首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The general yield function in the hierarchical approach for constitutive modelling of materials is used with Perzyna's theory to characterize viscoplastic behaviour of geologic materials: a sand and rock salt. Particular attention is given to determination of the constants from laboratory quasistatic or short term, and creep tests. The proposed model is verified with respect to observed laboratory response of the sand and salt. It is implemented in a non-linear finite element procedure and applied to analyse time-dependent behaviour of a cavity in the rock salt.  相似文献   

2.
通过一系列砂岩、页岩和辉绿岩室内蠕变试验,获得了不同应力和初始应变状态下岩石蠕变特性。通过误差分析讨论了计算蠕变速率时如何选择时间增量。讨论了复杂加、卸载条件下时间相关蠕变模型的局限性,提出采用不可恢复应变作为内变量来描述复杂条件下岩石蠕变性质,并据此提出了岩石的内变量蠕变模型。试验数据与模型拟合结果对比表明,内变量蠕变模型较好地反映了3种岩石的蠕变行为。此外,还初步讨论了模型在岩石率相关性质研究中的适用性,并利用相关试验数据进行了验证。  相似文献   

3.
This study presents a finite element (FE) micromechanical modelling approach for the simulation of linear and damage‐coupled viscoelastic behaviour of asphalt mixture. Asphalt mixture is a composite material of graded aggregates bound with mastic (asphalt and fine aggregates). The microstructural model of asphalt mixture incorporates an equivalent lattice network structure whereby intergranular load transfer is simulated through an effective asphalt mastic zone. The finite element model integrates the ABAQUS user material subroutine with continuum elements for the effective asphalt mastic and rigid body elements for each aggregate. A unified approach is proposed using Schapery non‐linear viscoelastic model for the rate‐independent and rate‐dependent damage behaviour. A finite element incremental algorithm with a recursive relationship for three‐dimensional (3D) linear and damage‐coupled viscoelastic behaviour is developed. This algorithm is used in a 3D user‐defined material model for the asphalt mastic to predict global linear and damage‐coupled viscoelastic behaviour of asphalt mixture. For linear viscoelastic study, the creep stiffnesses of mastic and asphalt mixture at different temperatures are measured in laboratory. A regression‐fitting method is employed to calibrate generalized Maxwell models with Prony series and generate master stiffness curves for mastic and asphalt mixture. A computational model is developed with image analysis of sectioned surface of a test specimen. The viscoelastic prediction of mixture creep stiffness with the calibrated mastic material parameters is compared with mixture master stiffness curve over a reduced time period. In regard to damage‐coupled viscoelastic behaviour, cyclic loading responses of linear and rate‐independent damage‐coupled viscoelastic materials are compared. Effects of particular microstructure parameters on the rate‐independent damage‐coupled viscoelastic behaviour are also investigated with finite element simulations of asphalt numerical samples. Further study describes loading rate effects on the asphalt viscoelastic properties and rate‐dependent damage behaviour. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
The time-dependent stress-strain behavior of clayey soil is a great concern for predicting long-term settlement especially for large-scale land reclamation projects. In this paper, long-term time-dependent behavior of Hong Kong Marine Deposits (HKMD) under the loading stage and unloading stage is investigated by multi-staged loading oedometer test. Special emphasis has been given to study creep and swelling behavior. It is found that the clayey soil demonstrates the creep behavior during the loading stage, whereas it shows the swelling behavior during the unloading stage. The analysis of the creep behavior shows that there exists a linear trend between creep strain and time (in log-scale) within a certain period, whereas a nonlinear relationship in a long term view. Similar result is found for the swelling behavior. A nonlinear function is found to be suitable to predict the long-term creep and swelling behavior. The creep strain limit and swelling strain limit can be obtained if the nonlinear function is adopted to fit the experimental data. In addition, a new modified Elastic Visco-Plastic model considering Swelling (EVPS model) is proposed and presented, which considers the nonlinear creep and swelling behavior. In this modified EVPS model, the final creep and swelling equilibrium stress-strain state can also be obtained when the time is infinite.  相似文献   

