首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The major earthquake-induced tsunamis reliable known to have occurred in and near Greece since antiquity are considered in the light of the recently obtained reliable data on the mechanisms and focal depths of the earthquakes occurring here. (The earthquake data concern the major shocks of the period 1962–1986.) First, concise information is given on the most devastating tsunamis. Then the relation between the (estimated) maximum tsunami intensity and the earthquake parameters (mechanism and focal depth) is examined. It is revealed that the most devastating tsunamis took place in areas (such as the western part of the Corinthiakos Gulf, the Maliakos Gulf, and the southern Aegean Sea) where earthquakes are due to shallow normal faulting. Other major tsunamis were nucleated along the convex side of the Hellenic arc, characterized by shallow thrust earthquakes. It is probably somewhere there (most likely south of Crete) that the region's largest known tsunami occurred in AD 365, claiming many lives and causing extensive devastation in the entire eastern Mediterranean. Such big tsunamis seem to have a return period of well over 1000 years and can be generated by large shallow earthquakes associated with thrust faulting beneath the Hellenic trench, where the African plate subduces under the Euroasian plate. Lesser tsunamis are known in the northernmost part of the Aegean Sea and in the Sea of Marmara, where strike-slip faulting is observed. Finally, an attempt is made to combine the tsunami and earthquake data into a map of the region's main tsunamigenic zones (areas of the sea bed believed responsible for past tsunamis and expected to nucleate tsunamis in the future).  相似文献   

2.
Various earthquake fault types, mechanism solutions, stress field, and other geophysical data were analyzed for study on the crust movement in the Tibetan plateau and its tectonic implications. The results show that numbers of thrust fault and strike-slip fault type earthquakes with strong compressive stress near NNE-SSW direction occurred in the edges around the plateau except the eastern boundary. Some normal faulting type earthquakes concentrate in the Central Tibetan plateau. The strikes of fault planes of thrust and strike-slip faulting earthquakes are almost in the E-W direction based on the analyses of the Wulff stereonet diagrams of fault plane solutions. This implies that the dislocation slip vectors of the thrust and strike-slip faulting type events have quite great components in the N-S direction. The compression motion mainly probably plays the tectonic active regime around the plateau edges. The compressive stress in N-S or NE-SW directions predominates earthquake occurrence in the thrust and strike-slip faulting event region around the plateau. The compressive motion around the Tibetan plateau edge is attributable to the northward motion of the Indian subcontinent plate. The northward motion of the Tibetan plateau shortened in the N-S direction encounters probably strong obstructions at the western and northern margins.  相似文献   

3.
Reliable fault plane solutions of shallow earthquakes and information on surface fault traces in combination with other seismic, geomorphological and geological information have been used to determine the orientation and other properties of the seismic faults in the Aegean and surrounding area.Thrust faults having an about NW-SE strike occur in the outer seismic zone along western Albania-westernmost part of mainland of Greece-Ionian Sea-south of Crete-south of Rhodes.The inner part of the area is dominated by strike-slip and normal faulting. Strike-slip with an about NE-SW slip direction occurs in the inner part of the Hellenic arc along the line Peloponnesus-Cyclades-Dodecanese-southwest Turkey as well as along a zone which is associated with the northern Aegean trough and the northwesternmost part of Anatolia. All other regions in the inner part of the area are characterized by normal faulting. The slip direction of the normal faults has an about SW-NE direction in Crete (N38°E) and an about E-W direction (N81°E) in a zone which trends N-S in eastern Albania and its extension to western mainland of Greece. In all other regions (central Greece-southern Yugoslavia and Bulgaria, western Turkey) the slip of the normal faults has an about N-S direction.  相似文献   

