首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Model conceptualisation is a key source of uncertainty in one-dimensional recharge modelling. The effects of different conceptualisations on transient recharge predictions for the semi-arid Uley South Basin, South Australia, were investigated. One-dimensional unsaturated zone modelling was used to quantify the effect of variations of (1) lithological complexity of the unsaturated zone, and (2) representation of preferential flow pathways. The simulations considered ranges of water-table depths, vegetation characteristics, and top soil thicknesses representative for the study area. Complex lithological profiles were more sensitive to the selected vegetation characteristics and water-table depth. Scenarios considering runoff infiltration into, and preferential flow through sinkholes resulted in higher and faster recharge rates. A comparison of modelled and field-based recharge estimates indicated that: (1) the model simulated plausible recharge rates, (2) only the models with preferential flow correctly reproduced the timing of recharge, and (3) preferential flow is probably redistributed in the unsaturated zone rather than passing to the water table directly. Because different but equally plausible conceptual models produce widely varying recharge rates, field-based recharge estimates are essential to constrain the modelling results.  相似文献   

2.
Coupled thermal–hydrological–mechanical (THM) processes in the near field of deep geological repositories can influence several safety features of the engineered and geological barriers. Among those features are: the possibility of damage in the host rock, the time for re-saturation of the bentonite, and the perturbations in the hydraulic regime in both the rock and engineered seals. Within the international cooperative code-validation project DECOVALEX-2015, eight research teams developed models to simulate an in situ heater experiment, called HE-D, in Opalinus Clay at the Mont Terri Underground Research Laboratory in Switzerland. The models were developed from the theory of poroelasticity in order to simulate the coupled THM processes that prevailed during the experiment and thereby to characterize the in situ THM properties of Opalinus Clay. The modelling results for the evolution of temperature, pore water pressure, and deformation at different points are consistent among the research teams and compare favourably with the experimental data in terms of trends and absolute values. The models were able to reproduce the main physical processes of the experiment. In particular, most teams simulated temperature and thermally induced pore water pressure well, including spatial variations caused by inherent anisotropy due to bedding.  相似文献   

3.
Surface soil water content (SWC) is one of the key factors controlling wind erosion in Sistan plain, southeast of Iran. Knowledge of the spatial variability of surface SWC is then important to identify high-risk areas over the region. Sequential Gaussian simulation (SGSIM) is used to produce a series of equiprobable models of SWC spatial distribution across the study area. The simulated realizations are used to model the uncertainty attached to the surface SWC estimates through producing a probability map of not exceeding a specified critical threshold when soil becomes vulnerable to wind erosion. The results show that SGSIM is a suitable approach for modelling SWC uncertainty, generating realistic representations of the spatial distribution of SWC that honour the sample data and reproduce the sample semivariogram model. The uncertainty model obtained using SGSIM is compared with the model achieved through sequential indicator simulation (SISIM). According to accuracy plots, goodness statistics and probability interval width plots, SGSIM performs better for modelling local uncertainty than SISIM. Sequential simulation provided a probabilistic approach to assess the risk that SWC does not exceed a critical threshold that might cause soil vulnerability to wind erosion. The resulted risk map can be used in decision-making to delineate “vulnerable” areas where a treatment is needed.  相似文献   

4.
5.
One of the aims of rock mechanics analysis is to predict fallouts in underground excavations. The objective of this paper was to study the relative importance of different strength parameters and their significance on the simulation of brittle failure and fallouts. This work was conducted as a parametric study, using numerical modelling and a number of approaches. The results were compared with observed fallouts. More obvious and distinct shear bands could be observed with decreased element sizes close to, and at, the boundary. The maximum shear strain was the most reliable indicator for fallout prediction. The results of the (instantaneous) cohesion softening friction softening models were sensitive to changes of the peak strength parameters and less sensitive to variations in residual parameters. The result from the cohesion-softening friction-hardening (CSFH) model, when using a peak cohesion equal to the intact rock strength, best captured the observed rock behaviour.  相似文献   

