首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 626 毫秒
1.
This paper deals with kinetics and equilibrium studies on the adsorption of arsenic species from simulated groundwater containing arsenic (As(III)/As(V), 1:1), Fe, and Mn in concentrations of 0.188, 2.8, and 0.6 mg/L, respectively, by Ca2+ impregnated granular activated charcoal (GAC‐Ca). Effects of agitation period and initial arsenic concentration on the removal of arsenic species have also been described. Although, most of the arsenic species are adsorbed within 10 h of agitation, equilibrium reaches after ~24 h. Amongst various kinetic models investigated, the pseudo second order model is more adequate to explain the adsorption kinetics and film diffusion is found to be the rate controlling step for the adsorption of arsenic species on GAC‐Ca. Freundlich isotherm is adequate to explain the adsorption equilibrium. However, empirical polynomial isotherm gives more accurate prediction on equilibrium specific uptakes of arsenic species. Maximum specific uptake (qmax) for the adsorption of As(T) as obtained from Langmuir isotherm is 135 µg/g.  相似文献   

2.
This paper is an experimental investigation into the removal of arsenic species from simulated groundwater by adsorption onto Ca2+ impregnated granular activated carbon (GAC‐Ca) in the presence of impurities like Fe and Mn. The effects of adsorbent concentration, pH and temperature on the percentage removal of total arsenic (As(T)), As(III) and As(V) have been discussed. Under the experimental conditions, the optimum adsorbent concentration of GAC‐Ca was found to be 8 g/L with an agitation time of 24 h, which reduced As(T) concentration from 188 to 10 μg/L. Maximum removal of As(V) and As(III) was observed in a pH range of 7–11 and 9–11, respectively. Removal of all the above arsenic species decreased slightly with increasing temperature. The presence of Fe and Mn increased the adsorption of arsenic species. Under the experimental conditions at 30°C, the maximum percentage removals of As(T), As(III), As(V), Fe, and Mn were found to be ca. 94.3, 90.6, 98.0, 100 and 63%, respectively. It was also observed that amongst the various regenerating liquids used, a 5 N H2SO4 solution exhibited maximum regeneration (ca. 91%) of the spent GAC‐Ca.  相似文献   

3.
In this paper, we determined the concentrations of antimony species (antimonite (Sb(III)), antimonate (Sb(V)) and dissolved inorganic antimony (DISb)) and arsenic, in Bohai Bay seawaters, as well as the relationships of the analytes with environmental factors such as seawater characteristics (e.g., suspended particulate material (SPM), salinity and total organic carbon (TOC)), heavy metals, nutrients and phytoplankton species, and evaluated the sources of arsenic and antimony. Dissolved arsenic and antimony concentrations in the surface waters were ranging spatially from 1.03 to 1.26 ng/ml and 0.386 to 1.075 ng/ml, with mean values of 1.18 and 0.562 ng/ml, respectively. Sb(V) as the prominent chemical species constituted about 89%. Regarding arsenic concentrations in the surface waters, there was a tendency for a small variation. However, antimony species concentrations were much variable than arsenic. The highest arsenic and antimony concentrations were found near the Haihe Estuary. These distribution patterns were controlled mainly by environmental factors, biological activities and sources. In this region, DISb and Sb(V) negatively correlated with salinity. Besides, arsenic and antimony correlated well with the nutrients, chlorophyll a and phytoplankton, implying that arsenic and antimony had been involved in biological cycling. In addition, according to our estimate, about 333.5×108 mg/year of arsenic and 454.2×108 mg/year of antimony reached Bohai Bay via rivers.  相似文献   

4.
Stability of arsenopyrite and As(III) in low-temperature acidic solutions   总被引:1,自引:0,他引:1  
Arsenopyrite is one of the most important pri-mary arsenic mineral. In the Eh-pH diagram of the As-O2-S-H2O system, if the total arsenic concentration (TAs) is taken to be 0.75 mg/L, the total sulfur con-centration, 32 mg/L, the temperature, 25℃and the pressure, one atmosphere pressure for the discrimina-tion of arsenic species, it may be found that under hy-pergene conditions, arsenopyrite is a moderately stable mineral. Only in the strongly alkaline and reducing environment can arsenopy…  相似文献   

