首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inelastic behaviour of eccentric single-storey building structures subjected to sinusoidal ground excitation is examined. The Kryloff-Bogoliuboff method is employed to provide approximate solutions in the amplitude-frequency domain. Structural resisting elements are assumed to exhibit bilinear hysteretic behaviour and coupled response is investigated in terms of both system response as well as individual element ductility requirements. In addition to demonstrating the well-known softening property inherent in yielding systems, the importance of the principal parameters governing coupled response is evaluated in a consistent parametric fashion. Within the context of earthquake resistant building design, the results indicate the absence of amplified response when torsional and translational frequencies are close, in contrast to the much emphasized observation of internal resonance for linear elastic structures. Equally important, structural elements located on the stiff edge of eccentric buildings are found to be only marginally affected by the magnitude of the eccentricity, thus indicating that seismic building codes which reduce design requirements for these elements underestimate actual behaviour substantially.  相似文献   

2.
The maximum ductility demand and the edge displacement of a simple single mass eccentric model is evaluated when the system is subjected to ground motions represented by the El Centro 1940 and Taft 1952 earthquake records. The resisting elements are taken to be bilinear hysteretic. It is found that the ductility demand depends to a great extent on the energy content of the ground motions, particularly in the period range beyond the elastic period of the system. Unlike elastic response, the coincidence of uncoupled torsional and lateral frequencies does not lead to exceptionally high inelastic response. An increase by a factor of two in ductility demand is not uncommon for a system with large eccentricity as compared to a symmetrical system. Therefore, system eccentricity has a larger effect on ductility demand than earlier studies indicated. Using Clough's model to allow for stiffness degradation effect, results are found to be within 20 per cent of those calculated based on the bilinear hysteretic model.  相似文献   

3.
Seismic building codes include design provisions to account for the torsional effects arising in torsionally unbalanced (asymmetric) buildings. These provisions are based on two alternative analytical procedures for determining the design load for the individual resisting structural elements. A previous study has shown that the linear elastic modal analysis procedure may not lead to conservative designs, even for multistorey buildings with regular asymmetry, when such structures are excited well into the inelastic range of response. The equivalent static force procedure as recommended by codes may also be deficient in accounting for additional ductility demand in the critical stiff-edge elements. This paper addresses the non-conservatism of existing static torsional provisions and examines aspects of element strength distribution and its influence on inelastic torsional effects. A recommendation is made for improving the effectiveness of the code-type static force procedure for torsionally unbalanced multistorey frame buildings with regular asymmetry, leading to a design approach which estimates conservatively the peak ductility demand of edge elements on both sides of the building. The modified approach also retains the simplicity of existing code provisions and results in acceptable levels of additional lateral design strength. It has recently been adopted by the new Australian earthquake code, which is due to be implemented early in 1993.  相似文献   

4.
Using a single mass monosymmetric model, this paper examines the additional seismic inelastic deformations and displacement caused by structural asymmetry of the model. Stiffness eccentricity and resistance eccentricity are used as measures of asymmetry in the elastic and inelastic range respectively. Seven ways of specifying strength distribution among resisting elements are considered, including code provisions from Canada, Mexico, New Zealand and the United States. These specifications are related t o the model resistance eccentricity. It is shown that when torsional shears are included in the strength design of the elements, the structure in general will have small resistance eccentricity, even if it has large stiffness eccentricity in the elastic range. For structures which are designed with allowance for torsional shears, the ductility demands on the elements are similar to those when the structure is symmetrical. However, the edge displacements can be up to three times that if the system is symmetrical. This finding has significant implications in evaluating adequate separation between buildings to avoid the pounding problem during earthquakes.  相似文献   

5.
To deal with earthquake-induced torsion in buildings due to some uncertain factors, difficult to account for directly in design, modern codes have introduced the so-called accidental design eccentricity (ADE). This provision has been based primarily on elastic investigations with special classes of multi-story buildings or with simplified, one-story inelastic models. In the present paper, the effectiveness of this provision is investigated using inelastic models, both of the typical one-story, 3-DOF type, and the more sophisticated MDOF, frame idealizations of the plastic hinge type. One, three and five story, realistic, frame buildings with different natural eccentricities were designed for different ADEs, including those specified by the EC8 and IBC codes. The evaluation is made using mean peak ductility factors of the edge frames as measures of their inelastic response, obtained from dynamic analyses for ten pairs of semi-artificial earthquake motions. The simplified models indicate that the accidental design eccentricity is very effective in reducing ductility demands, especially for very stiff systems. However, this is not confirmed by the more accurate and detailed plastic hinge building models, which show that designs accounting for accidental eccentricity do not exhibit any substantial reduction or better distribution of ductility demands, compared to designs in which accidental eccentricity has been entirely ignored. These findings suggest that the ADE provisions in codes, especially the more complicated ones as in the IBC, should be re-examined, by weighting their importance against the additional computational work they impose on designers. In the cases examined herein this importance can be characterized as marginal. Obviously additional studies are required, to include more building types and earthquake motions, in order to arrive at firm conclusions and recommendations for code modifications.  相似文献   

