首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The peakedness of a basin and its variation with drainage area were analyzed for three areas. Peakedness of a basin is calculated as mean flow as a percentage of highest flow. A fitted power curve relating ‘Peakedness index’ (PI) to drainage area for each of the three areas indicates a break point in a basin of about 300 km2. This break point divides the basins into small basins which are more peaky and large basins which are less peaky. The break point is an outcome of a difference in order of magnitude between channel flow velocity from the headwater sources and hillside flow velocity. When the basin responds to hillslope flow the runoff from the head water sources has already flown about 30 km downstream.  相似文献   

2.
Contemporary patterns in river basin sediment dynamics have been widely investigated but the timescales associated with current sediment delivery processes have received much less attention. Furthermore, no studies have quantified the effect of recent land use change on the residence or travel times of sediment transported through river basins. Such information is crucial for understanding contemporary river basin function and responses to natural and anthropogenic disturbances or management interventions. To address this need, we adopt a process‐based modelling approach to quantify changes in spatial patterns and residence times of suspended sediment in response to recent agricultural land cover change. The sediment budget model SedNet was coupled with a mass balance model of particle residence times based on atmospheric and fluvial fluxes of three fallout radionuclide tracers (7Be, excess 210Pb and 137Cs). Mean annual fluxes of suspended sediment were simulated in seven river basins (38–920 km2) in south‐west England for three land cover surveys (1990, 2000 and 2007). Suspended sediment flux increased across the basins from 0.5–15 to 1.4–37 kt y‐1 in response to increasing arable land area between consecutive surveys. The residence time model divided basins into slow (upper surface soil) and rapid (river channel and connected hillslope sediment source area) transport compartments. Estimated theoretical residence times in the slow compartment decreased from 13–48 to 5.6–14 ky with the increase in basin sediment exports. In contrast, the short residence times for the rapid compartment increased from 185–256 to 260–368 d as the modelled connected source area expanded with increasing sediment supply from more arable land. The increase in sediment residence time was considered to correspond to longer sediment travel distances linked to larger connected source areas. This novel coupled modelling approach provides unique insight into river basin responses to recent environmental change not otherwise available from conventional measurement techniques. © 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

3.
Basin-centric long short-term memory (LSTM) network models have recently been shown to be an exceptionally powerful tool for stream temperature (Ts) temporal prediction (training in one period and predicting in another period at the same sites). However, spatial extrapolation is a well-known challenge to modelling Ts and it is uncertain how an LSTM-based daily Ts model will perform in unmonitored or dammed basins. Here we compiled a new benchmark dataset consisting of >400 basins across the contiguous United States in different data availability groups (DAG, meaning the daily sampling frequency) with and without major dams, and studied how to assemble suitable training datasets for predictions in basins with or without temperature monitoring. For prediction in unmonitored basins (PUB), LSTM produced a root-mean-square error (RMSE) of 1.129°C and an R2 of 0.983. While these metrics declined from LSTM's temporal prediction performance, they far surpassed traditional models' PUB values, and were competitive with traditional models' temporal prediction on calibrated sites. Even for unmonitored basins with major reservoirs, we obtained a median RMSE of 1.202°C and an R2 of 0.984. For temporal prediction, the most suitable training set was the matching DAG that the basin could be grouped into (for example, the 60% DAG was most suitable for a basin with 61% data availability). However, for PUB, a training dataset including all basins with data was consistently preferred. An input-selection ensemble moderately mitigated attribute overfitting. Our results indicate there are influential latent processes not sufficiently described by the inputs (e.g., geology, wetland covers), but temporal fluctuations can still be predicted well, and LSTM appears to be a highly accurate Ts modelling tool even for spatial extrapolation.  相似文献   