5.
This study aims to investigate the control of arsenic distribution by biogeochemical processes in the Indian Sundarban mangrove ecosystem and the importance of this ecosystem as an arsenic source for surrounding coastal water. The As(V)/As(III) ratio was found to be significantly lower in both surface and pore waters compared to sea water, which could be attributed to biogeochemical interconversion of these arsenic forms. The biological uptake of arsenic due to primary and benthic production occurs during the post-monsoon season, and is followed by the release of arsenic during the biochemical degradation and dissolution of plankton in the pre-monsoon season. These results suggest that arsenic is immobilized during incorporation into the arsenic-bearing initial phase, and unlikely to be released into pore water until the complete microbial degradation of arsenic-bearing organic compounds.  相似文献   

6.
In natural waters arsenic concentrations up to a few milligrams per litre were measured. The natural content of arsenic found in soils varies between 0.01 mg/kg and a few hundred milligrams per kilogram. Anthropogenic sources of arsenic in the environment are the smelting of ores, the burning of coal, and the use of arsenic compounds in many products and production processes in the past. A lot of arsenic compounds are toxic and cause acute and chronic poisoning. In aqueous environment the inorganic arsenic species arsenite (As(III)) and arsenate (As(V)) are the most abundant species. The mobility of these species is influenced by the pH value, the redox potential, and the presence of adsorbents such as oxides and hydroxides of Fe(III), Al(III), Mn(III/IV), humic substances, and clay minerals.  相似文献   

7.
Concentrations of total arsenic and individual arsenic compounds were determined in livers of cetaceans (Dall's porpoise and short-finned pilot whale), pinnipeds (harp and ringed seals), sirenian (dugong), and sea turtles (green and loggerhead turtles) to characterize arsenic accumulation profiles in higher trophic marine animals. Hepatic arsenic concentrations in sea turtles were highest among the species examined. Chemical speciation of arsenic revealed that arsenobetaine was the major arsenic compound in almost all the species. In contrast, arsenobetaine was a minor constituent in dugong. Dimethylarsinic acid, methylarsonic acid, arsenocholine, tetramethylarsonium ion, arsenite, and an unidentified arsenic compound were also detected as minor constituents. However, the composition of arsenic compounds was different among these species. These results might reflect the differences in the metabolism of arsenic and/or the compositions of arsenic compounds in their preys. To our knowledge, this is the first report on the large variation in the composition of arsenic species in liver of marine mammals and sea turtles.  相似文献   

8.
Acid drainage is an important water quality issue in Andean watersheds, affecting the sustainability of urban, agricultural, and industrial activities. Mixing zones receiving acid drainage are critical sites where changes in pH and chemical environment promote the formation and dissolution of iron and aluminum oxy/hydroxides. These particles can significantly change the speciation of toxic metals and metalloids throughout drainage networks via sorption, desorption, and settling processes. However, little is known about the behavior of particle size distributions (PSDs) in streams affected by acid drainage and their relationship to metal speciation. This work studied: (a) the PSDs for a wide range of mixing ratios found at a fluvial confluence affected by acid drainage, and (b) the response of PSDs and arsenic speciation to environmental changes found when the particles approach complete mixing conditions. The confluence between the Azufre River (pH ~ 2, high concentration of dissolved metals) and Caracarani River (pH = 8.6, low concentration of dissolved metals) was used as a representative model for study. Field measurements show a bimodal PSD with modal diameters of ~50 and 300 μm. At shorter distances from the junction, the smaller modes with smaller particle volumes were dominant across the stream cross‐sections. A systematic shift towards larger particle sizes and larger particle volumes occurred downstream. The analysis of laboratory PSDs for Azufre/Caracarani mixing ratios between 0.01 and 0.5 (pH from 6.2 to 2.3) showed a bimodal trend with ~15 and 50 μm characteristic diameters; larger particles formed at pH>4. When particle suspensions were transferred in laboratory experiments from very low pH to full mixing conditions (pH ~ 2.8 and mixing ratio ~ 0.25) particle sizes varied, and the dissolved arsenic concentration decreased. The observed reaction kinetics were slow compared to the time scale of advective transport, creating opportunities for engineered controls for arsenic. This work contributes to a better understanding of the chemical‐hydrodynamic interactions in watersheds affected by mining, and identifying opportunities to improve water quality at points of use.  相似文献   

9.
The method described uses the separation of As(III) and As(V) species in aqueous samples by means of the anion‐exchange resin Amberlite IRA‐93. The samples were acidified using acetic acid and passed through a glass column filled with pre‐treated Amberlite IRA‐93 resin. As(III) was poorly adsorbed on the anionic exchanger material, whereas As(V) was retained. The arsenic concentration was measured in the column effluent by graphite furnace AAS (GF‐AAS). The retained As(V) was eluted from the column using 1 M NaOH. Prior to the determination of the As(V) concentration in the NaOH eluate, the eluate was passed through a glass column filled with a cation‐exchange resin (Amberlite 200) to remove sodium ions and minimize the Na+ interference with the AAS determination. After calibration the method was applied to the separation of As(III) and As(V) species in two aqueous extracts of arsenic contaminated soils. The results were compared with those obtained from an on‐line separation and determination of As(III) and As(V) in the aqueous soil extracts using a state of the art HPLC‐ICP‐MS system.  相似文献   

