首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
A plausible seismo-tectonic boundary of the Sinkiang—Tibetan region is defined on the basis of the trend of higher magnitude earthquakes (M7.0) and energy released by them for the period 1905–1965. In order to study the nature of forces at the northwestern and eastern sides of the region focal mechanisms for eleven shocks have been determined using P-wave first-motion directions reported in the Bulletin of the International Seismological Centre (Edinburgh). Of these, seven mechanisms show thrust faulting, three strike-slip and one normal faulting. The sense of motions of underthrusting blocks in thrust-faulting mechanisms for the two sides are directed towards the Sinkiang—Tibetan region. The slip vectors of strike-slip faulting are also in agreement with the direction of movement of thrust faulting. Thus, the seismicity, energy released, slip vectors and the orientation of T-axes reflect that the northwestern and eastern sides of the Sinkiang—Tibetan region are the plausible seismo-tectonic boundary and the major earthquakes and higher crustal thickness are the results of the movements of surrounding plates towards the region.  相似文献   

2.
The variation of in situ stress before and after earthquakes is an issue studied by geologists. In this paper, on the basis of the fault slip dislocation model of Wenchuan Ms8.0 earthquake, the changes of co-seismic displacement and the distribution functions of stress tensor around the Longmen Shan fault zone are calculated. The results show that the co-seismic maximum surface displacement is 4.9 m in the horizontal direction and 6.5 m in the vertical direction, which is almost consistent with the on-site survey and GPS observations. The co-seismic maximum horizontal stress in the hanging wall and footwall decreased sharply as the distance from the Longmen Shan fault zone increased. However, the vertical stress and minimum horizontal stress increased in the footwall and in some areas of the hanging wall. The study of the co-seismic displacement and stress was mainly focused on the long and narrow region along the Longmen Shan fault zone, which coincides with the distribution of the earthquake aftershocks. Therefore, the co-seismic stress only affects the aftershocks, and does not affect distant faults and seismic activities. The results are almost consistent with in situ stress measurements at the two sites before and after Wenchuan Ms8.0 earthquake. Along the fault plane, the co-seismic shear stress in the dip direction is larger than that in the strike direction, which indicates that the faulting mechanism of the Longmen Shan fault zone is a dominant thrust with minor strike-slipping. The results can be used as a reference value for future studies of earthquake mechanisms.  相似文献   

3.
Various earthquake fault types, mechanism solutions, stress field, and other geophysical data were analyzed for study on the crust movement in the Tibetan plateau and its tectonic implications. The results show that numbers of thrust fault and strike-slip fault type earthquakes with strong compressive stress near NNE-SSW direction occurred in the edges around the plateau except the eastern boundary. Some normal faulting type earthquakes concentrate in the Central Tibetan plateau. The strikes of fault planes of thrust and strike-slip faulting earthquakes are almost in the E-W direction based on the analyses of the Wulff stereonet diagrams of fault plane solutions. This implies that the dislocation slip vectors of the thrust and strike-slip faulting type events have quite great components in the N-S direction. The compression motion mainly probably plays the tectonic active regime around the plateau edges. The compressive stress in N-S or NE-SW directions predominates earthquake occurrence in the thrust and strike-slip faulting event region around the plateau. The compressive motion around the Tibetan plateau edge is attributable to the northward motion of the Indian subcontinent plate. The northward motion of the Tibetan plateau shortened in the N-S direction encounters probably strong obstructions at the western and northern margins.  相似文献   

4.
The seismicity of a region is implicit of the causal faulting mechanisms and geodynamic diversity of the subsurface regime nucleating earthquakes of different magnitudes, several of which may be as devastating as ones historically reported in global perspective of tectonic complexity as in the case of India. Fractal analysis using box-counting method for the major fault networks across the country estimates fractal dimension, Df, values to be varying between 0.88 and 1.36. The fault segments in parts of northwest Himalayas, northeast India and Indo-Gangetic plains, are observed to be associated with higher Df values implicating high seismicity rates. On the other hand, low Df values in the peninsular India indicate isolated pattern of the underlying faults. The fractal dimension is observed to be indicative of predominant faulting types — higher values conforming to thrust faulting mechanism while lower to strike slip tectonism.  相似文献   