4.
Abstract

Recent developments in hydrological modelling of river basins are focused on prediction in ungauged basins, which implies the need to improve relationships between model parameters and easily-obtainable information, such as satellite images, and to test the transferability of model parameters. A large-scale distributed hydrological model is described, which has been used in several large river basins in Brazil. The model parameters are related to classes of physical characteristics, such as soil type, land use, geology and vegetation. The model uses two basin space units: square grids for flow direction along the basin and GRU—group response units—which are hydrological classes of the basin physical characteristics for water balance. Expected ranges of parameter values are associated with each of these classes during the model calibration. Results are presented of the model fitting in the Taquari-Antas River basin in Brazil (26 000 km2 and 11 flow gauges). Based on this fitting, the model was then applied to the Upper Uruguay River basin (52 000 km2), having similar physical conditions, without any further calibration, in order to test the transferability of the model. The results in the Uruguay basin were compared with recorded flow data and showed relatively small errors, although a tendency to underestimate mean flows was found.  相似文献   

5.
Recession flows of a basin provide valuable information about its storage–discharge relationship as during recession periods discharge occurs due to depletion of storage. Storage–discharge analysis is generally performed by plotting ?dQ/dt against Q , where Q is discharge at time t . For most real world catchments, ?dQ/dt versus Q show a power‐law relationship of the type: ?dQ/dt = kQα . Because the coefficient k varies across recession events significantly, the exponent α needs to be computed separately for individual recession events. The median α can then be considered as the representative α for the basin. The question that arises here is what are the basin characteristics that influence the value of α ? Studies based on a small number of basins (up to 50 basins) reveal that α has good relationship with several basin characteristics. However, whether such a relationship is universal remains an important question, because a universal relationship would allow prediction of the value of α for any ungauged basin. To test this hypothesis, here, we study data collected from a relatively large number of basins (358 basins) in USA and examine the influence of 35 different physio‐climatic characteristics on α . We divide the basins into 2 groups based on their longitudes and test the relationship between α and basin characteristics separately for the two groups. The results indicate that α is not identically influenced by different basin characteristics for the two datasets. This may suggest that the power‐law exponent α of a region is determined by the way local physio‐climatic forces have shaped the landscape.  相似文献   

6.
Stream response to surface coal mining and reclamation was studied in 29 small (0·13 to 5·72 km2) watersheds located in the bituminous coal fields of Central Pennsylvania. These basins, up to 82 per cent mined, were selected from 176 first-order tributaries of Beech Creek with similar vegetation, soil, lithology, and basin characteristics. Measurements were made at 262 cross-sections (an average of nine cross-sections per stream) of channel cross-section area, bankfull width, mean bankfull depth, dimensions of the largest moving blocks, stream slope, valley-side slope, basin area, and mined area. Observed differences in channel morphology were related to differences in extent of mining by means of scatter plots, correlation, cluster analysis, and bivariate regression. Stream response to increased peak discharge and channel shear stress produced by increased surface runoff from regraded mine spoil takes the form of enlarged channels and increases in the size of moving blocks. Large basin areas appear to dampen the effect of mining, resulting in limited channel enlargement with greater extent of mining. In contrast, where peak discharges and associated shear stresses exceed the combined erosional resistance of floodplain vegetation, colluvial blocks, and channel banks, streams adjust extensively to higher levels of mining, causing an abrupt increase in the size of transported blocks and eroded channels. In the first-order basins studied, this stepped response occurs at approximately 0·45 km2 mined area and 50 per cent of the total basin area mined. For streams that have exceeded both threshold levels, disequilibrium is demonstrated by a strong, positive correlation between local stream slope and basin area. Where both threshold levels of mining are exceeded, steep channel slopes reinforce the tendency of stream cross-sections to increase with greater disturbance by mining, necessitating that these streams rapidly adjust their morphology in order to attain a new equilibrium which is compatible with the conditions imposed by mining and reclamation.  相似文献   