10.
Spodic Material for In Situ Treatment of Arsenic in Ground Water   总被引:2,自引:0,他引:2  
The leaching of chromium-copper-arsenic salts from old wood preservation sites is a threat to ground water at many places in Sweden. The installation of in situ reactive barriers is an attractive "passive' technique to prevent the further spreading of contaminants. The use of peat as a reactive barrier material has been suggested for heavy metals, but this material was expected to be unsatisfactory for arsenic (As). Therefore, the feasibility of using spodic B horizon material for the retention of arsenic was tested in laboratory column experiments. Contaminated soil was taken from an old preservation site and leached under conditions designed to imitate the field conditions. The arsenic load during the three-month duration of the test corresponded to a load at the field site during three years. The B horizon material proved to be efficient for retention of arsenic, despite the observation that As(III) dominated the As speciation. The As(III) concentration was reduced from 1 to 3 mg dm−3 to < 0.02 mg dm−3. Pure peat was, as expected, not suited as a reactive barrier for As, and a mixed B horizon/peat reactive barrier also proved unsatisfactory for the removal of As. It is therefore important to separate the B horizon material from any peat that is used to sorb heavy metals. Before applying the B horizon reactive barrier technique in the field, the effect of the naturally occurring variability of the reactive compounds should be tested. The inclusion of oxidizing agents in the barrier could possibly improve the lifetime considerably. Furthermore, the influence of the flow rate should be evaluated since the kinetics of the arsenic adsorption is relatively slow.  相似文献   

11.
Recent evaluations of acute and chronical toxicity of arsenic resulted in a reduction of the standard value for total arsenic from 40 μg/L to 10 μg/L in drinking water which will be valid in Germany after a transition period as from January 1996. Arsenic is well known as substance of deep groundwaters, mainly of geogenic origin and normally found as As(III) or As(V). As(V) is well removable by flocculation and filtration after adding iron salts. As(III), however, has to be oxidized first to As(V). Therefore, it is important for treatment techniques to be able to distinguish between As(III) and As(V). A modified determination of As(III) using flow injection analysis was installed and optimized in order to investigate whether As(III) may be oxidized to As(V) by bacteria in natural waters. The results showed that at 4°C, no As(III)-oxidation was observed within 14 days. At room temperature, however, in the bacteria-containing samples, an As(III)-oxidation was found starting after 3 to 7 days. After 14 days, no As(III) was left over. In contrast, in the sterile samples, no As(III)-oxidation could be observed within 14 days. These results demonstrated that microbial processes influence the oxidation of As(III) to As(V) in natural waters.  相似文献   

12.
The present paper deals with the modeling of the removal of total arsenic As(T), trivalent arsenic As(III), and pentavalent arsenic As(V) from synthetic solutions containing total arsenic (0.167–2.0 mg/L), Fe (0.9–2.7 mg/L), and Mn (0.2–0.6 mg/L) in a batch reactor using Fe impregnated granular activated charcoal (GAC‐Fe). Mass ratio of As(III) and As(V) in the solution was 1:1. Multi‐layer neural network (MLNN) has been used and full factorial design technique has been applied for the selection of input data set. The developed models are able to predict the adsorption of arsenic species with an error limit of ?0.3 to +1.7%. Combination of MLNN with design of experiment has been able to generalize the MLNN with less number of experimental points.  相似文献   