5.
This paper examines the morphotectonic and structural–geological characteristics of the Quaternary Martana Fault in the Umbria–Marche Apennines fold‐and‐thrust belt. This structure is more than 30 km long and comprises two segments: a N–NNW‐trending longer segment and a 100°N‐trending segment. After developing as a normal fault in Early Pleistocene times, the N–NNW Martana Fault segment experienced a phase of dextral faulting extending from the Early to Middle Pleistocene boundary until around 0.39 Ma, the absolute age of volcanics erupted in correspondence to releasing bends. The establishment of a stress field with a NE–ENE‐trending σ3 axis and NW–NNW σ1 axis in Late Pleistocene to Holocene times resulted in a strong component of sinistral faulting along N–NNW‐trending fault segments and almost pure normal faulting on newly formed NW–SE faults. Fresh fault scarps, the interaction of faulting with drainage systems and displacement of alluvial fan apexes provide evidence of the ongoing activity of this fault. The active left‐lateral kinematic along N–NNW‐trending fault segments is also revealed by the 1.8 m horizontal offset of the E–W‐trending Decumanus road, at the Roman town of Carsulae. We interpret the present‐day kinematics of the Martana Fault as consistent with a model connecting surface structures to the inferred north‐northwest trending lithospheric shear zone marking the western boundary of the Adria Plate. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
F. Di Luccio  E. Fukuyama  N.A. Pino   《Tectonophysics》2005,405(1-4):141-154
On October 31, 2002 a ML = 5.4 earthquake occurred in southern Italy, at the margin between the Apenninic thrust belt (to the west) and the Adriatic plate (to the east). In this area, neither historical event nor seismogenic fault is reported in the literature. In spite of its moderate magnitude, the earthquake caused severe damage in cities close to the epicenter and 27 people, out of a total of 29 casualties, were killed by the collapse of a primary school in S. Giuliano di Puglia. By inverting broadband regional waveforms, we computed moment tensor solutions for 15 events, as small as ML = 3.5 (Mw = 3.7). The obtained focal mechanisms show pure strike-slip geometry, mainly with focal planes oriented to NS (sinistral) and EW (dextral). In several solutions focal planes are rotated counterclockwise, in particular for later events, occurring west of the mainshock. From the relocated aftershock distribution, we found that the mainshock ruptured along an EW plane, and the fault mechanisms of some aftershocks were not consistent with the mainshock fault plane. The observed stress field, resulting from the stress tensor inversion, shows a maximum principal stress axis with an east–west trend (N83°W), whereas the minimum stress direction is almost N–S. Considering both the aftershock distribution and moment tensor solutions, it appears that several pre-existing faults were activated rather than a single planar fault associated with the mainshock. The finite fault analysis shows a very simple slip distribution with a slow rupture velocity of 1.1 km/s, that could explain the occurrence of a second mainshock about 30 h after. Finally, we attempt to interpret how the Molise sequence is related to the normal faulting system to the west (along the Apennines) and the dextral strike-slip Mattinata fault to the east.  相似文献   

7.
Earthquakes in SE Australia are usually caused by compressive stresses acting in the crust, and are associated with steeply dipping faults. Sometimes the faulting is predominantly strike‐slip, as for the Bowning earthquakes of 1977 and some of the Dalton/Gunning earthquakes; and sometimes it is high‐angle thrust faulting, as for the 1961 Robertson and 1973 Picton earthquakes. No surface expression of the faults associated with any recent earthquakes in SE Australia has been reported.

The directions of the pressure axes, from all the earthquakes for which focal mechanisms have been determined, do not form a consistent pattern. This suggests that the faulting associated with earthquakes in SE Australia is dominated by the geometry of pre‐existing crustal faults or zones of weakness.

In situ stress measurements have not been made near the epicentral areas of the larger recent earthquakes, because of the absence of competent, near‐surface rocks coupled to the crust. However, in the western part of the Lachlan Fold Belt the in situ stress results indicate that the maximum pressure axis is approximately E‐W. The evidence from the focal mechanisms does not preclude the persistence of this stress regime farther to the east, and a regional compressive stress in the crust with an azimuth of about 120° is consistent with most of the earthquake focal mechanisms and the in situ stress measurements throughout SE Australia.  相似文献   

8.
We relocated over 1000 earthquakes of magnitude > 0.1 occurring between 1973 and 2001 in the Bering Glacier region of southern Alaska. We used first-motion data from these events to determine focal mechanisms and directly invert for stress orientations. Our results indicate that much of the seismicity in the region is occurring within the North American plate in a zone where an inferred structure, which lies beneath Bering Glacier, intersects the Chugach-St. Elias fault system. Stress-field analysis indicates that the events in the Bering Glacier surge reservoir region are likely occurring on northeast-trending thrust faults, consistent with previous modeling that suggested thrust faulting would be enhanced in regions of ice draw down. We also observe a stress field compatible with either high-angle normal or reverse faulting in regions located northwest of the Bering Glacier. This may indicate localized complexities in interactions between the Bering Glacier structure and the Chugach-St. Elias fault system.  相似文献   

