首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MRFD半主动控制系统的时滞与补偿   总被引:7,自引:0,他引:7  
时滞与补偿是基于磁流变流体阻尼器(Magnetorheological Fluid Damper,简称MRFD)的半主动控制系统优化设计中的一个重要问题。本文对此进行了研究,并通过计算实例分析了时间滞后与补偿两种情况对控制系统性能的影响,结果表明,当时滞达到1.0s时,MRFD半主动控制系统仍具有一定的控制效果,说明该半主动控制系统是可靠的,其性能要优于完全主动控制系统,并且对时滞补偿以后系统的控制效果得到明显的改善,说明本文所述的时滞补偿方法是有效的。  相似文献   

2.
刘洪波  刘洁 《地震工程学报》2020,42(6):1361-1368
时滞补偿是建筑抗震实时混合试验的重要问题。文章对时滞补偿方法的研究进行总结,将时滞补偿方法分为基于时间的位移预测时滞补偿方法、基于反馈力的位移预测时滞补偿方法、基于加载系统模型求逆的时滞补偿方法、基于控制理论的时滞补偿方法和基于集成理念的综合补偿方法。  相似文献   

3.
In this paper, an effective active predictive control algorithm is developed for the vibration control of non-linear hysteretic structural systems subjected to earthquake excitation. The non-linear characteristics of the structural behaviour and the effects of time delay in both the measurements and control action are included throughout the entire analysis (design and validation). This is very important since, in current design practice, structures are assumed to behave non-linearly, and time delays induced by sensors and actuator devices are not avoidable. The proposed algorithm focuses on the instantaneous optimal control approach for the development of a control methodology where the non-linearities are brought into the analysis through a non-linear state vector and a non-linear open-loop term. An autoregressive (AR) model is used to predict the earthquake excitation to be considered in the prediction of the structural response. A performance index that is quadratic in the control force and in the predicted non-linear states, with two additional energy related terms, and that is subjected to a non-linear constraint equation, is minimized at every time step. The effectiveness of the proposed closed-open loop non-linear instantaneous optimal prediction control (CONIOPC) strategy is presented by the results of numerical simulations. Since non-linearity and time-delay effects are incorporated in the mathematical model throughout the derivation of the control methodology, good performance and stability of the controlled structural system are guaranteed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
利用绝对加速度测量简单、可靠的特点,提出了一种新的反馈控制方法,即基于绝对加速度的反馈控制算法。同时,考虑到驱动器的时滞,发展了考虑察动器时滞的结构状态方程。实例研究表明,该方法改善了时滞的影响,具有良好的控制效果。  相似文献   

5.
高层建筑地震反应全反馈主动TMD控制理论研究   总被引:6,自引:2,他引:6  
本文应用最近提出的全反馈主动控制法对高层建筑地震反应进行了全反馈主动TMD(调谐质量阻尼器)控制的理论研究,考虑了实时控制过程中控制力的时间滞后效应,并通过数值模拟分析了不同的反馈形式以及不同的时间滞后量对主动TMD控制效果的影响。最后得出结论:对高层建筑地震反应实施全反馈主动TMD控制,既能更有效地降低结构的位移反应和速度反应,又能大幅度地降低结构的加速度反应;且当控制力时间滞后量较大时,对主动  相似文献   

6.
宋刚  谭川  陈果 《地震工程学报》2015,37(4):933-937
对传统的结构抗震闭开环控制算法进行改进。基于地面运动自回归模型,采用Kalman滤波利用可以量测到的地面加速度激励对未来时段即将发生的地面加速度激励进行预估,并在微分方程的求解中引入精确高效的精细积分算法。考虑到实际控制中量测全部状态变量的困难,改进算法仅需量测部分状态变量。数值仿真表明,基于输出反馈的闭开环次优控制策略能大大降低结构的地震响应。  相似文献   