13.
A study was conducted to evaluate monitored natural attenuation (MNA) as a remedy for arsenic in groundwater at a former phosphate mining and manufacturing facility. The mineralogy, speciation, and lability of arsenic in phosphatic wastes present in soils were characterized using sequential extraction procedures, leaching experiments, batch adsorption tests, and microchemical speciation analysis. A PHREEQC-based reactive transport model was also parameterized using these laboratory results, and it was used to evaluate the importance of identified attenuation mechanisms on arsenic concentrations along a vertical flow path from a shallow, alluvial aquifer to the underlying Floridan aquifer. Arsenic was found to occur in several chemical forms in phosphatic wastes, including unstable sulfide minerals, adsorbed surface complexes, and relatively insoluble phosphate and oxide minerals. Most arsenic was associated with stable minerals. The reactive transport model predicted that historical leaching of solid-phase waste materials in soils would not have generated enough arsenic to explain the concentrations observed in downgradient groundwater; instead, the source of arsenic to groundwater was likely acidic and saline process water that infiltrated though unlined ponds and ditches during historical manufacturing operations. A key factor affecting the long-term effectiveness of natural attenuation of arsenic in groundwater is the occurrence and stability of iron oxyhydroxides in aquifer sediments. According to laboratory and reactive transport model results, sufficient levels were found to be present at the site to effectively limit arsenic migration at concentrations exceeding drinking water standards in the future in the Floridan aquifer. This study presents the geochemical evaluations that are needed to satisfy EPA guidelines on determining whether or not MNA is an acceptable remedy for a site. It specifically details the characterization and modeling that were used to demonstrate effectiveness at a site where MNA was ultimately selected as the remedy for arsenic in groundwater.  相似文献   

14.
We performed stable carbon and nitrogen-guided analyses of biomagnification profiles of arsenic (As) species, including total As, lipid-soluble As, eight water-soluble As compounds (arsenobetaine (AB), arsenocholine (AC), tetramethylarsonium ion (TETRA), trimethylarsine oxide (TMAO), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), arsenate (As[V]), and arsenite (As[III])), and non-extracted As in a tropical mangrove ecosystem in the Ba Ria Vung Tau, South Vietnam. Arsenobetaine was the predominant As species (65-96% of water-soluble As). Simple linear regression slopes of log-transformed concentrations of total As, As fractions or individual As compounds on stable nitrogen isotopic ratio (δ15N) values are regarded as indices of biomagnification. In this ecosystem, lipid-soluble As (slope, 0.130) and AB (slope, 0.108) were significantly biomagnified through the food web; total As and other water-soluble As compounds were not. To our knowledge, this is one of the first reports on biomagnification profiles of As compounds from a tropical mangrove ecosystem.  相似文献   

15.
Highly sensitive and selective methods for the determination of trace elements in waters and solutions are made possible by the combination of flotation and spectrophotometry (flotation spectrophotometry). The basis for it are multiply charged anion complexes of the analyte, which form sparingly soluble ion association complexes with singly charged basic dye cations in aqueous solution. Intense shaking of the aqueous solution with an organic solvent (having a low dielectric constant) results in the accumulation of these ion association complexes at the interface or on the vessel walls (flotation step). After separating the ion association complexes from the liquid phases, they are dissolved and dissociated in a polar organic solvent and the absorbance of the basic dye ions is measured as a function of the concentration of the analyte. By the example of the trace determination of arsenic in natural water, the possibilities of analytical chemistry by combination of flotation steps and spectrophotometry are demonstrated. According to the arsenic content, its determination can be performed by flotation spectrophotometry with crystal violet (detection limit 50 ng/ml As), by an indirect determination of arsenic via flotation spectrophotometry of molybdenum in the dodecamolybdoarsenic acid (detection limit 1 ng/ml As) or by the combination of collector precipitation of arsenic with zirconium hydroxide followed by froth flotation and flotation spectrophotometry as the determination technique (detection limit 0.05 ng/ml As). The reproducibilities of these variants are indicated and their accuracy is checked by comparison of methods.  相似文献   

16.
Summary: As ion balances and paleolimnological investigations prove, acidification is mainly the result of too much strain on the buffering capacity of catchment areas and waters by anthropogenic acid depositions. The situation is studied in mountain brooklets with different characteristics of their catchment areas. Distinct annual variations and functional relations of hydrological and chemical quantities can be described. The changed chemism of the water influences the structure of organisms and thus the function, stability and balance of matter as well as self-purifying capacity of the water both directly (lethal effects) and indirectly (by the loss of species). The state of the water can be inferred from the biological findings in terms of the presence or absence of certain species (bioindicators).  相似文献   

