首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper the temporal behaviour of soil moisture is modelled and statistically characterized by use of the zero‐dimensional model for soil moisture dynamics and the rectangular pulses Poisson process model for rainfall forcing. The mean, covariance and spectral density function of soil moisture (both instantaneous and locally averaged cases) are analytically derived to evaluate its sensitivity to the model parameters. Finally, the probability density function of soil moisture is derived to evaluate the effect of rainfall forcing. All the model parameters used have been tuned to the Monsoon '90 data. Results can be summarized as follows. (1) Only the soil moisture model parameters (η and nZr) are found to affect the autocorrelation function in a distinguishable manner. On the other hand, both the rainfall model parameter (θ) and the effective soil depth (nZr) are found to be of impact to the soil moisture spectrum. However, as the smoothing (or damping) effect of soil is so dominant, about ±20% variation of one parameter seems not to affect significantly the second‐order statistics of soil moisture. (2) More difference can be found by applying a longer averaging time, which is found to obviously decrease the variance but increase the correlation even though no overlapping between neighbouring soil moisture data was allowed. (3) Among rainfall model parameters, the arrival rate (λ) was found to be most important for the soil moisture evolution. When increasing the arrival rate of rainfall, the histogram of soil moisture shifts its peak to a certain value as well as becomes more concentrated around the peak. However, by decreasing the arrival rate of rainfall, a much smaller (almost to zero) mean value of soil moisture was estimated, even though the total volume of rainfall remained constant. This indicates that desertification may take place without decreasing the total volume of rainfall. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Thinning of semi-arid forests to reduce wildfire risk is believed to improve forest health by increasing soil moisture. Increased snowpack, reduced transpiration and reduced rainfall interception are frequently cited mechanisms by which reduced canopy density may increase soil moisture. However, the relative importance of these factors has not been rigorously evaluated in field studies. We measured snow depth, snow water equivalent (SWE) and the spatial and temporal variation in soil moisture at four experimental paired treatment-control thinning sites in high elevation ponderosa pine forest northern Arizona, USA. We compared snow and soil moisture measurements with forest structure metrics derived from aerial imagery and 3-dimensional lidar data to determine the relationship between vegetation structure, snow and soil moisture throughout the annual hydrologic cycle. Soil moisture was consistently and significantly higher in thinned forest plots, even though the treatments were performed 8–11 years before this study. However, we did not find evidence that SWE was higher in thinned forests across a range of snow conditions. Regression tree analysis of soil moisture and vegetation structure data provided some evidence that localized differences in transpiration and interception of precipitation influence the spatial pattern of soil moisture at points in the annual hydrologic cycle when the system is becoming increasingly water limited. However, vegetation structure explained a relatively low amount of the spatial variance (R2 < 0.23) in soil moisture. Continuous measurements of soil moisture in depth profiles showed stronger attenuation of soil moisture peaks in thinned sites, suggesting differences in infiltration dynamics may explain the difference in soil moisture between treatments as opposed to overlying vegetation alone. Our results show limited support for commonly cited relationships between vegetation structure, snow and soil moisture and indicate that future research is needed to understand how reduction in tree density alters soil hydraulic properties.  相似文献   

3.