4.
We performed numerical simulations to determine the contemporary maximum horizontal compressive stress (σHmax) in the northeast India region, the Bengal basin (Bangladesh), and the adjoining Indo-Burma Ranges, with different boundary conditions. The regional tectonic stress was simulated using the finite element method (FEM) under the plane stress condition. Most of the study areas show NE–SW regional stress orientation, which is consistent with other stress indicators, such as earthquake focal mechanism solutions. The E–W trending Dauki fault, which separates the Shillong plateau to the north from the Bengal basin to the south, plays a major role in the stress distribution and regional deformation. This fault alone accommodates ~25% of the regional surface displacement rate of the study area. The fault pattern of the study area was also simulated using rheological parameters and the Mohr–Coulomb failure criterion. The simulated results reproduce the observed tectonic state of the area, including a strike-slip regime along the Dauki fault, in the southwestern part of the Bengal basin, and in the Tripura fold belt areas. The modeling indicates that the Brahmaputra valley to the north of the Shillong plateau and to the south of the Himalayan frontal thrust exhibits thrust/reverse faulting with a strike-slip component, and in the Indo-Burma Ranges, strike-slip faulting is predominant with a reverse fault component.  相似文献   

5.
姬广义汪洋  夏希凡 《城市地质》2005,17(4):1-32,F0003
在燕山中段南麓的蓟县北部山区有着中国国家地质公园,中国北方中-新元古代正层型剖面标志碑就耸立在那里。对这一地区基本地质事实和地质体真实位态的研究,不仅关系着对华北地区晚前寒武纪标准剖面可靠性的评价,也关系着燕山运动命名地的基本地壳结构的合理解析和我国北方中生代以来构造一岩浆活动序列的正确建立。本文展示的基础地质调查成果可揭示:蓟县北部常州沟-杨庄一带的地质结构构造远不是我国大多数地学学者们对此描述的那样简单。调查区约200km。面积可代表燕山中段南麓的大面积中-新元古界分布区的基本地质结构构造特征。已识别出的18条断层和由其限制的21个以上构造岩片的现实位态表明,该地区地壳上部是由多个复杂地块堆叠构成的,主体构造形成于燕山晚期,在形成方式上以大规模多次不同方向运移的薄皮构造岩片叠覆为主要特征。  相似文献   

6.
Eleven new focal mechanisms from earthquakes in the Assam-Burma region have been determined using P-wave first-motion directions reported in the Bulletins of the International Seismological Centre (Edinburgh). Out of them, eight mechanisms indicate thrust faulting, two normal faultings and one strike-slip faulting. In the thrust type of mechanism solutions, sense of motion on the shallow dipping of the two nodal planes is consistent with underthrusting beneath the arc-like mountain ranges. Seismic slip vectors strike in almost northerly direction along the eastern Himalayas and in almost easterly direction along the Burmese arc. A predominance of thrust faulting is consistent with geological evidences of thrusting and uplift in the Himalayas and the Assam-Burma region.  相似文献   

7.
Through a closely spaced local network of seismic stations in Himachal Pradesh, India, supplemented by worldwide P-wave first-motion data, the source mechanism of the February 14, 1977 earthquake which occurred very close to the Rawalpindi area in Pakistan has been determined. The fault-plane solution as reported earlier for this event by Seeber and Armbruster (1979) showed thrust faulting. The reliability of their solution has been tested using more P-wave first-motion data from near Indian stations within the epicentral distance of 4°–7°, as well as from distant stations. The inclusion of data from these stations completely changed the type of faulting from thrust to normal type. The new solution parameters have been briefly discussed in relation to the local geological faults/thrusts.  相似文献   

8.
Earthquake focal mechanism solutions from 18 events in the central and northern parts of the Gulf of Suez with local magnitudes ranging from 2.8 to 5.2 and occurring between 1983 and 2004 are used to determine the type of motion and stress pattern of the region. Fault plane solutions show mostly normal component; pure normal faulting mechanisms and normal faulting with a strike-slip component. Only some mechanisms show pure strike-slip faulting. The fault planes strike in NW, WNW, NNE and ENE directions, in conformity with the geologically observed striking faults in the northern and central parts of the gulf. The principal stress orientation is also estimated by inverting the selected focal mechanism solutions. The results show that the northern part of the Gulf is subjected to NE–SW to NNE–SSW extension, with a horizontal σ3 (plunge 3°) and subvertical σ1 (plunge 80°). This means that the horizontal extensional stresses are still present in the central/northern Gulf of Suez.  相似文献   