7.
Impacts of forest harvesting on groundwater properties, water flowpaths and streamflow response were examined 4 years after the harvest using a paired‐basin approach during the 2001 snowmelt in a northern hardwood landscape in central Ontario. The ability of two metrics of basin topography (Beven and Kirkby's ln(a/tan β) topographic index (TI) and distance to stream channel) to explain intra‐basin variations in groundwater dynamics was also evaluated. Significant relationships between TI and depth to potentiometric surface for shallow groundwater emerged, although the occurrence of these relationships during the melt differed between harvested and control basins, possibly as a result of interbasin differences in upslope area contributing to piezometers used to monitor groundwater behaviour. Transmissivity feedback (rapid streamflow increases as the water table approaches the soil surface) governed streamflow generation in both basins, and the mean threshold depths at which rapid streamflow increases corresponded to small rises in water level were similar for harvested (0·41 ± 0·05 m) and forested (0·38 ± 0·04 m) basins. However, topographic properties provided inconsistent explanations of spatial variations in the relationship between streamflow and depth to water at a given piezometer for both basins. Streamflow from the harvested basin exceeded that from the forested basin during the 2001 melt, and hydrometric and geochemical tracer results indicated greater runoff from the harvested basin via surface and near‐surface pathways. These differences are not solely attributable to harvesting, since the difference in spring runoff from the harvested basin relative to the forested control was not consistently larger than under pre‐harvest conditions. Nevertheless, greater melt rates following harvesting appear to have increased the proportion of water delivery to the stream channel via surface and near‐surface pathways. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper we develop a classification system for small headwater streams predicated upon an understanding of the dominant physical processes acting in the channel and its basin, and the conditions under which these processes operate. The variables used to build the classification are hillslope gradient, valley width as compared to channel width, channel gradient, channel depth and sediment size. Using physical laws and morphologic relationships, we recognize domains in which various processes dominate. Channels within the same process domain can be expected to behave in a similar manner in transporting sediment and water and responding to and recovering from basin disturbance, therefore we use the domains to recognize distinct channel types. This classification system provides the foundation for building an approach for identifying basins and streams that are comparably sensitive to landuse.  相似文献   

9.
《水文科学杂志》2013,58(6):857-880
Abstract

Drainage basins in many parts of the world are ungauged or poorly gauged, and in some cases existing measurement networks are declining. The problem is compounded by the impacts of human-induced changes to the land surface and climate, occurring at the local, regional and global scales. Predictions of ungauged or poorly gauged basins under these conditions are highly uncertain. The IAHS Decade on Predictions in Ungauged Basins, or PUB, is a new initiative launched by the International Association of Hydrological Sciences (IAHS), aimed at formulating and implementing appropriate science programmes to engage and energize the scientific community, in a coordinated manner, towards achieving major advances in the capacity to make predictions in ungauged basins. The PUB scientific programme focuses on the estimation of predictive uncertainty, and its subsequent reduction, as its central theme. A general hydrological prediction system contains three components: (a) a model that describes the key processes of interest, (b) a set of parameters that represent those landscape properties that govern critical processes, and (c) appropriate meteorological inputs (where needed) that drive the basin response. Each of these three components of the prediction system, is either not known at all, or at best known imperfectly, due to the inherent multi-scale space—time heterogeneity of the hydrological system, especially in ungauged basins. PUB will therefore include a set of targeted scientific programmes that attempt to make inferences about climatic inputs, parameters and model structures from available but inadequate data and process knowledge, at the basin of interest and/or from other similar basins, with robust measures of the uncertainties involved, and their impacts on predictive uncertainty. Through generation of improved understanding, and methods for the efficient quantification of the underlying multi-scale heterogeneity of the basin and its response, PUB will inexorably lead to new, innovative methods for hydrological predictions in ungauged basins in different parts of the world, combined with significant reductions of predictive uncertainty. In this way, PUB will demonstrate the value of data, as well as provide the information needed to make predictions in ungauged basins, and assist in capacity building in the use of new technologies. This paper presents a summary of the science and implementation plan of PUB, with a call to the hydrological community to participate actively in the realization of these goals.  相似文献   