6.
http://www.sciencedirect.com/science/article/pii/S1674987111000508   总被引:2,自引:0,他引:2  
This paper presents the results of a set of numerical models focussing on structural controls on hydrothermal mineralization.We first give an overview of natural phenomena of structurally-controlled ore formation and the background theory and mechanisms for such controls. We then provide the results of a group of simple 2D numerical models validated through comparison with Cu-vein structure observed near the Shilu Copper deposit(Yangchun,Guangdong Province, China) and finally a case study of 3D numerical modelling applied to the Hodgkinson Province in North Queensland(Australia).Two modelling approaches,discrete deformation modelling and continuum coupled deformation and fluid flow modelling,are involved.The 2D model-derived patterns are remarkably consistent with the Cu-vein structure from the Shilu Copper deposit,and show that both modelling approaches can realistically simulate the mechanical behaviours of shear and dilatant fractures.The continuum coupled deformation and fluid flow model indicates that pattern of the Cuveins near the Shilu deposit is the result of shear strain localization,development of dilation and fluid focussing into the dilatant fracture segments.The 3D case-study models(with deformation and fluid flow coupling) on the Hodgkinson Province generated a number of potential gold mineralization targets.  相似文献   

7.
ABSTRACT

Field data is commonly used to determine soil parameters for geotechnical analysis. Bayesian analysis allows combining field data with other information on soil parameters in a consistent manner. We show that the spatial variability of the soil properties and the associated measurements can be captured through two different modelling approaches. In the first approach, a single random variable (RV) represents the soil property within the area of interest, while the second approach models the spatial variability explicitly with a random field (RF). We apply the Bayesian concept exemplarily to the reliability assessment of a shallow foundation in a silty soil with spatially variable data. We show that the simpler RV approach is applicable in cases where the measurements do not influence the correlation structure of the soil property at the vicinity of the foundation. In other cases, it is expected to underestimate the reliability, and a RF model is required to obtain accurate results.  相似文献   

8.
This paper focuses on the mechanisms taking place in a granular platform supported by piles in soft soil. Several modelling approaches were explored. A two-dimensional small scale model test using the Taylor–Schneebeli soil analogue was first developed and the experimental results were compared to a discrete element model using the particle code PFC. The validation of this numerical approach allowed the parametric study to be extended numerically. Parametric studies were also performed on continuum model using the finite-difference code FLAC. Comparison of the parametric studies performed on each modelling approach underlined some differences and lead to a consideration on the macro- and micromechanical parameters.  相似文献   

9.
Numerical modelling of coupled physical processes in bentonite–sand mixtures under the geological conditions is significant for designing and constructing sealing systems in deep underground repositories for highly radioactive nuclear waste. Within the framework of DECOVALEX 2015, Task A, this work presents the model validation of OpenGeoSys by numerical modelling of coupled hydromechanical (HM) processes in bentonite–sand mixtures. Parameters used in the HM model were determined by modelling the laboratory tests of the sealing experiment (SEALEX). Afterwards these parameters were applied for the modelling of a small-scale mock-up test considering the influence of technological gap and incidental fail of the seal in the sealing system. In order to investigate the availability of employing these HM parameters and numerical models directly to field predictions, the modelling results and measured data of an in situ SEALEX experiment were analysed comparatively. The modelling results reproduced well the main features in HM behaviour of the compacted bentonite–sand mixture, which denotes that the adopted HM models and parameters are adequate for describing the HM processes in the sealing system. It is necessary to take the elastoplastic behaviour and evolution of the permeability of bentonite–sand mixtures into account when using the adopted models to reproduce the HM processes of a sealing system.  相似文献   

10.
11.
12.
饱合土的强夯模拟试验   总被引:7,自引:0,他引:7  
用MTS 810Teststar程控伺服土动三轴试验机,对饱合土强夯加固地基的全过程进行高精度模拟,获得饱合土在强夯作用下的动应力,动位移,孔隙水压力的变化规律及强夯的应力-应变关系特征,在一定程度上揭示了强夯机理。  相似文献   