9.
A Mw 6.3 magnitude earthquake occurred on October 6, 2008 in southern Damxung County within the N–S trending Yangyi graben, which forms the northern section of the Yadong-Gulu rift of south-central Tibet. The earthquake had a maximum intensity of IX at the village of Yangyi (also Yangying) (29°43.3′N; 90°23.6′E) and resulted in 10 deaths and 60 injured in this sparsely populated region. Field observations and focal mechanism solutions show normal fault movement occurred along the NNE-trending western boundary fault of the Yangyi graben, in agreement with the felt epicenter, pattern of the isoseismal contours, and distribution of aftershocks. The earthquake and its tectonic relations were studied in detail to provide data on the seismic hazard to the nearby city of Lhasa.The Damxung earthquake is one of the prominent events along normal and strike-slip faults that occurred widely about Tibet before and after the 2008 Mw 7.9 magnitude Wenchuan earthquake. Analysis of these recent M ? 5.0 earthquake sequences demonstrate a kinematic relation between the normal, strike-slip, and reverse causative fault movements across the region. These earthquakes are found to be linked and the result of eastward extrusion of two large structural blocks of central Tibet. The reverse and oblique-slip surface faulting along the Longmenshan thrust belt at the eastern margin of the Tibetan Plateau causing the Wenchuan earthquake, was the result of eastward directed compression and crustal shortening due to the extrusion. Prior to it, east–west extensional deformation indicated by normal and strike-slip faulting events across central Tibet, had led to a build up of the compression to the east. The subsequent renewal of extensional deformational events in central Tibet appears related to some drag effect due to the crustal shortening of the Wenchuan event. Unraveling the kinematical relation between these earthquake swarms is a very helpful approach for understanding the migration of strong earthquakes across Tibet.  相似文献   

10.
The July 2003 sequence in the Gulf of Saros (Northeastern Aegean Sea) is investigated, in terms of accurate event locations and source properties of the largest events. The distribution of epicenters shows the activation of a 25-km long zone, which extends in depth between 9 and 20 km. The major slip patch of the 6 July 2003 Mw 5.7 mainshock is confined in a small area (45 km2), which coincides with the deeper (12–20 km) part of the activated zone. The epicenters of the sequence follow the northern margin of the Saros depression. This observation supports recent studies, according to which the continuation of the Ganos fault in the Gulf of Saros does not coincide with the fault along the northern coast of the Gelibolu peninsula, but it is located at the northern boundary of the Saros depression. This is further supported by the fact that the focal mechanisms of the mainshock and of the largest aftershocks of the 2003 sequence imply almost pure dextral strike-slip faulting, whereas the fault bounding the Gulf of Saros to the south appears as a normal fault on seismic sections. Thus, we infer that the principle deformation zone consists of a major strike-slip fault, which lies close to the northern margin of the Saros depression and this fault could be regarded as the continuation of the northern branch of the North Anatolian Fault into the Saros Gulf and North Aegean Trough as suggested by regional tectonic models. The northeastern extent of the 2003 sequence marks the western termination (at 26.3° E) of a long-term seismic quiescence observed in the period following the 1912 Ganos earthquake, which may be associated with the extend of the rupture of the particular earthquake.  相似文献   

11.
The distribution of hypocentres in the Upper Rhine Graben area is re-examined, and discussed with respect to the present day tectonic framework. Most earthquakes occur within a N60° striking wedge, located on top of a Moho dome. This wedge is limited by the surface and at depth, by a plane which, in the south of the dome, coincides with the SE dipping Conrad discontinuity. In depth, the seismicity shows a normal distribution the maximums of which are located on a surface dipping 6° towards SE, parallel to the south-eastward dipping Conrad and Moho. This surface outcrops along the north-western edge of the uplifted crystalline Vosges and Black-Forest. The main shocks in earthquake swarms in the region often occur in the vicinity of this surface and along pre-existing N–S to NE–SW Variscan or Tertiary faults and show focal mechanisms of strike-slip. In contrast, part of the aftershocks show focal mechanisms of reverse faulting associated with SE–NW striking compression. The seismic wedge and the north-westward rising seismic surface suggest initiation of crustal ramp, which starts at the south-eastern rim of the Conrad dome and which may become a thrust plane if SE–NW compression continues. In the south-eastern edge of the graben and above the south-eastern ridge of the Moho dome, where evidences for extension have been found, we identify clustering of hypocentres along a surface that strikes N150°, parallel to the main compression and dipping towards NE. Dominant normal faulting mechanisms along this surface suggests initiation of a normal, probably listric fault. At depth, the onset of the future fault plane is located on top of the NW–SE striking ridge of the lower crust and Moho, which act as a an indenter. In addition to thrusting of the whole wedge towards NW, increasing of NW–SE compression would lead to the formation of a half graben at the place of the present Sierentz depression.  相似文献   