5.
李磊  蒋明镜  张伏光 《岩土力学》2018,39(3):1082-1090
深部岩石在工程中具有高应力、大变形等典型特点,因此,高围压下考虑岩石残余强度的三轴试验对于分析深部岩石力学特性具有重要意义。离散单元法是分析岩石力学特性的重要数值方法,但是长期以来采用离散单元法定量模拟岩石的三轴试验一直存在诸多挑战,即数值模拟与室内试验得到的应力-应变全过程曲线难以定量匹配。采用改进的三维胶结抗弯-扭模型对深部砂岩考虑残余强度时的三轴试验进行了定量模拟,实现了数值模拟与室内试验应力-应变全过程曲线的定量匹配,获得了岩石较大的峰值/残余内摩擦角及非线性强度包线,克服了经典BPM模型存在的3个突出问题。通过参数分析,研究了峰值/残余内摩擦角及黏聚力与离散元微观参数之间的关系,同时这些大量的算例也证明了该模型具有较高的计算效率,可以满足模拟三维室内常规试验的要求。  相似文献   

6.
7.
The scope of this study is to numerically simulate the behaviour of Brazilian disc specimens as observed in laboratory during dynamic, high-strain rate, indirect tensile tests using an innovative combined finite-discrete element method (FEM/DEM) research code. Laboratory experiments using a split Hopkinson pressure bar (SHPB) apparatus were conducted by the authors and the measured indirect tensile strength values were used to verify the FEM/DEM models. In the models the applied boundary conditions, related to the loading rate of the specimen, were matched with the experimental observations. The results of the numerical simulations, including tensile strength and failure time, are in agreement with the laboratory findings. The main failure mechanisms, i.e. tensile splitting along loading axis and shear failure close to loading platens are captured by the numerical model. A linear relationship between tensile strength and loading rate is found for the range of dynamic strain rates tested and simulated. The simulation results are in good agreement with laboratory observations and demonstrate the potential for using FEM/DEM to realistically model dynamic response of rocks.  相似文献   

8.
Aging- or creep-related phenomena in sand have been widely studied, and the discrete element method (DEM) has been frequently used to model the associated soil behavior and then to explore the associated underlying mechanisms. However, several difficulties involved in modeling still remain unsolved. To resolve these difficulties, a new approach based on the effect of the microfracturing of asperities is proposed in this study for the DEM modeling of the sand aging or creep process through several aging cycles of associated reduction in the mobilized friction resistance at particle contacts and subsequent particle rearrangement to reach a new equilibrium state. This approach can be easily incorporated into different contact models and DEM simulations of the loading, unloading, and/or reloading processes, in either drained or undrained conditions, before and/or after aging. This new approach is proven effective because the DEM simulations incorporated with this new approach can satisfactorily reproduce the experimental observations in the triaxial creep process, drained and undrained recompression after aging, and 1D secondary compression and rebound. The simulation results also indicate that, based on the stress–force–fabric relationship, the contribution from the contact normal anisotropy to the deviatoric stress q gradually increases, whereas the contribution from the tangential force anisotropy becomes less during triaxial creep under a constant q. Moreover, the contacts between particles are gradually away from the state where the frictional resistance is fully mobilized, and then become more stable. During the subsequent triaxial recompression after creep, the aged samples exhibit enhanced soil stiffness, which is also found to be associated with the evolution of the invariants of the anisotropy tensors. It is worthwhile noting that the aging or creep effects on the microstructural changes, e.g., the invariants of the anisotropy tensors, can be gradually erased upon further recompression. This explains why the stress–strain responses of the aged samples during recompression gradually rejoin the original stress–strain response obtained from the sample without being subjected to aging or creep.  相似文献   

9.
三峡泄滩滑坡体滑动带土的蠕变试验研究   总被引:14,自引:4,他引:10  
王琛  胡德金  刘浩吾  许强  黄润秋 《岩土力学》2003,24(6):1007-1010
三峡古滑坡的变形和长期稳定的控制性因素,在于滑动带土力学特性的强度损伤积累和时间效应。为了滑坡建模和稳定数值分析的需要,进行了泄滩滑坡体滑动带土的三轴排水蠕变试验研究。并在此基础上,给出了排水条件下粘性土的Mesri蠕变模型,即剪应力-应变关系采用双曲线模型,应变-时间关系采用幂函数来描述土体的弹粘塑性。  相似文献   

10.

A constitutive framework for the simulation of the time-dependent behaviour of soft structured clays has been developed from the combination of a number of existing modelling approaches. The formulation accounts, in a natural way, for time-dependent phenomena such as loading rate dependency, stress relaxation, ageing, and creep deformations under constant load. In addition, the effect of structure is accounted for. To demonstrate the potential of the proposed approach, a specific model based on this framework is described and applied to the simulation of a number of relevant laboratory tests from the literature.

  相似文献   

11.
The physical properties of bentonite-based buffer materials for nuclear waste repositories have been investigated by a number of different laboratory tests. These tests have yielded a material model that is valid for conditions close to water saturation and is useful for describing: (a) the stress, strain and volume change behaviour; (b) the pore pressure and flow of water; and (c) the thermal and thermomechanical response.