7.
高速列车-桥梁竖向随机振动的时域分析方法   总被引:3,自引:0,他引:3  
提出时间相关多维有色噪声形式的轨道不平顺激励下列车-桥梁耦合系统协方差响应的时域递推方法。用白噪声滤波法生成轨道不平顺有色噪声过程,在宽频带内识别滤波器参数以同时实现滤波成型和波长截断功能。提出基于高阶Pade近似的累次时滞系统,以实现列车多轮对下轨道不平顺激励的大时滞再现;再结合成型滤波器构造列车下轨道不平顺激励的一致白噪声模型。建立列车-桥梁垂向振动的状态方程,将其与激励模型联立得到一致白噪声激励下的列车-桥梁扩阶状态方程。将方差递推法推广到时变系统,求解列车-桥梁系统的随机振动。分析结果与Monte Carlo模拟法符合良好,表明了方法的正确性。  相似文献   

8.
An algorithm to calculate direct velocity feedback gain with limited number of sensors is developed in a simple way such that a certain performance index is minimized according to QN control method. If a limited number of velocity outputs can be measured, full velocity responses of the whole structure can be interpolated based on the mode shapes. By defining the performance index function as a combination of the structure's velocity responses and control forces only, feedback gain can be determined according to QN control method with the external excitation being taken into account throughout the entire algorithm. Control forces are then regulated by the time‐invariant feedback gain matrix. The effective location of the active control devices for a building structure subjected to intermediate‐storey excitation has been determined to be in the three floors adjacent to the vibration source. Hence for the purpose of this paper, only the optimal placement of sensors is verified. It is shown in this paper that if the dynamic behaviour of the structure is well described by a mathematical model, sufficient response reduction effect can be achieved according to the new DVFC algorithm, and the degradation of control performance due to time delay can also be verified. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
半主动TLCD对固定式海洋平台的离散神经网络滑模控制   总被引:3,自引:0,他引:3  
主要研究了半主动调液柱型阻尼器(TLCD)对固定式海洋平台的离散神经网络滑模变结构控制方法。首先建立了平台结构-TLCD控制系统微分方程及其离散化状态空间表达,然后阐述了基于神经网络的滑模变结构控制的基本算法和控制策略,最后应用该神经网络滑模变结构控制策略对一个已建成的实际海洋平台结构的TLCD半主动控制问题进行了数值仿真分析。仿真分析的结果证明了该方法的有效性。  相似文献   

10.
高科技厂房精密仪器工作平台的微振混合控制   总被引:2,自引:1,他引:1  
车辆运行过程中引起的竖向地面微幅振动是影响高科技厂房精密仪器正常运行的重要因素。本文采用隔振与主动控制相结合的混合控制系统,以高科技厂房及精密仪器工作平台的有限元动力方程为基础,采用子优化控制方法建立了高科技厂房及精密仪器工作平台的分析模型,探讨了车辆运行所引起的高科技厂房精密仪器工作平台竖向微幅振动的混合控制分析方法。一座典型的三层高科技厂房的算例分析表明,采用混合控制方法能够有效地减小高科技厂房精密仪器工作平台的竖向微幅振动。  相似文献   