12.
A shallow-focus damaging earthquake of magnitude 6.9?Mw struck the Sikkim Himalaya, north-east India, on 18 September 2011 at 12:40:48 UTC (06:10:48PM IST). The epicentre was located north-west of Chungthang on Indo-Nepal border of Sikkim Himalaya. The earthquake was widely felt in northern India and caused widespread damage to poorly built and framed structures in Sikkim region, northern Bihar, eastern Nepal, southern Bhutan and part of Tibet adjoining Sikkim Himalaya. A lot of secondary effects in the form of landslides, rockfalls and landslide lake outburst flood were caused due to strong shaking effect of the earthquake. Maximum intensity IX according to the European Macroseismic Scale-98 was observed in the meizoseismal zone surrounding Chungthang village. Asymmetrical distribution and heterogeneous damage pattern demonstrate intensity attenuation characteristics of the region. Although the regional tectonic framework of Sikkim region indicates compressional thrust tectonics regime, according to CMT fault-plane solution this earthquake involved predominantly strike-slip motion on a steep fault. Unlike Nepal and north-west Himalaya where microseismicity and large earthquakes indicate thrust mechanism, this Sikkim earthquake suggests that strike-slip principal component may imply transcurrent deformation.  相似文献   

13.
Central Alborz Metallogenic Belt is a major mineral province of northern Iran placed at the northern margin of the Arabia-Eurasia collision zone. This study aimed to at recognition the affiliation between reverse/thrust faults and Pb-Zn carbonate-hosted mineral deposition using fractal modeling. Thrusting is the major mechanism of faulting in this region in terms of length, frequency and density. The carbonate-hosted Pb and Zn occurrence/deposit were classified using the concentration-number fractal method. All faults then are categorized based on fault density, and concentration-area fractal methods are utilized for the thrust faults. According to our analysis, main fault density zones are situated at the central and western parts of the Alborz Mountains. Relationship among the major fault density zones and the Pb-Zn carbonate-hosted occurrences/deposits using logratio matrix reveals that there is a proper connection between reverse/thrust faults and the Zn-Pb carbonate-hosted occurrences/deposits. Moreover, the results were controlled by four ore deposits/prospects in this region which shows high-grade ores directly relate to faults especially reverse/thrust faults based on their distribution. This research indicates that this method can be used for other various ore deposit types that have been distributed by faulting.  相似文献   

14.
张致伟  周龙泉  程万正  阮祥  梁明剑 《地球科学》2015,40(10):1710-1722
为研究2013年4月20日芦山Mw6.6地震的发震构造及孕震机理, 基于4月20日—6月1日地震序列中114次M≥3.0余震震源机制解, 深入分析了余震震源机制及震源区应力场的时空分布特征, 获得的主要认识如下: (1)芦山M≥3.0余震以逆冲型为主, 走滑型次之, 正断型最少, 震源机制P轴方位一致性较好, 以近NWW-SEE为优势方向, 倾角分布在0~30°, 表明余震活动主要受龙门山断裂所在的区域应力场控制; (2)芦山余震区压应力S1方位存在明显的局部空间分区差异, 以主震震中为界, 余震区南边S1方向总体呈NWW方向, 而余震区北边S1方向表现出由NW经EW向NE的逆时针旋转, 可能反映了余震区北边发震断层错动以逆冲为主兼有一定的走滑分量; (3)压应力S1方位随时间的变化不明显, 呈近NWW方向, 但其倾角逐渐变水平, 应力张量方差逐渐变大, 震源机制错动类型始终以逆冲为主, 随时间变的相对紊乱, 反映了震源区应力场随时间的调整变化特性; (4)深度剖面结果显示压应力方位与发震断层走向的夹角在80°~120°, 即近乎垂直, 震源断层面向NW倾斜, 芦山余震活动受控于近垂直发震断裂的挤压作用, 属于典型的逆冲断层.   相似文献   

