首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most downstream hydraulic geometry exponents have been found to be very close to the classic values reported by Leopold and Maddock (1953). These have been viewed as the simplified cases to general trends because the hydraulic geometry of alluvial channels is actually the product of ‘multivariate controls’ (Richards, 1982). This paper is an attempt to develop a soundly based foundation for the explanation of the physical mechanisms of these controls. A quantitative relationship between channel shape and boundary shear distribution developed from experimental flume results is found to be applicable in some instances to alluvial channels, particularly to stable canals. On the basis of this relationship, it is shown that downstream hydraulic geometry is determined not only by flow discharge, but also by channel slope, channel average roughness and sediment composition of the channel boundary. This is strongly supported by our analysis of 529 observations from both stable canals and natural rivers in the U.S.A. and the U.K. The difference between regime relations in canals and the hydraulic geometry of rivers appears to be caused mainly by channel slope and average roughness, which can be regarded as constants only in stable canals. The close relationship between discharge and channel average roughness observed in canals is not repeated in natural channels, partly because of the variety of flow values used to define the channel-forming discharge. Furthermore, it is indicated that the effects of the sediment composition of the channel boundary on hydraulic geometry are significant and need further investigation.  相似文献   

2.
The effects of basin hydrology on hydraulic geometry of channels variability for incised streams were investigated using available field data sets and models of watershed hydrology and channel hydraulics for the Yazoo River basin,USA.The study presents the hydraulic geometry relations of bankfull discharge,channel width,mean depth,cross-sectional area,longitudinal slope,unit stream power,and mean velocity at bankfull discharge as a function of drainage area using simple linear regression.The hydraulic geometry relations were developed for 61 streams,20 of them are classified as channel evolution model(CEM) Types Ⅳ and Ⅴ and 41 of them are CEM streams Types Ⅱ and Ⅲ.These relationships are invaluable to hydraulic and water resources engineers,hydrologists,and geomorphologists involved in stream restoration and protection.These relations can be used to assist in field identification of bankfull stage and stream dimension in un-gauged watersheds as well as estimation of the comparative stability of a stream channel.A set of hydraulic geometry relations are presented in this study,these empirical relations describe physical correlations for stable and incised channels.Cross-sectional area,which combines the effects of channel width and mean channel depth,was found to be highly responsive to changes in drainage area and bankfull discharge.Analyses of cross-sectional area,channel width,mean channel depth,and mean velocity in conjunction with changes in drainage area and bankfull discharge indicated that the channel width is much more responsive to changes in both drainage area and bankfull discharge than are mean channel depth or mean velocity.  相似文献   

3.
Deformable alluvial channels are known to adjust their geometry and slope to achieve stable conditions for a specified influx of water and sediment. Designing the stable alluvial channel has been a captivating topic for scientists and engineers around the globe for years. The work which was commenced by Kennedy in 1895 has been continued and various approaches have been given so far, some of which are quite interrelated and others emerged with different ideas. In this comprehensive study, some of the classic and widely accepted approaches published in the literature have been thoroughly reviewed and have been verified with available river regime data. The data set has been sub divided into three categories based on the median bed material size (sand, gravel and cobble or boulder), in order to examine the applicability of various methods available for the design of stable alluvial channels. Detailed discussion related to the properties of the intercept coefficients in power function theory is not available in published literature. In this study, the coefficients are first calibrated and then applied with the respective exponents in order to derive the hydraulic geometry. Further, the derived hydraulic geometry from various approaches is summarized and discussed with comparative view point. The analysis shows that prediction from recently developed model based on the principle of maximum entropy and minimum energy dissipation is better than other approaches for the entire range of data set. The same model has been further generalized by assuming a wide trapezoidal channel cross-section through which an improvement in the prediction has been observed.  相似文献   