17.
Research interest in speciation of arsenic stems from its species dependent behavior in the environment and in living organisms. The complexity of the matrix to be analyzed and low concentrations of target arsenic species that may be labile or difficult to chromatogram, indicate that a suitable pre‐treatment methodology is required. This study investigated the usefulness of chelation solvent extraction – high performance liquid chromatography (CSE‐HPLC) for the speciation of arsenic in water. It involved reacting arsenic with the chelant known for its affinity towards arsenic, followed by extraction, separation, and identification of the arsenic‐chelant‐arsenic complex. Arsenic species having different physicochemical properties were investigated. Species, such as, As2O3, As3O5, KH2AsO4, Na2HAsO4, and NaAsO2 were detected as a group of closely eluted peaks with different retention times and spectral properties, whereas, the organic arsenic species CH3Na2AsO3, o‐arsanilic acid, roxarson and triphenyl arsine separated quite well on the EnviroseP‐CM HPLC column. Key method parameters, such as, type of HPLC column, composition of mobile phase and organic solvents affecting peak resolution and sensitivity were optimized. Real environmental matrices contaminated with arsenic were analyzed under varying wavelengths (λmax = 190, 210, 220, 234, 244, and 282 nm), with good precision. Different arsenic species were detected in these samples with excellent background and signal‐to‐noise ratios demonstrating the robustness of the method. The detection limit, reproducibility, selectivity, accuracy, and dynamic range of the calibration curves were evaluated.  相似文献   

18.
This study characterized the redox conditions in arsenic‐affected groundwater aquifers of the Lanyang plain, Taiwan. Discriminant analysis was adopted to delineate three redox zones (oxidative, transitional and reductive zones) in different aquifers and yielded 92·3% correctness on groundwater quality data. Arsenic is mainly distributed in the reductive zone, and arsenic distribution in the shallow aquifer is mainly affected by surface activities. According to PHREEQC modelling results, possible mechanisms for arsenic release to groundwater in Lanyang plain are explored. Arsenic released to groundwater in the oxidative zone (zone 1) is primarily caused by the oxidations of arsenic‐bearing pyrite minerals, and arsenate is the predominant species. While the reductive dissolution of Fe‐oxides are responsible for the high arsenic concentration found in the transitional and reductive zones (zones 2 and 3), arsenite is the predominant species. The reduction potential of groundwater rises as the depths and zones increase. Some sulphates may be reduced to form sulphide ions, which then react with arsenic to form arseno‐sulphide deposits (such as realgar, orpiment) and then slightly lower groundwater arsenic concentrations. A conceptual diagram which summarized the possible release processes of arsenic in different redox zones along groundwater flow in Lanyang plain is postulated. Arsenic‐bearing pyrite and arsenopyrite (FeAsS) are oxidized as they are exposed to the infiltrated oxygenated rainwater, releasing soluble arsenate Fe(II) and SO42? into zone 1. The dissolution of arsenic‐rich Fe‐oxides due to the onset of reducing conditions in zones 2 and 3 is responsible for the mobility of arsenic and likely to be the primary mechanism of arsenic release to groundwater in the Lanyang plain Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Arsenic in glacial aquifers: sources and geochemical controls   总被引:1,自引:0,他引:1  
A total of 176 wells in sand-and-gravel glacial aquifers in central Illinois were sampled for arsenic (As) and other chemical parameters. The results were combined with archived and published data from several hundred well samples to determine potential sources of As and the potential geochemical controls on its solubility and mobility. There was considerable spatial variability in the As concentrations. High concentrations were confined to areas smaller than 1 km in diameter. Arsenic and well depth were uncorrelated. Arsenic solubility appeared to be controlled by oxidation-reduction (redox) conditions, especially the presence of organic matter. Geochemical conditions in the aquifers are typically reducing, but only in the most reducing water does As accumulate in solution. In wells in which total organic carbon (TOC) was below 2 mg/L and sulfate (SO4(2-)) was present, As concentrations were low or below the detection limit (0.5 microg/L). Arsenic concentrations >10 microg/L were almost always found in wells where TOC was >2 mg/L and SO4(2-) was absent or at low concentrations, indicating post-SO4 (2-)reducing conditions. Iron (Fe) is common in the aquifer sediments, and Fe oxide reduction appears to be occurring throughout the aquifers. Arsenic is likely released from the solid phase as Fe oxide is reduced.  相似文献   

20.
Coal samples from high arsenic coal areas have been analyzed by electron micropbe analyzer (EMPA), scanning electron microscopy with an energy dispersive X-ray analyzer (SEM-EDX), X-ray diffinction analysis (XRD), low temperature ashing (LTA), transmission electron microscopy (TEM), X-ray absorption fine structure (XAFS), instnunent neutron activation analysis (INAA) and wet chemical analysis. Although some As-bearing minerals such as pyrite, arsenopyrite, realgar (?), As-bearing sulfate, and As-bearing clays are found in the high arsenic coals, their contents do not account for the abundance of arsenic in the some coals. Analysis of the coal indicates that arsenic exists mainly in the form of As 5+ and As 3+, combined with compounds in the organic matrix. The occurrence of such exceptionally high arsenic contents in coal and the fact that the arsenic is dominantly organically associated are unique observations. The modes of occurrence of arsenic in high As-coals are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号