9.
东喜马拉雅缺口的地质与地貌成因   总被引:10,自引:0,他引:10       下载免费PDF全文
东喜马拉雅缺口位于西藏东南部米林地区,平均海拔高度只有4500m,远远低于喜马拉雅山其它地段。我们的研究揭示,它的形成是由一条规模很大的,称之为米林韧性正断层的活动造成的。断层带的宽度至少有20km,大体倾向西,主要由眼球状糜棱岩组成,岩石中的拉伸线理以及眼球旋转的方式表明位于其东西两侧的高喜马拉雅深变质岩系和特提斯喜马拉雅中浅变质岩系之间发生过大规模的拆离运动,导致了东喜马拉雅构造结的最高峰——南迦巴瓦(7756m)的早期抬升以及特提斯喜马拉雅的重力垮塌。该断裂的南西端和藏南拆离系(STDS)相交,因此,它很可能是藏南拆离系的东翼断裂,同样形成于中新世。拆离构造的发生表明喜马拉雅山在中新世发生南北向构造缩短的同时还伴随着近东西向的拉伸。米林断裂的北东端和派区断裂相接。后者在中新世呈左旋剪切,构成东喜马拉雅挤入构造的西边界。米林断裂和上述两个断裂的衔接关系表明该断裂是一个协调高喜马拉雅和特提斯喜马拉雅之间斜向拆离运动的转换断层。  相似文献   

10.
A seismicity map of that part of the Pakistan-Afghanistan region lying between the latitudes 28° to 38°N and longitudes 66° to 75°E is given using all available data for the period 1890–1970. The earthquakes of magnitude 4.5 and above were considered in the preparation of this map. On the basis of this map, it is observed that the seismicity pattern over the well-known Hindukush region is quite complex. Two prominent, mutually orthogonal, seismicity lineaments, namely the northvestern and the north-eastern trends, characterize the Hindukush area. The northwestern trend appears to extend from the Main Boundary Fault of the Kashmir Himalaya on the southeast to the plains of the Amu Darya in Uzbekistan on the northwest beyond the Hindukush. The Sulaiman and Kirthar ranges of Pakistan are well-defined zones of intermontane seismicity exhibiting north-south alignment.Thirty-two new focal-mechanism solutions for the above-mentioned region have been determined. These, together with the results obtained by earlier workers, suggest the pre-dominance of strike-slip faulting in the area. The Hazara Mountains, the Sulaiman wrench zone and the Kirthar wrench zone, as well as the supposed extension of the Murray ridge up to the Karachi coast, appear to be mostly undergoing strike-slip movements.In the Hindukush region, thrust and strike-slip faulting are found to be equally prevalent. Almost all the thrust-type mechanisms belonging to the Hindukush area have both the nodal planes in the NW-SE direction for shallow as well as intermediate depth earthquakes. The dip of P-axes for the events indicating thrust type mechanisms rarely exceeds 35°. The direction of the seismic slip vector obtained through thrust type solutions is always directed towards the northeast. The epicentral pattern together with these results suggest a deep-seated fault zone paralleling the northwesterly seismic zone underneath the Hindukush. This NW-lineament has a preference for thrust faulting, and it appears to extend from the vicinity of the Main Boundary Fault of the Kashmir Himalaya on the southeast of Uzbekistan on the northwest through Hindukush. Almost orthogonal to this NW-seismic zone, there is a NE-seismic lineament in which there is a preference for strike-slip faulting.The above results are discussed from the point of view of convergence of the Indian and Eurasian plates in the light of plate tectonics theory.  相似文献   

11.
The complex representation of plane stress is used for an analytic model to describe the stress regime of the Snake River Plain (SRP) region of the western United States. The area is modeled as an infinite elastic sheet cut along a circular arc with tension applied at infinity. Modeling results include the following: (1) south of the Snake River Plain, the principal direction of tension rotates from the direction of the applied stress to a direction sub-parallel to the cut, consistent with the orientation of normal faulting and nodal planes given by fault plane solutions; (2) north of the Snake River Plain, calculated stress directions are consistent with the variable nature of faulting in that region; (3) a decrease in magnitude of predicted stresses is observed within the Snake River Plain consistent with relatively low levels of seismicity on the Plain.  相似文献   