15.
A shallow M6.4 inland earthquake occurred on 26 July 2003 in the northern part of Miyagi Prefecture, northeastern Japan. This earthquake was a typical inland thrust earthquake, a type that is common in NE Japan. We obtained a detailed seismic velocity structure in the focal area of this earthquake by the double-difference tomography method. Arrival-time data came from temporary seismic stations deployed above the mainshock fault plane. Both the P-wave and S-wave velocities in the hanging wall were lower than those in the footwall. Aftershocks were aligned along a zone where the seismic velocity changes rapidly. This is consistent with the interpretation that the 2003 northern Miyagi earthquake occurred along a fault that acted as a normal fault in the Miocene and has been reactivated as a reverse fault under the present compressional stress regime. The large slip area by the main shock rupture (asperity) corresponds to an area with relatively high P- and S-wave velocities. A zone with low Vp/Vs was detected along the aftershock area. One of the possible causes of this low-Vp/Vs zone is the existence of high-aspect-ratio pores that contain water. Hypocenters of the main shock, largest foreshock, and largest aftershock are also located within the low-Vp/Vs zone.  相似文献   

16.
阿尔金断裂带东段地区的地质构造特征及其动力学机制一直是地学工作者关注的焦点。近年来小震资料越来越多应用到活动断裂空间展布、深浅构造分析及动力学机制研究领域。本文应用双差定位法获得研究区域2008~2017年间6013次地震事件的精确定位数据,通过多条小震深度剖面清晰刻画出断裂系统的空间展布形态。综合石油地震剖面、人工地震宽角反射/折射剖面、人工地震深反射剖面,充分利用小震精确定位信息以及浅表活动构造研究成果,建立研究区断裂系统的深浅部构造模型。研究区莫霍面由北往南逐渐加深,存在三处断错,呈阶梯状展布,地壳内存在一条厚约10km的低速层,在该层以上为地震多发区,断裂系统总体呈"Y"字型,上部为一系列叠瓦状逆冲断裂,造成祁连山的隆升,向下并入一条主干断层。最后探讨了青藏高原东北缘地区构造运动的动力学机制,亚洲板块俯冲至祁连山前,上地壳以逆冲推覆构造模式造成上地壳增厚现象,而中下地壳主要为亚洲岩石圈地幔下插,上地幔的拖曳作用下发生流动引起地壳增厚,上下地壳整体增厚。  相似文献   

17.
Three magnitude >6 earthquakes struck Qaidam, Qinghai province, China, in November 10th 2008, August 28th and 31st 2009 respectively. The Zongwulongshan fault has often been designated as the active seismogenic structure, although it is at odd with the data. Our continuous GPS station (CGPS), the Xiao Qaidam station, located in the north of the Qaidam basin, is less than 30 km to the southwest of the 2008 earthquake. This CGPS station recorded the near field co-seismic deformation. Here we analyzed the co-seismic dislocation based on the GPS time series and the rupture processes from focal mechanism for the three earthquakes. The aftershocks were relocated to constrain the spatial characteristics of the 2008 and 2009 Qaidam earthquakes. Field geological and geomorphological investigation and interpretation of satellite images show that the Xitieshan fault and Zongwulongshan fault were activated as left lateral thrust during the late Quaternary. Evidence of folding can also be identified. Integrated analyses based on our data and the regional tectonic environment show that the Xitieshan fault is the fault responsible for the 2008 Qaidam earthquake, which is a low dip angle thrust with left lateral strike slip. The Zongwulongshan fault is the seismogenic fault of the 2009 earthquakes, which is a south dipping back thrust of the northern marginal thrust system of the Qaidam basin. Folding takes a significant part of the deformation in the northern marginal thrust system of the Qaidam basin, dominating the contemporary structure style of the northern margin of the Qaidam basin and Qilianshan tectonic system. In this region, this fault and fold system dominates the earthquake activities with frequent small magnitude earthquakes.  相似文献   