4.
Wandering rivers are composed of individual anabranches surrounding semi‐permanent islands, linked by single channel reaches. Wandering rivers are important because they provide habitat complexity for aquatic organisms, including salmonids. An anabranch cycle model was developed from previous literature and field observations to illustrate how anabranches within the wandering pattern change from single to multiple channels and vice versa over a number of decades. The model was used to investigate the temporal dynamics of a wandering river through historical case studies and channel characteristics from field data. The wandering Renous River, New Brunswick, was mapped from aerial photographs (1945, 1965, 1983 and 1999) to determine river pattern statistics and for historical analysis of case studies. Five case studies consisting of a stable single channel, newly formed anabranches, anabranches gaining stability following creation, stable anabranches, and an abandoning anabranch were investigated in detail. Long profiles, hydraulic geometry, channel energy, grain size and sediment mobility variables were calculated for each channel. Within the Renous study area, the frequency of channel formation and abandonment were similar over the 54 years of analysis, indicating that the wandering pattern is being maintained. Eight anabranches were formed through avulsions, five were formed through the emergence of islands from channel bars and 11 anabranches were abandoned. The stable anabranch pair displayed similar hydraulic geometry and channel energy characteristics, while unstable anabranch pairs did not. The anabranch pair that gained stability displayed more similar channel energy characteristics than the anabranch pair that was losing stability (abandoning). It appears that anabranch pairs with similar energy characteristics are more stable than anabranches where these characteristics are out of balance. This is consistent with the hypothesis that anabranch pairs of similar length will be more stable than those with dissimilar lengths. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Rivers adjust towards an equilibrium condition, the stability of which depends upon a set of controlling factors expressed by the Froude number. As alluvial river channels approach stable conditions, the Froude number of the channel flow will tend to attain a minimum value which reflects minimum bed material motion and maximum channel stability, under the constraints imposed by water discharge, sediment load, and particle size. Computer simulations for sand bed rivers show that the Froude number of the flow tends to a minimum value when the equilibrium river tends to a certain hydraulic geometry. Evidence from 57 alluvial sand material rivers and stable canals shows that this simulated hydraulic geometry with minimum Froude number corresponds to the natural equilibrium state.  相似文献   

6.
Predicting the geometry of channels and alluvial rivers is of primary importance in river engineering science. Appropriately designing channels and predicting stable river cross‐sections can decrease costs and prevent the destruction of installations and agricultural land by rivers. Consequently, researchers have applied different empirical and regression methods to achieve relations for predicting stable channel and river geometry. In this study, Group Method of Data Handling ]GMDH) models are used to predict three geometric variables of stable channels, namely width (w), depth (h) and slope (s). The effect of different input parameters, such discharge (Q), median grain size (d50) and the Shields parameter (τ*) on the GMDH models is assessed with regard to predicting stable channel geometry. The results indicate that the GMDH model with mean absolute percentage error (MAPE) of 5.53%, 4.05% and 4.89% for channel width, depth and slope prediction respectively, exhibits good accuracy. Moreover, a comparison of the GMDH models with previous theoretical equations (based on regression analysis) indicates the superiority of GMDH model performance, with error reductions of one‐fifth, one‐eighth and one‐sixth compared with the regression equations for channel width, depth and slope prediction, respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
I.INTRODUCTIONThehydraulicgeometryofstablenaturalriversisdeterminedbyceftaincontrolfactors.suchassizeandgradationofboundarymaterial-sorting,transportandarmoring.planformofchannel.ballkstability.amongstothers.Ageometricmodelfornonuniformboundarymaterialhasbeenproposed(Cao,1996).Theentropy-basedthresholdbankprofiletheory(CaoandKnight,1996).thenext'solutionofthestablechannelparadox,basedonShionoandKnight's(1991)solutionofthedepthmean-averagedmomentumequationatthejunctionpointsareemployedto…  相似文献   

