and improving irrigation efficiency, price mechanism should be accompanied with clearly defined and legally enforceable water rights, restricted water quota measures, and reform of water authorities and water-user associations. Furthermore, increases of surface irrigation water price may lead to the over-withdrawal of groundwater, consequently, effective groundwater licensing and levying must take place to limit the total volume of groundwater withdrawal. In all, improving irrigation efficiency through better management and the adoption of water-saving technologies is the ultimate way to deal with the challenges facing irrigated agriculture in the middle reaches of the Heihe River basin.  相似文献   

16.
17.
Representation of agricultural conservation practices with SWAT   总被引:5,自引:0,他引:5  
Results of modelling studies for the evaluation of water quality impacts of agricultural conservation practices depend heavily on the numerical procedure used to represent the practices. Herein, a method for the representation of several agricultural conservation practices with the Soil and Water Assessment Tool (SWAT) is developed and evaluated. The representation procedure entails identifying hydrologic and water quality processes that are affected by practice implementation, selecting SWAT parameters that represent the affected processes, performing a sensitivity analysis to ascertain the sensitivity of model outputs to selected parameters, adjusting the selected parameters based on the function of conservation practices, and verifying the reasonableness of the SWAT results. This representation procedure is demonstrated for a case study of a small agricultural watershed in Indiana in the Midwestern USA. The methods developed in the present work can be applied with other watershed models that employ similar underlying equations to represent hydrologic and water quality processes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
The Guayas river basin is one of the major watersheds in Ecuador, where increasing human activities are affecting water quality and related ecosystem services. The aims of this study were (1) to assess the ecological water quality based on macroinvertebrate indices and (2) to determine the major environmental variables affecting these macroinvertebrate indices. To do so, we performed an integrated water quality assessment at 120 locations within the river basin. Biological and physical–chemical data were collected to analyze the water quality. Two biotic indices were calculated to assess the water quality with an ecological approach: the Biological Monitoring Working Party Colombia (BMWP-Col) and the Neotropical Low-land Stream Multimetric Index (NLSMI). Both the BMWP-Col and NLSMI indicated good water quality at the (upstream) forested locations, lower water quality for sites situated at arable land and bad water quality at residential areas. Both indices gave relevant assessment outcomes and can be considered valuable for supporting the local water management. A correspondence analysis (CA) applied on both indices suggested that flow velocity, chlorophyll concentration, conductivity, land use, sludge layer and sediment type were the major environmental variables determining the ecological water quality. We also suggested that nutrient and pesticide measurements are important to study water quality in the area where intensive agriculture activities take place. The nutrient levels detected in agricultural areas were relatively low and illustrated that the types of crops and the current cultivation methods were not leading to eutrophication. The applied methods and results of this study can be used to support the future water management of the Guayas river basin and similar basins situated in the tropics.  相似文献   

19.
Water-quality conditions in surficial unconsolidated aquifers were assessed in five agricultural regions in the United States. The assessment covers the Delmarva Peninsula, and parts of Long Island, Connecticut, Kansas, and Nebraska, and is based on water-quality and ancillary data collected during the 1980s. Concentrations of nitrate in ground water in these areas have increased because of applications of commercial fertilizers and manure. Nitrate concentrations exceed the maximum contaminant level (MCL) for drinking water of 10 milligrams per liter as nitrogen established by the U.S. Environmental Protection Agency in 12 to 46 percent of the wells sampled in the agricultural regions. Concentrations of nitrate are elevated within the upper 100 to 200 feet of the surficial aquifers. Permeable and sandy deposits that generally underlie the agricultural areas provide favorable conditions for vertical leaching of nitrate to relatively deep parts of the aquifers. The persistence of nitrate at such depths is attributed to aerobic conditions along ground-water-flow paths. Concentrations of nitrate are greatest in areas that are heavily irrigated or areas that are underlain by well-drained sediments; more fertilizer is typically applied on land with well-drained sediments than on poorly drained sediments because well-drained sediments have a low organic-matter content and low moisture capacity. Concentrations of other inorganic constituents related to agriculture, such as potassium and chloride from potash fertilizers, and calcium and magnesium from liming, also are significantly elevated in ground water beneath the agricultural areas. These constituents together impart a distinctive agricultural-chemical trademark to the ground water, different from natural water.  相似文献   

20.
Livestock for beef and milk production are important economic activities worldwide. These require intensive cultures of pastures and forages, with the consequent impacts on water quality in downstream rivers and reservoirs. Monthly temporal variation of nutrients and water quality were assessed along one year at basin scale (basin area <3500 ha). Several indicators of farming intensity (number of dairy cows and beef cows, percentage of area devoted to crops) and management practices (effluent treatment, fertilizer application) were related to the export of nutrients and sediments from the basins and with the water quality of receiving streams using partial least square regression analysis (PLS). According to PLS analysis, the most relevant variables to explain water quality degradation and high export coefficients of nutrients and sediments, were the percentage of basin area dedicated to crop activities and the density of dairy cows without effluent treatment. Beef and dairy cows had an important local impact on stream water without animal access restrictions. We also propose some hypotheses regarding the transport pathways of sediments and nutrients to streams. Our results demonstrate the urgent need to implement best management practices at the farm scale within each basin, focusing on: adequate phosphorus fertilization, implementation of a complete dairy effluent treatment system and animal restriction to fluvial channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号