6.
Based on an asymmetric multistorey frame building model, this paper investigates the influence of a building's higher vibration modes on its inelastic torsional response and evaluates the adequacy of the provisions of current seismic building codes and the modal analysis procedure in accounting for increased ductility demand in frames situated at or near the stiff edge of such buildings. It is concluded that the influence of higher vibration modes on the response of the upper-storey columns of stiff-edge frames increases significantly with the building's fundamental uncoupled lateral period and the magnitude of the stiffness eccentricity. The application of the equivalent static torsional provisions of certain building codes may lead to non-conservative estimates of the peak ductility demand, particularly for structures with large stiffness eccentricity. In these cases, the critical elements are vulnerable to excessive additional ductility demand and, hence, may be subject to significantly more severe structural damage than in corresponding symmetric buildings. It is found that regularly asymmetric buildings excited well into the inelastic range may not be conservatively designed using linear elastic modal analysis theory. Particular caution is required when applying this method to the design of stiff-edge frame elements in highly asymmetric structures.  相似文献   

7.
Using a three element single mass model, this paper presents the ductility demands on the elements of torsionally unbalanced systems when subjected to strong earthquake shaking. Torsionally unbalanced systems based on nine structural configurations are considered, ranging from torsionally stiff systems with the centre of rigidity (CR) centrally located to torsionally flexible systems with CR eccentrically located. The strength of the elements is designed based on the Canadian and New Zealand codes, and the Uniform Building Code (UBC) of the United States. It is shown that all three codes can limit the ductility demands on the elements to that of a similar but torsionally balanced system when the system is torsionally stiff. However, substantial additional ductility demands on the element at the stiff edge of the system exist for torsionally flexible systems when the New Zealand code or UBC is used. The large ductility demand is caused by the low strength of the stiff-edge element permitted by these codes.  相似文献   

8.
The seismic design of multi‐story buildings asymmetric in plan yet regular in elevation and stiffened with ductile RC structural walls is addressed. A realistic modeling of the non‐linear ductile behavior of the RC walls is considered in combination with the characteristics of the dynamic torsional response of asymmetric buildings. Design criteria such as the determination of the system ductility, taking into account the location and ductility demand of the RC walls, the story‐drift demand at the softer (most displaced) edge of the building under the design earthquake, the allowable ductility (ultimate limit state) and the allowable story‐drift (performance goals) are discussed. The definition of an eccentricity of the earthquake‐equivalent lateral force is proposed and used to determine the effective displacement profile of the building yet not the strength distribution under the design earthquake. Furthermore, an appropriate procedure is proposed to calculate the fundamental frequency and the earthquake‐equivalent lateral force. A new deformation‐based seismic design method taking into account the characteristics of the dynamic torsional response, the ductility of the RC walls, the system ductility and the story‐drift at the softer (most displaced) edge of the building is presented and illustrated with an example of seismic design of a multi‐story asymmetric RC wall building. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
The inelastic seismic torsional response of simple structures is examined by means of shear‐beam type models as well as with plastic hinge idealization of one‐story buildings. Using mean values of ductility factors, obtained for groups of ten earthquake motions, as the basic index of post‐elastic response, the following topics are examined with the shear‐beam type model: mass eccentric versus stiffness eccentric systems, effects of different types of motions and effects of double eccentricities. Subsequently, comparisons are made with results obtained using a more realistic, plastic hinge type model of single‐story reinforced concrete frame buildings designed according to a modern Code. The consequences of designing for different levels of accidental eccentricity are also examined for the aforementioned frame buildings. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
A statistical analysis is performed to investigate the significance of peak ground acceleration to velocity ratio (a/v) on the displacement ductility demand of simple bilinear hysteretic systems. Three groups of earthquake records representative of low, normal and high<a/v ranges are used as input ground motions. The design yield strength of the inelastic systems is specified from the base shear formula in the 1980 National Building Code of Canada (NBCC 1980) and that in NBCC 1985 respectively. The former case represents the common practice of specifying seismic design base shear based on a peak site acceleration, while in the latter case the base shear is specified based on peak ground velocity and a/v ratio. Mean displacement ductility demands are obtained for the three groups of ground motions; and the corresponding dispersion characteristics are examined. The results show that the ground motion<a/v range has a significant effect on the displacement ductility demand, and it should be accounted for in design strength specification.  相似文献   