12.
CENOZOIC FAULTING ALONG THE SOUTHEASTERN EDGE OF THE TIBETAN PLATEAU IN THE YANYUAN AREA AND ITS TECTONIC IMPLICATIONS  相似文献   

13.
14.
Analysis of vertical crustal deformation data in the southwestern part of Shikoku, southwest Japan, suggests that the Nankaido earthquake of 1946 (Mw = 8.1), which is a principal interplate thrust earthquake, was accompanied by subsidiary faulting on a splay fault adjacent to the coast of Shikoku. Discarding crustal movement resulting from the main thrusting of the Nankaido earthquake, local leveling data are explained by slip on a simple rectangular thrust fault located just offshore of Shikoku. Although it is difficult to constrain the fault location, a possible result is a high-angle thrust dipping landward at an angle of about 70°, with a dislocation of about 1.5 m, and source dimensions of 30 × 13 km along strike and dip. respectively. This result indicates that the fault may be one of the steeply dipping subsidiary faults branching from the main low-angle thrust, as was the case in the Alaska earthquake of 1964. Although several lines of evidence suggest that this faulting occurred as slow aseismic slip, its discrimination from the main seismic event is extremely difficult. This kind of high-angle thrusting just offshore of the coast would play an important role for the formation of the marine terraces during the late Quaternary period.  相似文献   

15.
Data concerning the focal mechanism and the spatial distribution of earthquakes have been used to investigate the active tectonics of the northern Aegean and the surrounding area.A thrust region, which includes the northernmost part of the Aegean and at least part of the Marmara Sea, has been defined. An amphitheatrical Benioff zone dipping towards the thrust region from south, east and probably from west, at a mean angle of about 30°, has been detected.The thrust region is surrounded by a region of normal faulting. An eastward progression of the seismic activity in this normal faulting region between 1954 and 1971 has been observed.A correspondence between the earthquake occurrence in the thrust and normal faulting regions has also been observed. Each large shock produced by tensional mechanism in the region of normal faulting is preceded or followed by one or more shocks of compressional mechanism in the thrust region.The focal mechanism, the distribution of the earthquake foci with intermediate focal depth, as well as some magnetic and gravimetric observations can be interpreted by assuming that dense oceanic crust sinks in the northern part of this area and that the adjacent lithosphere moves by segmentation to fill the void with the consequence of producing tensile stresses associated with normal faulting. Such a mechanism of lithospheric interaction suggests that accretion probably takes place in this area.  相似文献   

16.
A 12-station temporary microearthquake network was established by the Geological Survey of India for aftershock monitoring of the January 26th, 2001 Bhuj earthquake (M w 7.6) in the Kutch district of Gujarat state, western India. The epicentres of the aftershocks show two major trends: one in the NE direction and the other in the NW direction. Fault-plane solutions of the best-located and selected cluster of events that occurred along the NE trend, at a depth of 15–38 km, show reverse faulting with a large left-lateral strike-slip motion, which are comparable with the main-shock solution. The NW trending upper crustal aftershocks at depth <10 km, on the other hand, show reverse faulting with right-lateral strike-slip motion, and the mid crustal and lower crustal aftershocks, at a depth of 15–38 km, show pure reverse faulting as well as reverse faulting with right-lateral and left-lateral strike-slip motions; these solutions are not comparable with the main-shock solution. It is inferred that the intersection of two faults has been the source area for stress concentration to generate the main shock and the aftershocks.  相似文献   

