首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
ABSTRACT

An accurate comprehension of celerity (flood wave speed) dynamics is a key step for understanding flood wave propagation in rivers. We present the results of empirically estimated celerity values in 12 Brazilian rivers, and analyse the behaviour of celerity–discharge relationships (CxQ). Celerity was estimated with a reach-scale (RS) method, based on the peak travel time between stations; and with a local-scale (LS) method, based on the derivative of discharge–cross-section area relationships surveyed at gauging stations. The results indicate that the magnitudes of celerity values obtained by the methods are reasonably comparable, and can rarely be considered constant, varying with river discharge. Three reaches presented differing CxQ relationships at local and reach scales, which suggests that in situ cross-sections at gauging stations should not be extrapolated as representative of the whole reach for flood routing studies, and that CxQ relationship assessments might provide relevant insights for hydrological modelling.  相似文献   

2.
《水文科学杂志》2013,58(2):401-408
Abstract

Knowledge of peak discharge is essential for safe and economical planning and design of hydraulic structures. In India, as in most developing countries, the majority of river basins are either sparsely gauged or not gauged at all. The gauged records are also of short length (generally 15–30 years), therefore development of robust models is necessary for estimation of streamflows. Various studies reveal that flood estimation through channel geometry is an alternative method for ungauged catchments. It is appropriate for use where flow characteristics are poorly related to catchment area and other catchment characteristics. In the present study, stream geometry parameters for 42 river sites in central-south India were used; calibration equations were developed with data for 35 stations and tested on data for the remaining seven stations. The relationships developed between mean discharge and channel geometry parameters provide an alternative technique for estimation of mean annual channel discharge.  相似文献   