11.
The discrete‐time variable structure control method for seismically excited linear structures with time delay in control is investigated in this paper. The control system with time delay is first discretized and transformed into standard discrete form which contains no time delay in terms of the time delay being integer and non‐integer times of sampling period, respectively. Then the discrete switching surface is determined using ideal quasi‐sliding mode and discrete controller is designed using the discrete approach‐law reaching condition. The deduced controller and switching surface contain not only the current step of state feedback but also linear combination of some former steps of controls. Numerical simulations are illustrated to verify the feasibility and robustness of the proposed control method. Since time‐delay effect is incorporated in the mathematical model for the structural control system throughout the derivation of the proposed algorithm, system performance and dynamic stability are guaranteed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
The classical performance index optimization control algorithm is considered in order to check the real optimality of the control procedure; the basic steps for the optimal algorithm are reviewed, and the equation for the optimal control force derived. It is shown that the optimality conditions cannot be met with regard to the performance index, unless one is concerned with simple free oscillations. It is proved that in this case on one side the optimal control turns out to be of the linear closed‐loop type, yielding explicit optimal control coefficients, and on the other side that no solution can exist of the optimal problem for a generic forcing function. It is concluded that one is forced to calibrate the control force for free oscillations, and that the reliability of the index procedure mainly rests on some implicit expectation that linear control can be calibrated in the absence of the external disturbance and that it works under forced oscillations as well. Furthermore, the problem of delayed active control, with reference to a s.d.o.f. system controlled by a closed‐loop linear algorithm and under the action of a dynamic forcing function is investigated. In particular, the effects produced on the response of the structure by the introduction in the control law of assessed critical values of time delay are analysed and the comparison is proposed between the numerical results that one gets by adopting two different procedures (on one hand the above‐mentioned optimal linear control law and on the other hand the constrained minimization of the structural response norm) to compensate for time lag occurring in the actuation of the active control servomechanisms. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
The problem of robust active vibration control for a class of electro-hydraulic actuated structural systems with time-delay in the control input channel and parameter uncertainties appearing in all the mass,damping and stiffness matrices is investigated in this paper.First,by introducing a linear varying parameter,the nonlinear system is described as a linear parameter varying(LPV)model.Second,based on this LPV model,an LMI-based condition for the system to be asymptotically stabilized is deduced.By solving these LMIs,a parameter-dependent controller is established for the closedloop system to be stable with a prescribed level of disturbance attenuation.The condition is also extended to the uncertain case.Finally,some numerical simulations demonstrate the satisfying performance of the proposed controller.  相似文献   

14.
Hybrid simulation (HS) is a novel technique to combine analytical and experimental sub‐assemblies to examine the dynamic responses of a structure during an earthquake shaking. Traditionally, HS uses displacement‐based control where the finite element program calculates trial displacements and applies them to both the analytical and experimental sub‐assemblies. Displacement‐based HS (DHS) has been proven to work well for most structural sub‐assemblies. However, for specimens with high stiffness, traditional DHS does not work because it is difficult to precisely control hydraulic actuators in small displacement. A small control error in displacement will result in large force response fluctuations for stiff specimens. This paper resolves this challenge by proposing a force‐based HS (FHS) algorithm that directly calculates trial forces instead of trial displacements. The proposed FHS is finite element based and applicable to both linear and nonlinear systems. For specimens with drastic changes in stiffness, such as yielding, a switch‐based HS (SHS) algorithm is proposed. A stiffness‐based switching criterion between the DHS and FHS algorithms is presented in this paper. All the developed algorithms are applied to a simple one‐story one‐bay concentrically braced moment frame. The result shows that SHS outperforms DHS and FHS. SHS is then utilized to validate the seismic performance of an innovative earthquake resilient fused structure. The result shows that SHS works in switching between the DHS and FHS modes for a highly nonlinear and highly indeterminate structural system. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
A numerical method is proposed to accurately and efficiently compute a direct steady-state solution of the nonlinear Richards equation. In the proposed method, the Kirchhoff integral transformation and a complementary transformation are applied to the governing equation in order to separate the nonlinear hyperbolic characteristic from the linear parabolic part. The separation allows the transformed governing equation to be applied to partially- to fully-saturated systems with arbitrary constitutive relations between primary (pressure head) and secondary variables (relative permeability). The transformed governing equation is then discretized with control volume finite difference/finite element approximations, followed by inverse transformation. The approach is compared to analytical and other numerical approaches for variably-saturated flow in 1-D and 3-D domains. The results clearly demonstrate that the approach is not only more computationally efficient but also more accurate than traditional numerical solutions. The approach is also applied to an example flow problem involving a regional-scale variably-saturated heterogeneous system, where the vadose zone is up to 1 km thick. The performance, stability, and effectiveness of the transform approach is exemplified for this complex heterogeneous example, which is typical of many problems encountered in the field. It is shown that computational performance can be enhanced by several orders of magnitude with the described integral transformation approach.  相似文献   