11.
结构抗震设计中的强度折减系数研究   总被引:27,自引:12,他引:27  
借助于单自由度弹塑性动力时程分析程序,对延性结构的强度折减系数进行了研究,在统计平均和回归分析的基础上,建立了平均强度折系数的函数形式,本文所建立的平强度折减系数函数,从理论上明确了结构具有延性对弹性地震力的折减关系,研究成果可供结构抗震设计规范采纳应用。  相似文献   

12.
The study of the torsional response of buildings in the inelastic range of behaviour is of great interest since the ability of structures to resist strong earthquakes mainly relies on their ductility and capacity for energy dissipation. Furthermore, an examination of the performance of structures during past earthquakes demonstrates that plan-asymmetric buildings suffered greater damage due to torsional response. The paper deals with this subject by analysing a model which idealizes a one-storey building with resisting elements oriented along two perpendicular directions. In addition to the parameters of the elastic behaviour, the inelastic system response depends on full yield capacity and plan-wise strength distribution. The influence of the criterion adopted for the design of resisting elements on local ductility demand and damage has been evaluated by parametric analysis. In particular, a comparison has been carried out between systems with equal design levels for all elements and systems with design levels dependent on the element location. For a given elastic behaviour and total capacity, the strength distributions in plan have been defined which minimize ductility demand and structural damage. Finally, based on these findings, responses from models designed according to several seismic codes have been compared.  相似文献   

13.
This study aims to determine the influence of torsional coupling on the inelastic response of a series of models representing typical structural configurations in real buildings. The lake bed (SCT) east-west component of the 1985 Mexico City earthquake was employed in the analysis, and is representative of a severe ground motion known to have induced large inelastic structural deformations in a high proportion of those buildings having asymmetrical distributions of stiffness and/or strength. Material non-linearity in lateral load-resisting elements has been defined using a hysteretic Ramberg-Osgood model. Structural eccentricities have been introduced into the building models by (i) asymmetrical distributions of stiffness and/or strength, (ii) asymmetrical configuration of lateral load-resisting elements, or (iii) varying post-elastic material behaviour in the resisting elements. The dynamic inelastic response of these models has been obtained by a numerical integration of the relevant equations of motion, expressed in a non-dimensional incremental form.

In the elastic range, the results correlate well with those of previous studies. In the inelastic range, it is concluded that the peak ductility demand of the worst-affected element increases with the ground excitation level across the range of building periods considered, and that the influence of torsional coupling on the key response parameters is model dependent. Most significantly, the strength eccentricity relative to the centre of mass has been shown to influence the peak edge displacement response more than conventionally employed stiffness eccentricity.  相似文献   


14.
Uneven distribution of seismic demand in asymmetric-plan structures is a critical concern in earthquake-resistant design. Contemporary seismic design strategies that are based on linear elastic response, single load reduction factor, and uniform ductility demand throughout an asymmetric system generally lead to unsatisfactory performance in terms of realized ductilities and nonuniform damage distribution due to strong torsional coupling associated with asymmetric-plan systems. In many cases, actual nonlinear behavior of the structure displays significant deviation from what is estimated by a linear elastic, force-based seismic design approach. This study investigates the prediction of seismic demand distribution among structural members of a single-story, torsionally stiff asymmetric-plan system. The focus is on the effect of inherent unbalanced overstrength, resulting from current force-based design practices, on the seismic response of code-designed single-story asymmetric structures. The results obtained are utilized to compile unsymmetrical response spectra and uniform ductility spectra, which are proposed as assessment and preliminary design tools for estimating the seismic performance of multistory asymmetric structures. A simple design strategy is further suggested for improving the inelastic torsional performance of asymmetric systems. Providing additional strength to stiff edge members over their nominal design strength demands leads to a more balanced ductility distribution. Finally, seismic responses of several asymmetric case study structures designed with the aid of the proposed strategy are assessed for validating their improved performance.  相似文献   

15.
Structural eccentricity and Uncoupled Frequency Ratio (UFR) are two system parameters that strongly influence the elastic response of eccentric structures. The opinions differ regarding their influence on the inelastic response. Different investigators arrived at contradictory conclusions on the influence of uncoupled frequency ratio. The reasons for these contradictions are the use of different definitions and different models in the inelastic studies. In this paper, three possible definitions of the uncoupled frequency ratio are identified, and their influence is studied on the inelastic response. An ensemble of 10 real earthquakes of 20 s duration is used. The response is measured in terms of the mean plus one standard deviation of the ductility ratio. The value of the UFR obtained by each of the three possible definitions is not always admissible. It is concluded that the inelastic response depends upon the eccentric system, definition employed for the UFR, time period of the eccentric systems and the basis of strength distribution among the various lateral elements.  相似文献   