18.
Aftershocks of the September 16, 1978 Tabas earthquake located from close-in observations made during a four-week fielding of temporary stations have been analyzed for the purpose of delineating detailed source geometry of the 1978 earthquake. Spatial distribution of aftershocks and their composite focal mechanism suggest that the geometry of faulting is far from planar. Aftershocks define two prominent alignment. The southern alignment strikes E-W to WNW-ESE, whereas the northern alignment strikes in a N-S to NNW-SSE direction with an abrupt change of nearly 55–60 degrees near 33.4°N latitude. Both field observations of surface faulting pattern and systematic variation of principal directions of stress axes computed from aftershock focal mechanisms are consistent with the upthrusting and imbrication of a wedge shaped crustal block with the wedge angle of about 120 degrees. Both geological and seismological evidence suggest that the deformed zone is truncated at the southern edge by preexisting E-W fault structures. New observations may provide a partial answer to the unexplained farfield asymmetry of the long period Rayleigh wave radiation pattern recently observed for the mainshock across IDA network.  相似文献   

19.
We present a comprehensive study of the recent and active tectonics of the external part of the Northern Apennines (Italy) by using morphotectonic, geological–structural, and stratigraphic analysis, compared with the current seismicity of the region. This analysis suggests that the external part of the Northern Apennines is characterised by presence of three major systems of Quaternary compressive structures corresponding to (1) the Apenninic watershed, (2) the Apennines–Po Plain margin (pede-Apenninic thrust front), and (3) the Emilia, Ferrara, and Adriatic Fold systems buried below the Po Plain. Geological data and interpreted seismic sections indicate a roughly N–S Quaternary deformation direction, with rates <2.5 mm/year. The shortening decreased since the Pliocene, when our data indicate compression in a NNW–SSE direction and rates up to 7 mm/year. The trend and kinematics of the structures affecting the Apennines–Po Plain margin and the Po Plain subsoil fit well the pattern of the current seismicity of the area, as well as recent GPS and geodetic levelling data, pointing to a current activity of these thrust systems controlled by an overall compressive stress field. Close to the Apenninic watershed, earthquake focal mechanisms indicate that shallow extension is associated to deep compression. The extensional events may be related to a secondary extensional stress field developing on the hangingwall of the thrust system affecting the Apenninic watershed; alternatively, this thrust system may have been recently deactivated and overprinted by active normal faulting. Deeper compressive events are related to the activity of both a major basement thrust that connects at surface with the pede-Apenninic thrust front and a major Moho structure.  相似文献   

20.
A major earthquake occurred in the Straits of Messina in Southern Italy on December 28, 1908. The shock became known in literature as the “Messina earthquake”. The present paper deals mainly with a re-interpretation of the source mechanism of this shock using modern interpretation techniques. The following parameters are discussed: Epicentre, hypocentre, origin-time, macroseismic intensity, body and surface wave magnitudes, fault-plane solution, seismic moments derived from body and surface waves, residual displacements and tsunami values.The parameters are compared with the tectonic setting of Southern Italy. As a result of the large magnitude (M = 7) and the 30 km long fault extension of this shock, the Messina earthquake reflects the large scale tectonics of Southern Italy more significantly than any other earthquake from which seismograms exist. The focal mechanism studies show a good agreement between the orientation of the shear-plane of the earthquake and the tectonic features of a fault-line which is known from geological data, the so-called Comiso-Catania-Messina-S. Eufemia fault. The rupture of the shallow earthquake was associated with normal faulting. According to the normal faulting mechanism, the earthquake resulted from tensional forces acting approximately perpendicular to the strike direction of the Straits of Messina.Geodetic measurements which were performed shortly before and after the earthquake indicate an apparent asymmetry in the volumes of uplift and subsidence. It is suggestive that there exists a strong net subsidence of material displaced with the earthquake faulting. The normal faulting mechanism of the Messina earthquake is in tectonic accordance with the uprise of olivine basalt in the volcanism observed at Etna. However, the normal faulting is contrary to the postulation of a subducting oceanic plate giving rise to the Calabrian-Sicilian arc-like feature, as this hypothesis would require mainly a compressional zone in the region of the Straits of Messina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号