3.
The measurement of river discharge is necessary for understanding many water‐related issues. Traditionally, river discharge is estimated by measuring water stage and converting the measurement to discharge by using a stage–discharge rating curve. Our proposed method for the first time couples the measurement of water‐surface width with river width–stage and stage–discharge rating curves by using very high‐resolution satellite data. We used it to estimate the discharge in the Yangtze (Changjiang) River as a case study. The discharges estimated at four stations from five QuickBird‐2 images matched the ground observation data very well, demonstrating that the proposed approach can be regarded as ancillary to traditional field measurement methods or other remote methods to estimate river discharge. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
The spatial representativeness of gauging stations was investigated in two low‐mountainous river basins near the city of Trier, southwest Germany. Longitudinal profiles during low and high flow conditions were sampled in order to identify sources of solutes and to characterize the alteration of flood wave properties during its travel downstream. Numerous hydrographs and chemographs of natural flood events were analysed in detail. Additionally, artificial flood events were investigated to study in‐channel transport processes. During dry weather conditions the gauging station was only representative for a short river segment upstream, owing to discharge and solute concentrations of sources contiguous to the measurement site. During artificial flood events the kinematic wave velocity was considerably faster than the movement of water body and solutes, refuting the idea of a simple mixing process of individual runoff components. Depending on hydrological boundary conditions, the wave at a specific gauge could be entirely composed of old in‐channel water, which notably reduces the spatial representativeness of a sampling site. Natural flood events were characterized by a superimposition of local overland flow, riparian water and the kinematic wave process comprising the downstream conveyance of solutes. Summer floods in particular were marked by a chronological occurrence of distinct individual runoff components originating only from a few contributing areas adjacent to the stream and gauge. Thus, the representativeness of a gauge for processes in the whole basin depends on the distance of the nearest significant source to the station. The consequence of our study is that the assumptions of mixing models are not satisfied in river basins larger than 3 km2. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Bankfull discharge is a key parameter in the context of river engineering and geomorphology, as an indicator of flood discharge capacity in alluvial rivers, and varying in response to the incoming flow and sediment regimes. Bankfull channel dimensions have significantly adjusted along the Lower Yellow River (LYR) due to recent channel degradation, caused by the operation of the Xiaolangdi Reservoir, which has led to longitudinal variability in cross‐sectional bankfull discharges. Therefore, it is more representative to describe the flood discharge capacity of the LYR, using the concept of reach‐averaged bankfull discharge. Previous simple mean methods to estimate reach‐scale bankfull discharge cannot meet the condition of flow continuity or account for the effect of different spacing between two sections. In this study, a general method to calculate cross‐sectional bankfull discharge using the simulated stage‐discharge relation is outlined briefly, and an integrated method is then proposed for estimating reach‐scale bankfull discharge. The proposed method integrates a geometric mean based on the log‐transformation with a weighted average based on the spacing between two consecutive sections, which avoids the shortcomings of previous methods. The post‐flood reach‐scale bankfull discharges in three different channel‐pattern reaches of the LYR were estimated annually during the period from 1999 to 2010 using the proposed method, based on surveyed post‐flood profiles at 91 sedimentation sections and the measured hydrological data at seven hydrometric sections. The calculated results indicate that: (i) the estimated reach‐scale bankfull discharges can effectively represent the flood discharge capacity of different reaches, with their ranges of variation being less than those of typical cross‐sectional bankfull discharges; and (ii) the magnitude of the reach‐scale bankfull discharge in each reach can respond well to the accumulative effect of incoming flow and sediment conditions. Finally, empirical relationships for different reaches in the LYR were developed between the reach‐scale bankfull discharge and the previous four‐year average discharge and incoming sediment coefficient during flood seasons, with relatively high correlation coefficients between them being obtained, and the reach‐scale bankfull discharges in different reaches predicted by the delayed response model were also presented for a comparison. These relations for the prediction of reach‐scale bankfull discharges were validated using the cross‐sectional profiles and hydrological data measured in 2011. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
[专稿]近年长江中下游径流节律变化、效应与修复对策   总被引:1,自引:0,他引:1  
周建军  张曼 《湖泊科学》2018,30(6):1471-1488
近十余年长江上游大量兴建大型水库,蓄水、调节和拦沙对中下游河川径流和泥沙产生了深刻影响.河川径流减少,径流季节提前,伏秋(特别是10月)流量显著降低、变差系数增大,97%严重干旱频率情景变成80%~85%.同时,宜昌和出海输沙量分别减少93%和70%,中下游河槽冲刷下降1~3 m,三峡蓄水后仅13年清水冲刷幅度和范围已超过三峡预期30年的冲刷上限,目前仍呈加速趋势.干流各站平均水位下降2~4 m,与此同时河道同流量洪水位反而升高.水库调节是水位降低的主要原因,河道冲刷更加剧水位降低,当前水位变化对防洪和生态都不利.汛后流量和干流水位提前降低使洞庭湖和鄱阳湖(两湖)提前干枯、松滋等"三口"入湖水量减少,伏秋高热季节两湖生态环境面貌发生了根本变化.汛后流量减少甚至显著增加长江大通十月流量小于15000 m3/s几率和上海长江水源受咸潮影响风险,10月咸潮入侵变成最严重时段必须引起高度重视.我们认为,径流和径流节律变化是当前长江生态环境最主要问题之一.建议以"水资源工程"重新定位上游大型工程、以"水资源优先"优化流域管理和切实回归既定三峡工程运行原则等统一调度和改善中下游水情;通过水库挖泥等措施修复长江物质通量,抑制中下游剧烈冲刷和稳定河流格局;加强中下游蓄滞洪区等防洪能力建设,为最大限度降低上游水库防洪和蓄水压力创造条件;主要通过改善上游水库调度维护两湖环境条件,"引清水入洞庭"和"增加供水设施建设"加强两湖适应能力.这是长江修复和保护重点.  相似文献   

7.
LINTRODUCTIONAsfear7specificsurveyshavebeenmadeonthemorphologicalbehavioroftheHuaihefox'erinthepast.Someinformationofbeddeformationduringfloodprocesshavebeenobtained.Beingrelativelystable,theHuaihehiverusedtobeineptlytreatedas"fixedbed".Fortunately,tilehydrometricalstationsweredenselydistributedalongtheHuaihehiverinthe1950s,andthevelocitylareamethodwasusedforthedeterminationofdischarge.Themeasurementsofdischargearelistedin"TheDischargeMeasurementsTable"intheHydrologicalYearbooks.Sinc…  相似文献   