16.
Traditionally, seismic torsional provisions have been evaluated based on the assumption that the strength of the lateral load resisting elements can be adjusted without changing their stiffness. There is an important class of elements that a change of their lateral strength implies a corresponding change of stiffness, as exemplified by reinforced concrete flexural walls. This would imply that when torsional provisions are applied to adjust the strengths of these elements, the stiffness distribution, and also the eccentricity of the system, will change. This paper re-evaluates the consequences of applying the torsional provisions of the Uniform Building Code (UBC, 1997) and also the Eurocode (Eurocode 8, 1994) to single mass eccentric systems supported by elements having such characteristics. In conjunction with the results based on the traditional assumption, the effectiveness of the two provisions to mitigate torsional effects is discussed from a broader perspective. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
The inelastic earthquake response of eccentric, multistorey, frame‐type, reinforced concrete buildings is investigated using three‐ and five‐storey models, subjected to a set of 10, two‐component, semi‐artificial motions, generated to match the design spectrum. Buildings designed according to the EC8 as well as the UBC‐97 code were included in the investigation. It is found that contrary to what the simplified one‐storey, typical, shear‐beam models predict, the so‐called ‘flexible’ side frames exhibit higher ductility demands than the ‘stiff’ side frames. The substantial differences in such demands between the two sides suggest a need for reassessment of the pertinent code provisions. This investigation constitutes one of the first attempts to study the problem of inelastic torsion by means of realistic, multistorey inelastic building models. Additional studies with similar or even more refined idealizations will certainly be required to arrive at definite results and recommendations for possible code revisions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
A study is presented of the influence of stiffness and strength eccentricities on the inelastic torsional response of buildings under the action of two simultaneous orthogonal horizontal ground motion components. Asymmetric buildings were obtained from their respective symmetric systems and were characterized by their stiffness and strength torsional eccentricities in both orthogonal directions. Based on the results of inelastic response of both building types (symmetric and asymmetric), the seismic reliability functions are determined for each system, and their forms of variation with different global system parameters are evaluated. Illustrative examples are presented about the use of this information for the formulation of seismic design criteria for in‐plan asymmetric multistory systems, in order to attain the same reliability levels implicit for symmetric systems designed in accordance with current seismic design codes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
耗能梁段作为偏心支撑结构的耗能元件,在大震作用下通过弹塑性变形吸收地震能量,保护主体结构处于弹性受力状态。现行规范基于强度的设计理论,为了保证耗能梁段进入塑性或破坏,梁柱构件需要进行放大内力设计,导致截面过大,而且基于强度的设计方法很难保证结构的整体破坏状态。目前,抗震设计越来越重视基于性能的设计思想,该方法能够评估结构的弹塑性反应。对于高强钢组合偏心支撑,其中耗能梁段和支撑采用Q345钢,框架梁柱采用Q460或者Q690高强度钢材,高强钢不仅带来良好的经济效益,而且能够推广高强钢在抗震设防区的应用。利用基于性能设计方法设计了4种不同形式的高强钢组合偏心支撑钢框架,包括K形、Y形、V形和D形,考虑4层、8层、12层和16层的影响。通过Pushover分析和非线性时程分析评估该结构的抗震性能,研究结果表明:4种形式的高强钢组合偏心支撑钢框架具有类似的抗震性能,在罕遇地震作用下,几乎所有耗能梁段均参与耗能,而且层间侧移与耗能梁段转角沿高度分布较为均匀。其中:D形偏心支撑具有最大的抗侧刚度,但延性较差,而Y形偏心支撑的抗侧刚度最弱,但延性最佳。  相似文献   

20.
This paper evaluates the inelastic seismic response of torsionally unbalanced structural systems with strength distributed using elastic response spectrum analysis. The structural model is a single mass torsionally unbalanced system with lateral load resisting elements spanning in two principal directions. The element strength is distributed based on elastic response spectrum analysis and three different approaches to incorporate accidental torsion are considered: (a) without incorporating accidental torsion; (b) by applying static floor torques; (c) by shifting the location of the centre of mass. The seismic input is bidirectionally applied at the base of the model. It is shown that the inelastic responses depend strongly on the torsional stiffness of the system. For a torsionally stiff system, the torsional response leads to a decrease in the stiff edge displacement; however, for a torsionally flexible system, it tends to increase the stiff edge displacement. Using response spectrum analysis without including accidental torsion may lead to excessive additional ductility demand on the stiff edge element. With accidental torsion effect incorporated, the response spectrum analysis will give a strength distribution such that there will be no excessive additional ductility demands on the lateral load resisting elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号