8.
A comparison has been made between the hydraulic geometry of sand‐ and gravel‐bed rivers, based on data from alluvial rivers around the world. The results indicate a signi?cant difference in hydraulic geometry among sand‐ and gravel‐bed rivers with different channel patterns. On this basis, some diagrams for discrimination of meandering and braided channel patterns have been established. The relationships between channel width and water discharge, between channel depth and water discharge, between width–depth ratio and water discharge and between channel slope and water discharge can all be used for channel pattern discrimination. The relationship between channel width and channel depth can also be used for channel pattern discrimination. However, the accuracy of these relationships for channel pattern discrimination varies, and the depth–discharge relationship is a better discriminator of pattern type than the classic slope–discharge function. The cause for this difference has been explained qualitatively. To predict the development of channel patterns under different natural conditions, the pattern discriminator should be searched on the basis of independent or at least semi‐independent variables. The relationship between stream power and bed material grain size can be used to discriminate channel patterns, which shows a better result than the discriminator using the slope–discharge relationship. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
以河道的观测深度为硬数据,利用贝叶斯理论通过随机建模的方法生成描述河道的方向线和河道几何参数。选这些参数的最大概率作为河道的最优化模型,利用所生成的最优化参数计算出河道砂体的边界面。对大家所公认的横截面为抛物线形状的河道给出了计算的方法,并以此为例实现了这一计算方法。  相似文献   

10.
River channel pattern may be regarded as the outcome of streamflow, sediment load, and channel boundary conditions, as can the grain size distribution of bed material. It may therefore be expected that connections should exist between river channel pattern characteristics and the corresponding river bed material grain size parameters. Using data from some Chinese rivers, an attempt has been made to express these connections quantitatively by using statistical methods. The work demonstrates that the river's bed load can be related to the percentage of the traction subpopulation of the bed material shown by the probabilistic plot of grain size cumulative-frequency curve. The study has also revealed some correlations between the bed material grain size parameters of rivers and their channel geometry such as channel width-depth ratio and channel sinuosity. For instance, the higher the ratio of the traction to suspension subpopulation in bed material, the more sinuous, more shallow, and wider the river channel would be. Furthermore, a discrimination function has been given to distinguish between meandering and wandering braided rivers. If the existence of these relationships can be supported by data from more rivers in other regions, then by using them we can postdict palaeoriver channel geometry and its channel pattern character from fluvial sediment grain size parameters of the palaeoriver. This would open a new way to reconstruct the physicogeographical environment in which palaeorivers developed.  相似文献   

11.
This research builds on the concept of hydraulic geometry and presents a methodology for estimating bankfull discharge and the hydraulic geometry coefficients and exponents for a station using limited data; only stage‐discharge and Landsat imagery. The approach is implemented using 82 streamflow gauging locations in the Amazon Basin. Using the estimated values for the hydraulic geometry relations, bankfull discharge, discharge data above bankfull and upstream drainage area at each site, relationships for estimating channel and floodplain characteristics as a function of drainage area are developed. Specifically, this research provides relationships for estimating bankfull discharge, bankfull depth, bankfull width, and floodplain width as a function of upstream drainage area in the Amazon Basin intended for providing reasonable cross‐section estimates for large scale hydraulic routing models. The derived relationships are also combined with a high resolution drainage network to develop relationships for estimating cumulative upstream channel lengths and surface areas as a function of the specified minimum channel width ranging from 2 m to 1 km (i.e. threshold drainage areas ranging from 1 to 431,000 km2). At the finest resolution (i.e. all channels greater than 2 m or a threshold area of 1 km2), the Amazon Basin contains approximately 4.4 million kilometers of channels with a combined surface area of 59,700 km2. The intended use of these relationships is for partitioning total floodable area (channels versus lakes and floodplain lakes) obtained from remote sensing for biogeochemical applications (e.g. quantifying CO2 evasion in the Amazon Basin). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
This paper constructs a model of channel geometry composed of three subsections: a steady-state submodel, a gradedstate submodel, and a stochastic error submodel. With the aid of this representation of the morphology of channels, the at-a-point changes in geometry can be reproduced by a simple recursive equation of autoregressive, moving-average form which is derived from methods used in the statistical analysis of time series. A set of height loss data for three Japanese rivers derived from Yatsu's (1955) paper is used to determine the effect of bed material changes on adaptations within the graded-state submodel of the channel. The results of analyzing the autocorrelation function, spectrum, and adaptive parameter shifts within this model can be used to infer that significant changes in the amplitude of height change variation, and a shift to higher frequency oscillations of bed forms are associated with the shift in bed material conditions.  相似文献   