16.
The aim of this paper was to propose a design guideline for using visco‐elastic dampers for the control of building structures subjected to earthquake loading as well as suspension roof structures subjected to wind loading. The active control algorithm was used to calculate the control forces. Based on the single‐mode approach the control forces were transformed to the forces which visco‐elastic dampers can provide. Application of the method to the design of the building structure with passive damping devices in the bracing system and to the suspension roof with dampers was studied. Through the application of optimal control theory a systematic design procedure to implement dampers in structures is proposed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
A set of algorithms combined with a substructure technique is proposed for an online hybrid test framework, in which the substructures are encapsulated by a standard interface that implements displacements and forces at the common substructure boundaries. A coordinator equipped with the proposed algorithms is designed to achieve boundary compatibility and equilibrium, thereby endowing the substructures the ability to behave as one piece. A model‐based predictor and corrector, and a noniterative procedure, characterize the set of algorithms. The coordinator solves the dynamics of the entire structure and updates the static boundary state simultaneously by a quasi‐Newton procedure, which gradually formulates the condensed stiffness matrix associated with corresponding degrees of freedom. With the condensed stiffness matrix and dynamic information, a condensed equation of motion is derived and then solved by a typical time integration algorithm. Three strategies for updating the condensed stiffness matrix are incorporated into the proposed algorithms. Each adopts different stiffness matrix during the predicting and correcting stage. These algorithms are validated by two numerical substructure simulations and a hybrid test. The effectiveness and feasibility are fully demonstrated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
The problem of determining the limiting performance of vibrating systems under shock loading is solved by replacing portions of the system by control forces which can represent any design. For the class of problems treated here, the performance index and the constraints are linear combinations of system response variables such as displacements, velocities and accelerations. Furthermore, the equations of motion are linear, so that it is possible to formulate the optimization procedure as a linear programming problem. In expressing the performance index and the constraints as linear functions of the unknown control forces, a modal approach is used to simplify and improve previous treatments of this problem. In spite of these linearity requirements, the control forces are not required to be linear functions of the response variables.  相似文献   

19.
Applying active control systems to civil engineering structures subjected to dynamic loading has received increasing interest. This study proposes an active pulse control model, termed unsupervised fuzzy neural network structural active pulse controller (UFN‐SAP controller), for controlling civil engineering structures under dynamic loading. The proposed controller combines an unsupervised neural network classification (UNC) model, an unsupervised fuzzy neural network (UFN) reasoning model, and an active pulse control strategy. The UFN‐SAP controller minimizes structural cumulative responses during earthquakes by applying active pulse control forces determined via the UFN model based on the clusters, classified through the UNC model, with their corresponding control forces. Herein, we assume that the effect of the pulses on structure is delayed until just before the next sampling time so that the control force can be calculated in time, and applied. The UFN‐SAP controller also averts the difficulty of obtaining system parameters for a real structure for the algorithm to allow active structural control. Illustrative examples reveal significant reductions in cumulative structural responses, proving the feasibility of applying the adaptive unsupervised neural network with the fuzzy classification approach to control civil engineering structures under dynamic loading. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper we extend the Lanczos algorithm for the dynamic analysis of structures7 to systems with general matrix coefficients. The equations of dynamic equilibrium are first transformed to a system of first order differential equations. Then the unsymmetric Lanczos method is used to generate two sets of vectors. These vectors are used in a method of weighted residuals to reduce the equations of motion to a small unsymmetric tridiagonal system. The algorithm is further simplified for systems of equations with symmetric matrices. By appropriate choice of the starting vectors we obtain an implementation of the Lanczos method that is remarkably close to that in Reference 7, but generalized to the case with indefinite matrix coefficients. This simplification eliminates one of the sets of vectors generated by the unsymmetric Lanczos method and results in a symmetric tridiagonal, but indefinite, system. We identify the difficulties that may arise when this implementation is applied to problems with symmetric indefinite matrices such as vibration of structures with velocity feedback control forces which lead to symmetric damping matrices. This approach is used to evaluate the vibration response of a damped beam problem and a space mast structure with symmetric damping matrix arising from velocity feedback control forces. In both problems, accurate solutions were obtained with as few as 20 Lanczos vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号