The material model is based on the Drucker-Prager Plasticity model and a Porous Elastic Model. The effective stress concept and Darcy's law are applied and the swelling/consolidation and thermomechanical processes are coupled according to the separate mechanical properties of the pore water, the solids and the clay skeleton. The model can be used by the finite-element program ABAQUS.

The model has been tested in several laboratory and field verification tests. Comparison between measured and calculated behaviour shows that the general behaviour is described properly and several calculations of different scenarios have been made for the Swedish KBS 3 concept. However, certain processes, like the hysteresis effect at consolidation/swelling, the curved stress-strain relation at shearing, and the curved failure envelope, are not modelled in a perfectly accurate way and an improved material model is proposed here. It combines the behaviour of the Cam-clay model on the wet side with the more relevant plastic behaviour of a modified Drucker-Prager model with a curved failure envelope and the possibility to introduce strain softening after failure.

The paper presents some laboratory results that are the basis of the first model. It also shows the application of the model to finite-element calculations of some laboratory tests. Comparisons between the calculations and measured results expose some disadvantages of the model and a concept for an improved model is suggested.  相似文献   


12.
This paper presents the results of a study on the use of nanoindentation test to characterize the strain rate-dependent compressive response of asphalt concrete. Nanoindentation is now widely used for characterization and testing of composite as well as single-phase materials. Using a small piece of sample, nanoindentation tests can evaluate material behavior and structure in terms of the elasticity, time-dependent response, yield strength, damage, crack advance, debonding, and fatigues. In this study, a mixture of asphalt and calcium carbonate filler powder filling the intergranular void space of the asphalt concrete was characterized in terms of strain rate sensitivity at room temperature. The indentation hardness is observed to continuously decrease during constant indentation strain rates, but the hardness response clearly indicates positive strain rate dependency when compared at the same indentation depths. Following the constant strain rate tests, indentation creep response of the asphalt–filler mixture was tested at constant load conditions. The strain rate sensitivity values characterized from double logarithmic relationships between indentation hardness and strain rate during constant strain rate and constant load tests are comparable with that determined from uniaxial compression test of cylindrical asphalt concrete samples. The observed indentation size effect on hardness value was analyzed based on an existing size effect model. The size effect in the asphalt–filler mixture, which is stronger than that defined by the model, could be attributed to a plastically graded surface of asphalt–filler sample.  相似文献   

13.
A calibration procedure, in which coupled effects of microscopic parameters are considered, is proposed to determine the values of the microscopic parameters in the Discrete Element Method (DEM) for Fujian quartz sand. Laboratory tri-axial tests are conducted to be compared with the DEM simulations and the effects of end restraint in the laboratory tests are eliminated through a digital image measurement system. Sensitivities of the macroscopic behaviour of the specimen to the microscopic parameters are analyzed through DEM simulations. Four coupled effects of the microscopic parameters on the macroscopic behaviour are investigated through a graphic method and then considered in the calibration procedure.  相似文献   

14.
Summary  This paper is intended to describe the SHELVIP (Stress Hardening ELastic VIscous Plastic) model, a new viscoplastic constitutive law which has been developed to incorporate the most important features of behaviour observed in tunnels excavated in severe to very severe squeezing conditions. This model couples the elastoplastic and time-dependent behaviour by using a plastic yield surface, as frequently adopted in tunnel design analysis, and the definition of a state of overstress referred to a viscoplastic yield surface. The model is formulated in all its detailed aspects. The related analytical closed-form solution for representing triaxial creep deformations is developed. Also developed is an incremental numerical solution for describing the triaxial stress–strain behaviour under constant strain rate conditions. The model is shown to fit very satisfactorily the results of creep tests on clay shales and relaxation tests on coal specimens, as recently performed for design analysis of tunnels in squeezing conditions. Correspondence: D. Debernardi, Department of Structural and Geotechnical Engineering, Politecnico di Torino, Torino, Italy  相似文献   