10.
This study was designed to develop a physically based hydrological model to describe the hydrological processes within forested mountainous river basins. The model describes the relationships between hydrological fluxes and catchment characteristics that are influenced by topography and land cover. Hydrological processes representative of temperate basins in steep terrain that are incorporated in the model include intercepted rainfall, evaporation, transpiration, infiltration into macropores, partitioning between preferential flow and soil matrix flow, percolation, capillary rise, surface flow (saturation‐excess and return flow), subsurface flow (preferential subsurface flow and baseflow) and spatial water‐table dynamics. The soil–vegetation–atmosphere transfer scheme used was the single‐layer Penman–Monteith model, although a two‐layer model was also provided. The catchment characteristics include topography (elevation, topographic indices), slope and contributing area, where a digital elevation model provided flow direction on the steepest gradient flow path. The hydrological fluxes and catchment characteristics are modelled based on the variable source‐area concept, which defines the dynamics of the watershed response. Flow generated on land for each sub‐basin is routed to the river channel by a kinematic wave model. In the river channel, the combined flows from sub‐basins are routed by the Muskingum–Cunge model to the river outlet; these comprise inputs to the river downstream. The model was applied to the Hikimi river basin in Japan. Spatial decadal values of the normalized difference vegetation index and leaf area index were used for the yearly simulations. Results were satisfactory, as indicated by model efficiency criteria, and analysis showed that the rainfall input is not representative of the orographic lifting induced rainfall in the mountainous Hikimi river basin. Also, a simple representation of the effects of preferential flow within the soil matrix flow has a slight significance for soil moisture status, but is insignificant for river flow estimations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
本文收集了733个四川地区的实测钻孔数据,从中筛选出深度大于30m的268个钻孔剖面资料。分别获得了10m、15m、20m、25m和28m不同深度处的平均剪切波速 与 的对数线性相关关系。同时还与Boore(2004)的结果做了对比分析,比较了采用常数外推法和对数线性外推法得到的不同深度处剪切波速的残差分布。结果表明,不同深度处剪切波速 与 的对数相关关系可能具有一定的区域性特征,本文得到的对数关系更适合四川地区。对数线性外推法与常数外推法相比,前者的系统偏差更小;随着深度的增加,两种方法的外推误差均逐渐减小,但常数外推法普遍低估了 值;当深度较浅时,低估的情况更为明显。本文的研究结果为利用大量的不足30m的钻孔资料估计 值提供了参考。  相似文献   

12.
Intermontane basin aquifers worldwide, particularly in the Himalayan region, are recharged largely by the adjoining mountains. Recharge in these basins can occur either by water infiltrating from streams near mountain fronts (MFs) as mountain front recharge (MFR) or by sub-surface mountain block infiltration as mountain block recharge (MBR). MFR and MBR recharge are challenging to distinguish and are least quantified, considering the lack of extensive understanding of the hydrological processes in the mountains. This study used oxygen and hydrogen isotopes (δ18O and δ2H), electrical conductivity (EC) data, hydraulic head, and groundwater level data to differentiate MFR and MBR. Groundwater level data provide information about the groundwater-surface water interactions and groundwater flow directions, whereas isotopes and EC data are used to distinguish and quantify different recharge sources. The present methodology is tested in an intermontane basin of the Himalayan region. The results suggest that karst springs (KS) and deep groundwater (DGW) recharge are dominated by snowmelt (47% ± 10% and 46% ± 9%) as MBR from adjacent mountains, insignificantly affected by evaporation. The hydraulic head data and isotopes indicate Quaternary shallow groundwater (SGW) aquifer system recharge as MFR of local meteoric water with significant evaporation. The results indicate several flow paths in the aquifer system, a local flow for KS, intermediate flow for SGW, and regional flow for DGW. The findings will significantly impact water resource management in the area and provide vital baseline knowledge for sustainable groundwater management in other Himalayan intermontane basins.  相似文献   

13.
Hack's law was originally derived from basin statistics for varied spatial scales and regions. The exponent value of the law has been shown to vary between 0.47 and 0.70, causing uncertainty in its application. This paper focuses on the emergence of Hack's law from debris-flow basins in China. Over 5,000 debris-flow basins in different regions of China with drainage areas less than 100km^2 are included in this study. Basins in the different regions are found to present similar distributions. Hack's law is derived from maximum probability and conditional distributions, suggesting that the law should describe some critical state of basin evolution. Results suggest the exponent value is approximately 0,5. Further analysis indicates that Hack's law is related to other scaling laws underlying the evolution of a basin and that the exponent is not dependent on basin shape but rather on the evolutionary stage. A case study of a well known debris-flow basin further confirms Hack's law and its implications in basin evolution.  相似文献   