13.
边坡可靠度分析中通常假定采用平稳或准平稳随机场表征土体参数的空间变异性,然而大量现场试验数据表明,土体参数如不排水抗剪强度沿土体埋深常呈现明显的非平稳分布特征,即其均值和标准差均随埋深发生变化,因此亟需发展土体参数非平稳随机场模型及其模拟方法。针对目前不能有效单独模拟土体参数趋势分量和随机波动分量的不确定性,提出了一种有效的不排水抗剪强度参数非平稳随机场模型,并给出了土体参数二维非平稳随机场模拟方法计算流程,同时将新提出的模型与现有非平稳随机场模型及平稳随机场模型进行了系统比较。最后通过不排水饱和黏土边坡算例验证了提出模型的有效性,并揭示了不排水抗剪强度非平稳分布特征对边坡可靠度的影响规律。结果表明:提出模型能够有效地单独模拟土体参数趋势分量和随机波动分量的不确定性,考虑土体参数均值和标准差随埋深增加而增大的特性,可为表征土体参数非平稳分布特征提供了一条有效的途径。此外,与采用非平稳随机场模拟土体参数空间变异性相比,采用常用的平稳随机场模型会低估边坡失效概率,从而造成偏危险的边坡工程设计方案。  相似文献   

14.
Large sets of soil experimental data (field and laboratory) are becoming increasingly available for calibration of soil constitutive models. A challenging task is to calibrate a potentially large number of model parameters to satisfactorily match many data sets simultaneously. This calibration effort can be facilitated by optimization techniques. The current study aims to explore systematic approaches for exercising optimization and sensitivity analysis in the area of soil constitutive modelling. Analytical, semi‐analytical and numerical optimization techniques are employed to calibrate a multi‐surface‐plasticity sand model. Calibration is based on results from a number of drained triaxial sample tests and a dynamic centrifuge liquefaction test. The analytical and semi‐analytical approaches and associated sensitivity analysis are applied to calibrate the model non‐linear shear stress–strain response. Thereafter, model parameters controlling shear–volume coupling effects (dilatancy) are calibrated using a solid–fluid fully coupled finite element program in conjunction with an advanced numerical optimization code. A related sensitivity study reveals the challenges often encountered in optimizing highly non‐linear functions. Overall, this study demonstrates applicability and limitations of optimization techniques for constitutive model calibration. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
This study back analyzed deformation parameters of in situ sand through two excavation case histories in Kaohsiung, Taiwan. Two main features are highlighted; deformation prediction based on monitoring data at the first excavation stage and in situ Young’s modulus evaluation for sand considering monitoring data at the overall excavation stages. The former tends to establish a reliable method to predict the wall deflection at the critical stage based on the data at the first stage and the latter to enrich the limited database of Young’s modulus correlation for sand, specifically applicable for deep excavations analysis. The two constitutive models, linear elastic perfectly plastic and non-linear stress–strain constitutive models, were selected. The stiffness parameters of the models were discretely distributed along the subdivided soil body mesh to reflect the effect of overburden pressure on the in situ soil. In addition, relationship between Standard Penetration Test value (SPT-N value) and Young’s modulus and relationships for estimating the in situ Young’s modulus of the Kaohsiung sand as a function of depth were evaluated. The results greatly enhanced a framework for estimating the in situ Young’s modulus of sand.  相似文献   

16.
Performance of constitutive models in predicting behavior of remolded clay   总被引:2,自引:2,他引:0  
The performance of several soil constitutive models was evaluated by comparing experimental results and simulated behavior of a medium plasticity clay. Input parameters for the soil constitutive models were obtained from triaxial compression and extension tests on normally and overconsolidated medium plasticity clay. The soil models employed for this study were the Cam Clay, Modified Cam Clay, 3-SKH, and S-CLAY1 models. In order to investigate the influence of some of the input parameters on the performance of the models, sensitivity analyses were also performed. The comparisons demonstrate that the Cam Clay model was able to predict the normally consolidated compressive behavior of medium plasticity clay. Both 3-SKH and Cam Clay models were able to produce acceptable predictions for stress?Cstrain and stress path behavior for overconsolidated compression of the soil. The 3-SKH model did not perform satisfactorily for predicting pore pressure variations, while the Cam Clay model demonstrated fairly acceptable predictions. For the normally consolidated reduced extension test, the Modified Cam Clay and S-CLAY1 models performed better than the Cam Clay and 3-SKH models in predicting the stress?Cstrain curve, pore pressure variations, and stress path.  相似文献   