8.
Discharge, especially during flood periods, is among the most important information necessary for flood control, water resources planning and management. Owing to the high flood velocities, flood discharge usually cannot be measured efficiently by conventional methods, which explains why records of flood discharge are scarce or do not exist for the watersheds in Taiwan. A fast method of flood discharge estimation is presented. The greatest advantage of the proposed method is its application to estimate flood discharge that cannot be measured by conventional methods. It has as its basis the regularity of open‐channel flows, i.e. that nature maintains a constant ratio of mean to maximum velocities at a given channel section by adjusting the velocity distribution and the channel geometry. The maximum velocity at a given section can be determined easily over a single vertical profile, which tends to remain invariant with time and discharge, and can be converted to the mean velocity of the entire cross‐section by multying by the constant ratio. Therefore the mean velocity is a common multiple of maximum velocity and the mean/maximum velocity ratio. The channel cross‐sectional area can be determined from the gauge height, the water depth at the y‐axis or the product of the channel width multiplied by the water depth at the y‐axis. Then the most commonly used method, i.e. the velocity–area method, which determines discharge as the product of the cross‐sectional area multiplied by mean velocity, is applied to estimate the flood discharge. Only a few velocity measurements on the y‐axis are necessary to estimate flood discharge. Moreover the location of the y‐axis will not vary with time and water stage. Once the relationship of mean and maximum velocities is established, the flood estimation can be determined efficiently. This method avoids exposure to hazardous environments and sharply reduces the measurement time and cost. The method can be applied in both high and low flows in rivers. Available laboratory flume and stream‐flow data are used to illustrate accuracy and reliability, and results show that this method can quickly and accurately estimate flood discharges. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
In this study, we propose to identify morphological and hydraulic characteristics related to overbank flows in the water level time‐series available at many gauged stations. The results obtained at 13 river stations (the catchment sizes vary from 10 to 1700 km2 with contrasted geology, land use and rainfalls regime) show that overflow mechanisms at the river‐reach scale can be systematically identified in the water level frequency distribution estimated with the peaks‐over‐threshold (POT) method. A first level (Lts1) was in the range of the incipient flooding onto the floodplain. Even if the definition of this level is variable in terms of flooded area at the reach scale, this method can be useful in providing a first estimation of the bankfull level for many gauged stations, without complex and costly field surveys. A second level (Lts2) was systematically detected on average 38 cm above the topographic flat floodplain elevation. The Lts2 inflection in the water‐level frequency distribution is assumed to reflect a composite effect of catchment hydrology and local hydraulics and channel geometry, without possibility to make a clear distinction between both processes at the moment. The local or reach scale effect would probably play an essential role in the frequency distribution as flood attenuation at catchment scale may explain the inflection Lts2 at only three sites. In light of the knowledge acquired in laboratory flumes with compound channels, most of the time Lts2 level would correspond to the level of resumption of flow both in the main channel and the floodplain. Once this method is validated in various physiographic contexts, it should apply to many hydrometric stations for both synchronic (e.g. regional analysis) and diachronic analysis (e.g. evolution over time of the bankfull discharge) to evaluate anthropic impacts on river morphology. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Reservoir release wave routing during 33 controlled reservoir releases, along 15 upland boulder bed river channel reaches, on five different regulated rivers were monitored to assess the importance of river channel roughness and reservoir release magnitude on reservoir release wave speeds. Wave speeds varied between 0.52 and 3.01 m s?1. Reservoir release wave translation, steepening, and attenuation occurred. With high channel roughness values reservoir release wave arrival speed is retarded in comparison to peak stage and wave steepening occurs, but with a reduction in channel roughness reservoir release wave front arrival is accelerated producing attentuation. The threshold between reservoir release wave front attenuation and steepening occurs at a pre-release discharge/channel width of approximately 0.1, an index of channel roughness. The paper also demonstrates, via comparison of observed and calculated reservoir release wave speeds on the River Washburn, Yorkshire, the difficulty of accurately predicting flood wave movement in upland boulder bed channels using existing prediction equations. The calculated values, however, revealed systematic error with pre-release discharge and reservoir release magnitude. Apparently the equations fail to account for the effects of high channel roughness together with pressure gradient forces, induced by rapid rates of stage change on the rising limb of reservoir releases. In order to accurately predict reservoir release wave movement in regulated rivers, this paper demonstrates that hydraulic studies need to be undertaken and pre-release discharges prescribed to determine desired reservoir release wave routing behaviour. Manipulation of the reservoir release pattern at the dam alone, cannot dictate reservoir release wave front form downstream or wave speed.  相似文献   