14.
Identifying channel initiation points is central to geomorphology and hydrology as they relate morphology, climate, and soil properties at the boundary between different surface runoff paths. Since catchment response is strongly influenced by the dynamics of water movement on the hillslope and in the channel, rainfall-runoff modeling is one of the fields in which improving the identification of channel initiation can lead to benefits. Among the various filtering criteria that can be found in the literature for channel recognition from digital elevation models, the one using contributing area and topographic slope shows interesting features in this context. Nevertheless, the area-slope criterion has been poorly applied. This is mainly due to the difficulties in objectively defining appropriate threshold values. This study proposes a new procedure to assess the area-slope threshold value. The resulting channel network is then used as input to a semi-distributed, event-based rainfall-runoff model able to describe severe rainfall events in small, steep basins. This model accounts for network and hillslope contributions to the total dispersion in the routing process, a key factor in determining the main features of the hydrologic response. In a geomorphologically homogeneous region, the set of model parameters shows interesting invariance properties with respect to storm and basin characteristics.  相似文献   

15.
Abstract

The baseflow characteristics of some of the numerous small basins in southeastern Nigeria have been analysed to estimate the developable groundwater in the basins. It is shown that from 5.62 × 104 to 1.59 × 106 m3 of groundwater can be developed per square kilometre of basin per annum. The relationship between the baseflow characteristics and other attributes of the basins, such as geology and stream density, were studied statistically, leading to the development of empirical equations for predicting the hydrological features of the several ungauged streams in the region. It is shown, for example, that the basin geology (represented as the percentage of sands), the drainage density, the basin area, the baseflow depletion rate and the total groundwater stored in the basin, Qtp, are related by the equation:

Qtp = ?1.85 × 109?7.96 × 108 dd+4.18 × 107 gf?2.01 × 106 df+6.25 × 105 wa

where dd is drainage density; gf geological factor; df depletion factor; and wa basin area.  相似文献   

16.
Geomorphological characteristics of tidal basins control hydrodynamics and sediment transport potential within such basins, for example, by adjusting the balance in tidal asymmetry. In this study we examine the effects of entrance geometry on tidal velocity asymmetry, slack water asymmetry, bed shear stress patterns and hypsometric profile shapes by comparison of six shallow meso-tidal basins of Tauranga Harbour, New Zealand. Numerical model results show how tidal distortion increases with distance from a basin entrance. A simple ratio between basin width and entrance width defines levels of basin dilation. Sub-basins with a constricted geometry and deep entrance channels are associated with small bed shear stress values and high rates of flood-directed tidal velocity asymmetry in the sheltered basin centres, indicating a large potential for sediment deposition of larger particles. Moreover, slack water asymmetry within these basins is weakly ebb-directed, indicating a small potential for transport of fine sediments out of the basins. The constricted depositional basins are characterized by convex hypsometric profiles with elevated intertidal regions. Unconstricted geometries are associated with larger bed shear stress values and more ebb-directed tidal velocity asymmetry within basin centres, suggesting limited potential for overall sediment deposition. The slack tide duration asymmetry is weakly flood-dominant indicating that limited input of fine sediment into the basins is possible. The comparatively high-energy conditions within these exposed basins are associated with a less convex hypsometric intertidal profile. The ability to estimate tidal asymmetries is advantageous when developing management strategies related to ecosystem functioning, navigability or coastal protection in specific geomorphic settings. © 2019 John Wiley & Sons, Ltd.  相似文献   

17.
Dramatic drainage reorganization from initial longitudinal to transversal domains has occurred in the Eastern Cordillera of Colombia. We perform a regional analysis of drainage basin geometry and transformed river profiles based on the integral form of the slope-area scaling, to investigate the dynamic state of drainage networks and to predict the degree of drainage reorganization in this region. We propose a new model of drainage rearrangement for the Eastern Cordillera, based on the analyses of knickpoint distribution, normalized river profiles, landforms characteristic of river capture, erosion rates and palaeodrainage data. We establish that the oldest longitudinal basin captured by the Magdalena River network was the Suárez Basin at ≈409 ka, inferring the timing of abandonment of a river terrace using in situ produced cosmogenic beryllium-10 (10Be) depth profiles and providing a first estimation of incision rate of 0.07 mm/yr. We integrate published geochronologic data and interpret the last capture of the Sabana de Bogotá, providing a minimum age of the basin opening to the Magdalena drainage at ≈38 ka. Our results suggest that the Magdalena basin Increased its drainage area by integrating the closed basins from the western flank of the Eastern Cordillera. Our study also suggests that the Magdalena basin is an aggressor compared to the basins located in the eastern flank of the orogen and provides a framework for examining drainage reorganization within the Eastern Cordillera and in similar orogenic settings. The results improve our understanding of headward integration of closed basins across orogenic plateaux. © 2020 John Wiley & Sons, Ltd.  相似文献   