17.
We summarize seismogenic structures in four regions of active convergence, each at a different stage of the collision process, with particular emphases on unusual, deep-seated seismogenic zones that were recently discovered. Along the eastern Hellenic arc near Crete, an additional seismogenic zone seems to occur below the seismogenic portion of the interplate thrust zone—a configuration found in several other oblique subduction zones that terminate laterally against collision belts. The unusual earthquakes show lateral compression, probably reflecting convergence between the subducting lithosphere's flank and the collision zone nearby. Along oblique zones of recent collision, the equivalence between space and time reveals the transition from subduction to full collision. In particular, intense seismicity beneath western Taiwan indicates that along the incipient zone of arc–continent collision, major earthquakes occur along high-angle reverse faults that reach deep into the crust or even the uppermost mantle. The seismogenic structures are likely to be reactivated normal faults on the passive continental margin of southeastern China. Since high-angle faults are ineffective in accommodating horizontal motion, it is not surprising that in the developed portion of the central Taiwan orogen (<5 Ma), seismogenic faulting occurs mainly along moderate-dipping (20–30°) thrusts. This is probably the only well-documented case of concurrent earthquake faulting on two major thrust faults, with the second seismogenic zone reaching down to depths of 30 km. Furthermore, the dual thrusts are out-of-sequence, being active in the hinterland of the deformation front. Along the mature Himalayan collision zone, where collision initiated about 50 Ma ago, current data are insufficient to distinguish whether most earthquakes occurred along multiple, out-of-sequence thrusts or along a major ramp thrust. Intriguingly, a very active seismic zone, including a large (Mw=6.7) earthquake in 1988, occurs at depths near 50 km beneath the foreland. Such a configuration may indicate the onset of a crustal nappe, involving the entire cratonic crust. In all cases of collision discussed here, the basal decollement, a key feature in the critical taper model of mountain building, appears to be aseismic. It seems that right at the onset of collision, earthquakes reflect reactivation of high-angle faults. For mature collision belts, earthquake faulting on moderate-dipping thrust accommodates a significant portion of convergence—a process involving the bulk of crust and possibly the uppermost mantle.  相似文献   

18.
We performed numerical simulations to determine the contemporary maximum horizontal compressive stress (σHmax) in the northeast India region, the Bengal basin (Bangladesh), and the adjoining Indo-Burma Ranges, with different boundary conditions. The regional tectonic stress was simulated using the finite element method (FEM) under the plane stress condition. Most of the study areas show NE–SW regional stress orientation, which is consistent with other stress indicators, such as earthquake focal mechanism solutions. The E–W trending Dauki fault, which separates the Shillong plateau to the north from the Bengal basin to the south, plays a major role in the stress distribution and regional deformation. This fault alone accommodates ~25% of the regional surface displacement rate of the study area. The fault pattern of the study area was also simulated using rheological parameters and the Mohr–Coulomb failure criterion. The simulated results reproduce the observed tectonic state of the area, including a strike-slip regime along the Dauki fault, in the southwestern part of the Bengal basin, and in the Tripura fold belt areas. The modeling indicates that the Brahmaputra valley to the north of the Shillong plateau and to the south of the Himalayan frontal thrust exhibits thrust/reverse faulting with a strike-slip component, and in the Indo-Burma Ranges, strike-slip faulting is predominant with a reverse fault component.  相似文献   

19.
A set of 41 focal mechanisms (1989–2006) from P-wave first polarities is computed from relocated seismic events in the Giudicarie–Lessini region (Southern Alps). Estimated hypocentral depths vary from 3.1 to 20.8 km, for duration magnitudes (MD) in the range 2.7–5.1. Stress and strain inversions are performed for two seismotectonic zones, namely G (Giudicarie) and L (Lessini). This subdivision is supported by geological evidence, seismicity distribution, and focal mechanism types. The available number of data (16 in G, 22 in L) does not make possible any further subdivisions. Seismotectonic zones G and L are undergoing different kinematic regimes: thrust with strike-slip component in G, and strike-slip in L. Principal stress and strain axes in each sub-region show similar orientations. The direction of maximum horizontal compressive stress is roughly perpendicular to the thrust fronts along the Giudicarie Belt in zone G, and compatible with right-lateral strike-slip reactivation of the faults belonging to the Schio-Vicenza system in zone L. On the whole, kinematic regimes and horizontal stress orientations show a good fit with other stress data from focal mechanisms and breakouts and with geodetic strain rate axes.  相似文献   

20.
Fault surfaces have a finite area enclosed by branch- and tip-lines. A tip-line separates the slipped from the unslipped region. A branch-line forms where one fault splays off another and occurs at the trailing or leading ends of thrust sheets and along frontal, oblique and lateral ramps. Hence potentially complicated patterns of branch- and tip-lines outline or surround the fault surface. The branch-lines determine which parts of the fault geometry, off a line of section, can be projected on to the section; help to define the fault movement direction; and identify horses or fragments left behind by the faulting. The technique of analysing branch- and tip-lines is demonstrated on the thrusts of the Trondheim area to derive a more rigorous section which is also constrained by gravimetric, aeromagnetic and metamorphic data. Lateral branch-lines, parallel to the thrust slip-direction, suggest slip vectors between 155 and 165° (SE) for three of the thrusts. Horses, left behind by the thrusts, suggest minimum displacements of 50 and 100 km for two of these thrusts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号