11.
Small river channels within the Humber Basin of Southern Ontario exhibit irregular meandering patterns; however, contemporary river hydrology appears capable of controlling the scale of regular waveform development. Recent changes in river planform are assessed through a bi‐temporal comparison of channel planform using orthorectified aerial photography and statistical analysis of curvature series based on autocorrelation and spectral analysis. Calculated meander wavelengths are acceptable given traditional relationships between wavelength and mean annual flood discharge. It is also evident that changes in stream power are highly correlated with changes in the dominant wavelengths between channel reaches in this study. Gradual development of small scale waveforms following a rare hydrological and geomorphological event in 1954 further confirms that these forms can be attributed to the typical discharge regime. This paper argues that the scaling of wavelengths with discharge can be considered a strong factor controlling planform evolution on some small meandering river systems, despite manifest irregular planforms. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Lateral inflows control the spatial distribution of river discharge, and understanding their patterns is fundamental for accurately modelling instream flows and travel time distributions necessary for evaluating impacts of climate change on aquatic habitat suitability, river energy budgets, and fate of dissolved organic carbon. Yet, little is known about the spatial distribution of lateral inflows in Arctic rivers given the lack of gauging stations. With a network of stream gauging and meteorological stations within the Kuparuk River watershed in northern Alaska, we estimated precipitation and lateral inflows for nine subcatchments from 1 July to 4 August,2013, 2014, and 2015. Total precipitation, lateral inflows, runoff ratios (area-normalized lateral inflow divided by precipitation), percent contribution to total basin discharge, and lateral inflow per river kilometre were estimated for each watershed for relatively dry, moderate, or wet summers. The results show substantial variability between years and subcatchments. Total basin lateral inflow depths ranged 24-fold in response to a threefold change in rainfall between dry and wet years, whereas within-basin lateral inflows varied fivefold from the coastal plain to the foothills. General spatial trends in lateral inflows were consistent with previous studies and mean summer precipitation patterns. However, the spatially distributed nature of these estimates revealed that reaches in the vicinity of a spring-fed surficial ice feature do not follow general spatial trends and that the coastal plain, which is typically considered to produce minimal runoff, showed potential to contribute to total river discharge. These findings are used to provide a spatially distributed understanding of lateral inflows and identify watershed characteristics that influence hydrologic responses.  相似文献   

13.
Based on long-term measurements at three gauging stations, Toudaoguai, Fugu and Hequ, and one meteorological station, this article discusses the features of discharge (Q) and sediment concentration (Cs) of a river reach of the Yellow River with a reservoir located in the Loess Plateau. The impacts of the local sub-watershed between Toudaoguai and Fugu gauging stations on sediment budget to the Yellow River have been analyzed. In addition, the deposition processes in the Tianqiao Reservoir have been investigated. Results show over 80% of the precipitation that falls in the local subwatershed is unable to contribute to the Yellow River runoff process. It is found that the annualmaximum sediment concentration is usually less than 30 kg/m^3 during flood seasons at Toudaoguai Gauging Station, but the sediment concentration varies dramatically at Fugu Gauging Station. About 35% of the sediment eroded in the sub-watersheds between Toudaoguai and Fugu gauging stationswas produced from the Huangfuchuan sub-watershed which has a drainage area accounting only for 10% of the drainage area between Toudaoguai and Fugu gauging stations. The Tianqiao Reservoir generally has deposition during the summer flood season, and scouring during the non-flood season.On average, over 85% of deposited sediment in the reservoir occurs in the 12 km long lower reservoir reach. The volume of annual deposition in the reservoir mainly depends on the volume of water from the local region between Hequ and Fugu gauging stations.  相似文献   