13.
Bank strength due to vegetation dominates the geometry of small stream channels, but has virtually no effect on the geometry of larger ones. The dependence of bank strength on channel scale affects the form of downstream hydraulic geometry relations and the meandering‐braiding threshold. It is also associated with a lateral migration threshold discharge, below which channels do not migrate appreciably across their floodplains. A rational regime model is used to explore these scale effects: it parameterizes vegetation‐related bank strength using a dimensionless effective cohesion, Cr*. The scale effects are explored primarily using an alluvial state space defined by the dimensionless formative discharge, Q*, and channel slope, S, which is analogous to the Q–S diagrams originally used to explore meandering‐braiding thresholds. The analyses show that the effect of vegetation on both downstream hydraulic geometry and the meandering‐braiding threshold is strongest for the smallest streams in a watershed, but that the effect disappears for Q* > 106. The analysis of the migration threshold suggests that the critical discharge ranges from about 5 m3/s to 50 m3/s, depending on the characteristic rooting depth for the vegetation. The analysis also suggests that, where fires frequently affect riparian forests, channels may alternate between laterally stable gravel plane‐bed channels and laterally active riffle‐pool channels. These channels likely do not exhibit the classic dynamic equilibrium associated with alluvial streams, but instead exhibit a cyclical morphologic evolution, oscillating between laterally stable and laterally unstable end‐members with a frequency determined by the forest fire recurrence interval. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper we use multiple field surveys spanning several decades to systematically evaluate the geomorphic consequences of a change in flow hydraulics from uniform flow to backwater flow for the lower Trinity River in east Texas, USA. Spatial changes in lateral migration rate, channel geometry, and point bar size correspond to two distinct geomorphic zones. Within the upstream uniform flow reach, the river channel is defined by fully developed point bars and a high rate of lateral channel migration. This zone transitions where the median channel bottom elevation drops below sea level. At this point flow is affected by the backwater influence of the Trinity Bay water surface elevation, as opposed to being bed slope control dominated. The change in hydraulics within the backwater zone is reflected in the channel morphology, which is characterized by smaller point bars, narrower and more symmetrical cross-sectional channel geometry, lower channel migration rates, and little to no bend deformation or cutoffs. Studying the connection between channel geometry, river bend kinematics, sediment transport, and fluid mechanics in each zone provides a deeper understanding of the relationship between channel shape and river mechanics. © 2019 John Wiley & Sons, Ltd.  相似文献   

15.
Repeated dye tracer tests were undertaken from individual moulins at Haut Glacier d'Arolla, Switzerland, over a number of diurnal discharge cycles during the summers of 1989–1991. It was hoped to use the concepts of at-a-station hydraulic geometry to infer flow conditions in subglacial channels from the form of the velocity–discharge relationships derived from these tests. The results, however, displayed both clockwise and anticlockwise velocity–discharge hysteresis, in addition to the simple power function relationship assumed in the hydraulic geometry approach. Clockwise hysteresis seems to indicate that a moulin drains into a small tributary channel rather than directly into an arterial channel, and that discharges in the two channels vary out of phase with each other. Anticlockwise hysteresis is accompanied by strong diurnal variations in the value of dispersivity derived from the dye breakthrough curve, and is best explained by hydraulic damming of moulins or sub/englacial passageways. Despite the complex velocity–discharge relationships observed, some indication of subglacial flow conditions may be obtained if tributary channels comprise only a small fraction of the drainage path and power function velocity–discharge relationships are derived from dye injections conducted during periods when the supraglacial discharge entering the moulin and the bulk discharge vary in phase. Analyses based on this premise suggest that both open and closed channel flow occur beneath Haut Glacier d'Arolla, and that flow conditions are highly variable at and between sites.  相似文献   

16.
Drainage area and the variation of channel geometry downstream   总被引:1,自引:0,他引:1  
Recent geomorphological studies tend to deal with small basins. The understanding of small basin dynamics provides important information for the understanding of large basin dynamics assuming that the extrapolation of small basin data to larger basins is valid. This work tests the validity of this extrapolation of data with reference to channel geometry. An analysis of the variation of channel width downstream reveals that the value b =0.5 (W = aQb) is a ‘good’ average. However, the use of a one-line model consisting of a simple power function incurs a loss of a considerable amount of relevant information concerning the channel form and hence the channel processes. It has been shown that the –b– value for small basins and very big basins is lower than the one for the intermediate basins.  相似文献   