17.
One of the essential inputs in settlement prediction models is the soil modulus, which may be obtained from laboratory tests or estimated from in situ measurements. The total uncertainty in predicting the confined modulus of a sandy soil is quantified with data from side-by-side in situ testing using the standard penetration test, the static cone penetration test, the light dynamic probing and the laboratory oedometer test. To estimate transformation errors, correlations are proposed between in situ and laboratory data. The results indicate that similar magnitudes of total uncertainties are associated with the in situ methods, which are approximately twice as high as those from the direct oedometer method. The quantified uncertainties are an important input for reliability-based designs of foundations under similar soil conditions.  相似文献   

18.
New nonlinear solutions were developed to estimate the soil shear strength parameters utilizing linear genetic programming (LGP). The soil cohesion intercept (c) and angle of shearing resistance (ϕ) were formulated in terms of the basic soil physical properties. The best models were selected after developing and controlling several models with different combinations of influencing parameters. Comprehensive experimental database used for developing the models was established upon a series of unconsolidated, undrained, and unsaturated triaxial tests conducted in this study. Further, sensitivity and parametric analyses were carried out. c and ϕ were found to be mostly influenced by the soil unit weight and liquid limit. In order to benchmark the proposed models, a multiple least squares regression (MLSR) analysis was performed. The validity of the models was proved on portions of laboratory results that were not included in the modelling process. The developed models are able to effectively learn the complex relationship between the soil strength parameters and their contributing factors. The LGP models provide a significantly better prediction performance than the regression models.  相似文献   

19.
Underground extraction of total thickness of a thick coal seam in single lift by bord and pillar method increases pillar height during retreat. Field studies found that the increase in pillar height affects the depillaring operation adversely, especially, during caving of the strong/massive roof strata. Dilution in strength due to the increased pillar height caused catastrophic failure of barrier pillars and goaf overriding. This warrants a systematic study of pillar strength variation for the different heights of pillar. A review of different pillar strength estimation approaches for an analysis of the dilution in strength of the heightened pillar suggested that numerical modelling provides a better option for such a systematic study. Accordingly, investigations are conducted on simulated models in laboratory adopting a recognised numerical modelling procedure. The observed nature of variations in pillar strengths with the increase in its height in the numerical models and empirical formula is found to be matched. But a mismatch is found between the strength values of the two approaches with an increase in height of the pillar. Considering validity of the empirical formulation in Indian coalfields, a relationship is developed to incorporate a correction in the strength values of the numerical models. The suggested correction on the basis of this simple study of the pillar strength variation would be helpful for the use of the established simulation tool during the depillaring of a thick coal seam.  相似文献   

20.
土结构性本构模型研究现状综述   总被引:3,自引:2,他引:3  
土本构模型的建立是一个重要而又复杂的问题,到目前为止,国内外学者们已提出数以百计的土本构模型,诸多文献也对这些模型进行了评述和归纳。然而这些土本构模型多是在扰动土或砂土的基础上发展和建立起来的,它们难以描述由于土结构性引起的各种非线性行为,其计算结果与实际情况相差甚远。天然土体一般都具有一定的结构性,所以有必要建立考虑土结构性影响的土本构模型。针对这个现实,目前有些学者已基于各种理论和方法,提出了一些可以考虑土结构性影响的土本构模型,并得了较好的应用。但在目前的文献中还很少有对土的结构性本构模型研究进行归纳,基于此,本文简要介绍了一下目前土的结构性本构模型研究现状,并提出了这些本构模型在应用中所存在的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号