14.
This paper studies the links between scaling properties of river flow time series by comparing the results of three techniques applied to an extended data set of 34 French discharge gauging stations. The three approaches used are based on different mathematical tools and hypotheses: (1) shape analysis of flood hydrographs; (2) a multifractal framework through spectral and moment analyses, and (3) flood frequency analysis through the fitting of flood duration frequency curves (QdF). The general aim is to test the hypothesis of scaling invariance of river flow and the shape invariance of the hydrographs, in order to investigate the link between scaling properties and flow dynamics. In particular, the coherence between different approaches widely used in the literature to describe these characteristics is evaluated through the estimation of parameters defining the range of time‐scales on which the scaling properties are valid. The results show that most of these timescale parameters are linked to the flow dynamics and suggest that the approaches applied are interrelated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
The identification of channel capacity associated with a particular frequency of peak discharges is necessary for discharge estimation for planning purposes at ungauged sites. Although lichen limits have been suggested to be useful for this purpose, previous studies have not elaborated their hydrological significance. Lichen limits are clearly defined on the sides of rock channels in New England. Australia and they are analyzed in relation to discharge at 6 gauging stations with up to 52 years of continuous record. It is demonstrated that the lowest lichen limit is maintained by peak discharges which occur on average at least once or twice each year. Recurrence intervals based on Annual Series and on Annual Exceedance Series are calculated and for the annual series are fairly consistent for the lowest lichen limit and range from 1·14 to 1·37 years. Lichenometry can be applied to the analysis of river channels in relation to the frequency of peak discharges. By reference to growth curves based upon lichens on Armidale tombstones it is shown that lichenometry may be employed to indicate dates for channel modification due to the removal of blocks and to dam construction and also to date the rock surface between lichen limits. Detailed analysis of the record from gauging stations indicates that where several lichen limits occur in a channel cross section each limit is related to periods when peak discharges exceeded the limits on at least 5 occasions. The lichen-free surfaces were then recolonized by Parmelia spp. and the size of the lichen thalli indicates the time elapsing since these frequent high discharges.  相似文献   

16.
《水文科学杂志》2013,58(3):365-370
Abstract

Gauging stations where the stage—discharge relationship is affected by hysteresis due to unsteady flow represent a challenge in hydrometry. In such situations, the standard hydrometric practice of fitting a single-valued rating curve to the available stage—discharge measurements is inappropriate. As a solution to this problem, this study provides a method based on the Jones formula and nonlinear regression, which requires no further data beyond the available stage—discharge measurements, given that either the stages before and after each measurement are known along with the duration of each measurement, or a stage hydrograph is available. The regression model based on the Jones formula rating curve is developed by applying the monoclinal rising wave approximation and the generalized friction law for uniform flow, along with simplifying assumptions about the hydraulic and geometric properties of the river channel in conjunction with the gauging station. Methods for obtaining the nonlinear least-squares rating-curve estimates, while factoring in approximated uncertainty, are discussed. The broad practical applicability and appropriateness of the method are demonstrated by applying the model to: (a) an accurate, comprehensive and detailed database from a hydropower-generated highly dynamic flow in the Chattahoochee River, Georgia, USA; and (b) data from gauging stations in two large rivers in the USA affected by hysteresis. It is also shown that the model is especially suitable for post-modelling hydraulic and statistical validation and assessment.  相似文献   

17.
The discharge hydrograph estimation in rivers based on reverse routing modeling and using only water level data at two gauged sections is here extended to the most general case of significant lateral flow contribution, without needing to deploy rainfall–runoff procedures. The proposed methodology solves the Saint‐Venant equations in diffusive form also involving the lateral contribution using a “head‐driven” modeling approach where lateral inflow is assumed to be function of the water level at the tributary junction. The procedure allows to assess the discharge hydrograph at ends of a selected river reach with significant lateral inflow, starting from the stage recorded there and without needing rainfall data. Specifically, the MAST 1D hydraulic model is applied to solve the diffusive wave equation using the observed stage hydrograph at the upstream section as upstream boundary condition. The other required data are (a) the observed stage hydrograph at the downstream section, as benchmark for the parameter calibration, and (b) the bathymetry of the river reach, from the upstream section to a short distance after the downstream gauged section. The method is validated with different flood events observed in two river reaches with a significant intermediate basin, where reliable rating curves were available, selected along the Tiber River, in central Italy, and the Alzette River, in Luxembourg. Very good performance indices are found for the computed discharge hydrographs at both the channel ends and along the tributaries. The mean Nash‐Sutcliffe value (NSq) at the channel ends of two rivers is found equal to 0.99 and 0.86 for the upstream and downstream sites, respectively. The procedure is also validated on a longer stretch of the Tiber River including three tributaries for which appreciable results are obtained in terms of NSq for the computed discharge hydrographs at both the channel ends for three investigated flood events.  相似文献   