17.
Changes in channel character along a small river in the Scottish Highlands are described using measurements in seven reaches over a 3 km length with no significant tributaries but a decline in slope from 0.02 to 0.00015 because of local baselevel control. This decline in slope is associated with rapid downstream fining of the gravel bed followed by an abrupt transition to a sand bed. The channel pattern alters progressively rather than abruptly, in the sequence (1) near-braided, (2) meandering with active point-bar chutes, (3) meandering with active outer-bank talweg, (4) stable equiwidth sinuous. The changes in channel pattern and hydraulic geometry are predicted better by rational approaches based on critical shear stress or other physical concepts than by purely empirical discriminant or trend equations. Measurements in five reaches confirm a downstream decrease in shear stress and the amount and calibre of bedload. It is argued that the downstream changes in channel character in this stream are induced by profile concavity inherited from deglacial conditions, are typical of many streams in mountainous areas and can be understood in terms of slope-induced changes in hydraulic properties.  相似文献   

18.
Bank strength exerts a significant influence on river channel geometry, but quantification of this relationship has been limited to only a few specific circumstances. This is due to both the complex nature of bank strength and the difficulty in incorporating its influence in river channel geometry relations. In order to undertake an integrated analysis of wide-ranging field observations, this study applies a recently developed multivariate model of channel geometry. When the banks of a number of laterally stable streams are categorized on the basis of the bank sediment and vegetation, the multivariate model yields numerical indices of bank strength. Within the range of the data analysed, bank strength can produce a three-fold change in channel width and a two-fold change in depth corresponding to about a 1·6-fold change in cross-sectional area. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
A dataset of 21 study reaches in the Porter and Kowai rivers (eastern side of the South Island), and 13 study reaches in Camp Creek and adjacent catchments (western side of the South Island) was used to examine downstream hydraulic geometry of mountain streams in New Zealand. Streams in the eastern and western regions both exhibit well-developed downstream hydraulic geometry, as indicated by strong correlations between channel top width, bankfull depth, mean velocity, and bankfull discharge. Exponents for the hydraulic geometry relations are similar to average values for rivers worldwide. Factors such as colluvial sediment input to the channels, colluvial processes along the channels, tectonic uplift, and discontinuous bedrock exposure along the channels might be expected to complicate adjustment of channel geometry to downstream increases in discharge. The presence of well-developed downstream hydraulic geometry relations despite these complicating factors is interpreted to indicate that the ratio of hydraulic driving forces to substrate resisting forces is sufficiently large to permit channel adjustment to relatively frequent discharges.  相似文献   

20.
The Dead Run catchment in Baltimore County, Maryland, has undergone intense urbanization since the late 1950s. Reconstruction of the channel planform from topographic maps dating back to the 1890s and aerial photographs dating back to the 1930s indicates that the channel has remained stable in planform since at least the 1930s. The relative stability of Dead Run contrasts with the alterations in channel morphology reported for other urbanizing streams in the Piedmont physiographic province of the eastern United States. Trend analyses of discharge records in Dead Run show that urban development and stormwater control measures have had significant impacts on the hydrologic response of the catchment. The flood hydraulics of the Dead Run catchment are examined for the event that occurred on 22 June 1972 in association with Hurricane Agnes. A two‐dimensional hydraulic model, TELEMAC‐2D, was used with a finite‐element mesh constructed from a combination of high‐resolution LiDAR topographic data and detailed field survey data to analyse the distribution of boundary shear stress and unit stream power along the channel and floodplain during flooding from Hurricane Agnes. The spatial and temporal distributions of these parameters, relative to channel gradient and channel/valley bottom geometry, provide valuable insights on the stability of the Dean Run channel. The stability of Dead Run's channel planform, in spite of extreme flooding and decades of urban development, is most likely linked to geological controls of channel and floodplain morphology. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号