18.
A reliable prediction of hydrologic models, among other things, requires a set of plausible parameters that correspond with physiographic properties of the basin. This study proposes a parameter estimation approach, which is based on extracting, through hydrograph diagnoses, information in the form of indices that carry intrinsic properties of a basin. This concept is demonstrated by introducing two indices that describe the shape of a streamflow hydrograph in an integrated manner. Nineteen mid‐size (223–4790 km2) perennial headwater basins with a long record of streamflow data were selected to evaluate the ability of these indices to capture basin response characteristics. An examination of the utility of the proposed indices in parameter estimation is conducted for a five‐parameter hydrologic model using data from the Leaf River, located in Fort Collins, Mississippi. It is shown that constraining the parameter estimation by selecting only those parameters that result in model output which maintains the indices as found in the historical data can improve the reliability of model predictions. These improvements were manifested in (a) improvement of the prediction of low and high flow, (b) improvement of the overall total biases, and (c) maintenance of the hydrograph's shape for both long‐term and short‐term predictions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
塔里木盆地结晶基底的反射地震调查   总被引:3,自引:3,他引:0       下载免费PDF全文
大型克拉通内部沉积盆地基底组构与盆地起源和油气聚集有密切关系.除了钻井岩心及周缘露头研究可提供盆地结晶基底类型证据外,反射地震信号记录了沉积盆地起源时期的有关大地构造作用信息,盆地基底组构可通过记录长度大的反射地震剖面研究.2007年中石化在塔里木盆地将1400 km的地震剖面接收记录从6 s加长到12 s,为研究克拉通盆地结晶基底的组构和类型提供了难得的第一手资料.这篇文章主要介绍这次调查的反射地震剖面,讨论深反射地震数据处理的关键技术,展示塔里木盆地巴楚—塔中地区的四条12 s反射地震剖面,并对反射剖面的散射模式作初步分析.本次调查表明,将地震剖面接收记录从6 s加长到12 s,采集处理的成本只增加了3%左右,但是可为研究克拉通盆地结晶基底和上地壳不均匀性提供很有价值的第一手资料.  相似文献   

20.
An examination of the lithology, paleomagnetic and Mossbauer Effect Spectroscopy (MES) log data and 14C determinations of cores taken from three small basins located in western Lake Erie, in conjunction with data obtained from earlier studies, has been used to re-evaluate the postglacial history of the area. After the re-advance of the Laurentide Ice Sheet into the Huron basin and the eastern part of the Erie basin during the Port Huron stadial about 13,000 yrs B.P., lacustrine clay was deposited across much of the western Erie basin in a lake ponded against the glacial ice front to the east. However, by 12,000 yrs B.P. as the ice front retreated, the waters from the Huron basin bypassed Lake Erie, first by the Kirkfield outlet to Lake Ontario, and later by the Fossmill and North Bay outlets to the Ottawa River. This resulted in the draining of water from most of the western Erie basin. Extensive swamps choked with plants formed in the small basin areas, and the surrounding low-lying former lake bottom was subjected to subaerial weathering. It would appear that by about 9,500 yrs B.P. there was an increase in surface run off into these basins and the swamps evolved into shallow, relatively warm-water lakes in which calcareous-rich clay was deposited. Isostatic rebound of the northeastern outlets of the Huron basin led to a gradual tilting of the basin and a progressive migration of the southern shoreline of Lake Huron (Lake Stanley phase) to the southwest. By about 5000 yrs B.P. the water level in the southern Huron basin had been raised sufficiently to re-open the Port Huron outlet into the Erie basin. This resulted in a substantial rise in the lake level in the Erie basin, terminated the deposition of calcareous-rich clay in the small basins, and led to the deposition of normal lacustrine sediments in the modern phase of Lake Erie.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号