18.
Operational flood forecasting requires accurate forecasts with a suitable lead time, in order to be able to issue appropriate warnings and take appropriate emergency actions. Recent improvements in both flood plain characterization and computational capabilities have made the use of distributed flood inundation models more common. However, problems remain with the application of such models. There are still uncertainties associated with the identifiability of parameters; with the computational burden of calculating distributed estimates of predictive uncertainty; and with the adaptive use of such models for operational, real-time flood inundation forecasting. Moreover, the application of distributed models is complex, costly and requires high degrees of skill. This paper presents an alternative to distributed inundation models for real-time flood forecasting that provides fast and accurate, medium to short-term forecasts. The Data Based Mechanistic (DBM) methodology exploits a State Dependent Parameter (SDP) modelling approach to derive a nonlinear dependence between the water levels measured at gauging stations along the river. The transformation of water levels depends on the relative geometry of the channel cross-sections, without the need to apply rating curve transformations to the discharge. The relationship obtained is used to transform water levels as an input to a linear, on-line, real-time and adaptive stochastic DBM model. The approach provides an estimate of the prediction uncertainties, including allowing for heterescadasticity of the multi-step-ahead forecasting errors. The approach is illustrated using an 80 km reach of the River Severn, in the UK.  相似文献   

19.
Most of the largest rivers on Earth have multiple active channels connected at bifurcations and confluences. At present a method to describe a channel network pattern and changes in the network beyond the simplistic braiding index is unavailable. Our objectives are to test a network approach to understand the character, stability and evolution of a multi‐channel river pattern under natural discharge conditions. We developed a semi‐automatic method to derive a chain‐like directional network from images that represent the multi‐channel river and to connect individual network elements through time. The Jamuna River was taken as an example with a series of Landsat TM and ETM+ images taken at irregular intervals between 1999 and 2004. We quantified the overall importance of individual channels in the entire network using a centrality property. Centrality showed that three reaches can be distinguished along the Jamuna with a different network character: the middle reach has dominantly one important channel, while upstream and downstream there are about two important channels. Temporally, relatively few channels changed dramatically in both low‐flow and high‐flow periods despite the increase of braiding index during a flood. Based on the centrality we calculated a weighted braiding index that represents the number of important channels in the network, which is about two in the Jamuna River and which is larger immediately after floods. We conclude that the network measure centrality provides a novel characterization of river channel networks, highlighting properties and tendencies that have morphological significance. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Remote sensing of discharge and river stage from space provides us with a promising alternative approach to monitor watersheds, no matter if they are ungauged, poorly gauged, or fully gauged. One approach is to estimate river stage from satellite measured inundation area based on the inundation area – river stage relationship (IARSR). However, this approach is not easy to implement because of a lack of data for constructing the IARSR. In this study, an innovative and robust approach to construct the IARSR from digital elevation model (DEM) data was developed and tested. It was shown that the constructed IARSR from DEM data could be used to retrieve water level or river stage from satellite‐measured inundation area. To reduce the uncertainty in the estimated inundation area, a dual‐thresholding method was proposed. The first threshold is the lower limit of pixel value for classifying water body pixels with a relatively high‐level certainty. The second threshold is the upper limit of pixel value for classifying potentially flooded pixels. All pixels with values between the first threshold and the second threshold and adjacent to the classified water body pixels may be partially flooded. A linear interpolation method was used to estimate the wetted area of each partially flooded pixel. In applying the constructed IARSR to the estimated inundation areas from 11 Landsat TM images, 11 water levels were obtained. The root mean square error (RMSE) of the estimated water levels compared with the observed water levels at the US Geological Survey (USGS) gauging station on the Trinity River at Liberty in Liberty County, Texas, is about 0.38 m. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号