15.
An anisotropic time-dependent bounding surface model for clays is developed by generalizing a previous time-independent model that adopts a flexible bounding surface. It is based on the framework for coupled elastoplasticity–viscoplasticity for clays and Perzyna’s overstress theory. Three viscoplastic parameters were introduced and explained in detail. The model was validated against undrained creep tests for both isotropically and anisotropically consolidated clays, undrained and drained stress relaxation tests on some undisturbed clays, and undrained triaxial tests with varying strain rates on natural Hong Kong marine deposit clay. The general agreement between the model simulations and test results was satisfactory. The varying effects of lower-level parameters were discussed on the undrained multistage stress relaxation response for normally consolidated soils which had been ignored in literature. The flexibility of the model in capturing the shear strengths, which is the unique feature of the current model, was shown in the simulations of time-dependent triaxial tests on Taipei silty clay. All the simulations show that the proposed model is a relatively practical model considering both anisotropy and time dependency of clays.  相似文献   

16.
17.
The work presented in this paper comes as part of a research program dealing with the thermomechanical behaviour of rock salt. It aims to study laboratory and in-situ long-term behaviour by means of creep tests with deviator and temperature changes. The laboratory results, using a triaxial multi-stages creep tests, highlighted the strain hardening character of rock salt. Furthermore, the in-situ results, using a borehole dilatometer multi-step creep test, have shown that the drilling is carried out in a weakly stressed pillar. The interpretation of the laboratory results, using the J.LEMAITRE law, did not indicate full agreement with all the test results. As a result a ‘double’ J.LEMAITRE model, which takes into account a double strain hardening variable, has been put forward. The validation of this model on the laboratory creep tests is very satisfactory. Furthermore, the activation energy seems satisfactory to represent the influence of the temperature. The in-situ behaviour modelling is clearly more complex than the modelization based on laboratory tests. In fact, it seems that if the rock salt behaviour is maintained by J.LEMAITRE law, it is necessary to vary with the stress, at least, one of the parameters assumed constant in the basic law.  相似文献   

18.
This paper proposes a hydro-geomechanical finite element model to reproduce the kinematic behaviour of large slow landslides. The interaction between solid skeleton and pore fluids is modelled with a time dependent up w formulation and a groundwater model that takes into account recorded daily rainfall intensity. A viscoplastic constitutive model based on Perzyna’s theory is applied to reproduce soil viscous behaviour and the delayed creep deformation. The proposed model is applied to Portalet landslide (Central Spanish Pyrenees). This is an active paleo-landslide that has been reactivated by the construction of a parking area at the toe of the slope. The stability analysis reveals that, after the constructive solutions were undertaken, the slope is in a limit equilibrium situation. Nevertheless, time-dependent analysis reproduces the nearly constant strain rate (secondary creep) and the acceleration/deceleration of the moving mass due to hydrological changes. Overall, the model reproduces a 2-m displacement in the past 8  years that coincides with in situ monitoring data. The proposed model is useful for short- and mid-term predictions of secondary creep. However, long-time predictions remain uncertain, stability depends strongly on the position of the water table depth and new failures during tertiary creep due to soil temporal microstructural degradation are difficult to calibrate.  相似文献   

19.
Roof falls in coal mines may occur within a few months to a few years after excavation. In this paper, we proposed the use of relaxation tests as a substitute for time-dependent tests. The relation between creep behavior and relaxation behavior was numerically investigated and demonstrates that the material assigned with creep model can show relaxation behavior. Then the relaxation model was developed by modifying the Burgers creep model. Numerical simulation of a relaxation test on a simulated rock model in 3DEC yielded results that were similar to theoretical prediction. A relaxation test was performed on two groups of specimens under varying load conditions. Results from the laboratory tests validated the approach of using relaxation test to determine time-dependent properties. Finally, time-dependent properties were investigated by performing relaxation tests at different stages of a complete stress–strain curve. The relaxation test during strain-softening was unsuccessful; however, the relaxation behavior at residual stage in post-failure region was more significant than that in pre-failure region and the sudden drop in stress indicated there was strength deterioration due to the accumulation of viscous strain.  相似文献   

20.
A three-dimensional model is presented and used to reproduce the laboratory hydraulic fracturing test performed on a thick-walled hollow cylinder limestone sample. This work aims to investigate the implications of the fluid flow on the behaviour of the micro-structure of the rock sample, including the material strength, its elastic constants and the initialisation and propagation of fractures. The replication of the laboratory test conditions has been performed based on the coupled Discrete Element Method (DEM) and Computational Fluid Dynamics scheme. The numerical results are in good agreement with the experimental data, both qualitatively and quantitatively. The developed model closely validates the overall behaviour of the laboratory sample, providing a realistic overview of the cracking propagation towards total collapse as well as complying with Lame’s theory for thick-walled cylinders. This research aims to provide some insight into designing an accurate DEM model of a fracturing rock that can be used to predict its geo-mechanical behaviour during Enhanced Oil Recovery applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号