The point measurement of soil properties allows to explain and simulate plot scale hydrological processes. An intensive sampling was carried out at the surface of an unsaturated clay soil to measure, on two adjacent plots of 4 × 11 m2 and two different dates (May 2007 and February–March 2008), dry soil bulk density, ρb, and antecedent soil water content, θi, at 88 points. Field‐saturated soil hydraulic conductivity, Kfs, was also measured at 176 points by the transient Simplified Falling Head technique to determine the soil water permeability characteristics at the beginning of a possible rainfall event yielding measurable runoff. The ρb values did not differ significantly between the two dates, but wetter soil conditions (by 31%) and lower conductivities (1.95 times) were detected on the second date as compared with the first one. Significantly higher (by a factor of 1.8) Kfs values were obtained with the 0.30‐m‐diameter ring compared with the 0.15‐m‐diameter ring. A high Kfs (> 100 mm h?1) was generally obtained for low θi values (< 0.3 m3m?3), whereas a high θi yielded an increased percentage of low Kfs data (1–100 mm h?1). The median of Kfs for each plot/sampling date combination was not lower than 600 mm h?1, and rainfall intensities rarely exceeded 100 mm h?1 at the site. The occurrence of runoff at the base of the plot needs a substantial reduction of the surface soil permeability characteristics during the event, probably promoted by a higher water content than the one of this investigation (saturation degree = 0.44–0.62) and some soil compaction due to rainfall impact. An intensive soil sampling reduces the risk of an erroneous interpretation of hydrological processes. In an unstable clay soil, changes in Kfs during the event seem to have a noticeable effect on runoff generation, and they should be considered for modeling hydrological processes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
The Chinese Loess Plateau (CLP) is a unique Critical Zone with deep loess deposits, where soil moisture is primarily replenished by seasonal monsoon rainfall. However, the role of vegetation, coupled with complex topography, on rainwater infiltration on the CLP, especially after long‐term revegetation for controlling erosion, is inadequately quantified. Over the growing season of 2016, we monitored soil moisture at the 30‐min interval at 5 depths (10, 20, 40, 60, and 100 cm) in an afforested catchment and a nearby catchment with natural regrowth of grasses. Two monitoring sites were established in each catchment, one in the downhill gully and the other in the uphill slope. We found that vegetation, topography, and rainfall attributes together determined rainwater infiltration and soil moisture replenishment. An accumulated rainfall amount of 9 mm was required to trigger soil moisture response at 10‐cm depth at the 2 grassland sites and the forestland uphill‐slope site whereas 14 mm of rainfall was required for the forestland gully site covered by dense undergrowth and trees. Rainfall events with larger sums and higher peak intensities permitted rainwater infiltration to deeper soil depths. However, no rain recharged soil moisture to 100‐cm depth during the monitoring period. The forestland uphill‐slope site showed the deepest wetting depth (up to 60‐cm depth), fastest wetting‐front velocity (up to 4 cm/hr below 10‐cm depth), and the most significant soil moisture increase (up to 15% cm 3 cm?3 increase at 10‐cm depth) after rainfall in the growing season. The grassland gully site had the highest soil water storage, whereas soil moisture was depleted the most at the forestland gully site. Findings of this study reveal the transient dynamics of soil moisture after rainfall on the CLP, which signifies the role of revegetation on rainwater infiltration in the loess Critical Zone.  相似文献   

5.
Precipitation is often the sole source of water replenishment in arid and semi‐arid areas and, thus, plays a pertinent role in sustaining desert ecosystems. Revegetation over 40 years using mainly Artemisia ordosica and Caragana korshinskii at Shapotou Desert Experimental Research Station near Lanzhou, China, has established a dwarf‐shrub and microbiotic soil crust cover on the stabilized sand dunes. The redistribution of infiltrated moisture through percolation, root extraction, and evapotranspiration pathways was investigated. Three sets of time‐domain reflectometry (TDR) probes were inserted horizontally at 5, 10, 15, 20, 30 and 40 cm depths below the ground surface in a soil pit. The three sets of TDR probes were installed in dwarf‐shrub sites of A. ordosica and C. korshinskii community with and without a microbiotic soil crust cover, and an additional set was placed in a bare sand dune area that had neither vegetation nor a microbiotic soil crust present. Volumetric soil moisture content was recorded at hourly intervals and used in the assessment of infiltration for the different surface covers. Infiltration varied greatly, from 7·5 cm to more than 45 cm, depending upon rainfall quantity and soil surface conditions. In the shrub community area without microbiotic soil crust cover, infiltration increased due to preferential flow associated with root tunnels. The microbiotic soil crust cover had a significant negative influence on the infiltration for small rainfall events (~10 mm), restricting the infiltration depth to less than 20 cm and increasing soil moisture content just beneath the soil profile of 10 cm, whereas it was not as strong or clear for larger rainfall events (~60 mm). For small rainfall events, the wetting front depth for the three kinds of surface cover was as follows: shrub community without microbiotic soil crust > bare area > shrub community with microbiotic soil crust. In contrast, for large rainfall events, infiltration was similar in shrub communities with and without microbiotic soil crust cover, but significantly higher than measured in the bare area. Soil water extraction by roots associated with evapotranspiration restricted the wetting front penetration after 1 to 3 h of rainfall. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Seasonal changes over 2 years (2004–2006) in soil moisture content (θv) of frozen alpine frost meadow soils of the Qinghai‐Tibet plateau permafrost region under three different levels of vegetation cover were investigated. Vegetation cover and air temperature changes had significant effects (synergistic effect) on θv and its distribution in the soil profile. During periods of soil freezing or thawing, the less the vegetation cover, the quicker the temperature drop or rise of soil water, and the shorter the duration of the soil water freeze–thaw response in the active soil layer. Under 30% and 65% vegetation cover the amplitude of variation in θv during the freezing period was 20–26% greater than that under 93% cover, while during the thawing period, it was 1·5‐ to 40·5‐fold greater. The freezing temperature of the surface soil layer, fTs, was 1·6 °C lower under 30% vegetation cover than under 93% vegetation cover. Changes in vegetation cover of the alpine frost meadow affected θv and its distribution, as well as the relationship between θv and soil temperature (Ts). As vegetation cover decreased, soil water circulation in the active layer increased, and the response to temperature of the water distribution across the soil profile was heightened. The quantity of transitional soil phase water at different depths significantly increased as vegetation cover decreased. The influence of vegetation cover and soil temperature distribution led to a relatively dry soil layer in the middle of the profile (0·70–0·80 m) under high vegetation cover. Alpine meadow θv and its pattern of distribution in the permafrost region were the result of the synergistic effect of air temperature and vegetation cover. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Understanding the dynamics of spatial and temporal variability of soil moisture at the regional scale and daily interval, respectively, has important implications for remote sensing calibration and validation missions as well as environmental modelling applications. The spatial and temporal variability of soil moisture was investigated in an agriculturally dominated region using an in‐situ soil moisture network located in central Saskatchewan, Canada. The study site evaluated three depths (5, 20, 50 cm) through 139 days producing a high spatial and temporal resolution data set, which were analysed using statistical and geostatistical means. Processes affecting standard deviation at the 5‐cm depth were different from the 20‐cm and 50‐cm depths. Deeper soil measurements were well correlated through the field season. Further analysis demonstrated that lag time to maximum correlation between soil depths increased through the field season. Temporal autocorrelation was approximately twice as long at depth compared to surface soil moisture as measured by the e‐folding frequency. Spatial correlation was highest under wet conditions caused by uniform rainfall events with low coefficient of variation. Overall soil moisture spatial and temporal variability was explained well by rainfall events and antecedent soil moisture conditions throughout the Kenaston soil moisture network. It is expected that the results of this study will support future remote sensing calibration and validation missions, data assimilation, as well as hydrologic model parameterization for use in agricultural regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The prediction of soil moisture content, θ, as a function of depth, z, and time, t, is of fundamental importance for applications in many hydrological processes. The main objective of this paper is to provide an approach to solve this problem at a local scale in soils with vegetation. The matching of soil moisture vertical profiles observed under natural conditions in grassy plots and their simulations by a conceptual model is presented. Experimental measurements were performed in a plot located in Central Italy, complete with hydrometeorological sensors specifically set up and equipped with a time domain reflectometry system providing the water content, θe(z, t). A conceptual model framework earlier proposed for two‐layered soil vertical profiles was modified and adopted for simulations. The changes concern the incorporation of evapotranspiration, the reduction of the original model for applications also to homogeneous soil vertical profiles, and a correction for the differences existing between assumed and observed initial moisture contents. In the model calibration, it was found that the effects of vegetation could be represented adequately by a fictitious soil vertical profile with a more permeable upper layer of saturated hydraulic conductivity, Ks, independent of time. Then, for the validation events, the model simulations in the stages of both infiltration and redistribution/evapotranspiration reproduced appropriately θe(z, t) with typical values of root mean square error in the range 0.0017–0.0657. Similar results were obtained by applying the modified two‐layered model for simulations of experimental data observed in three other plots located in Northern Italy and Germany. For all four vegetated sites, the two‐layer profile better matched the experimental data than the assumption of a homogeneous profile. Thus, the conceptual approach based on a two‐layered scheme for representing θ(z, t) in soils with vegetation appears to be appropriate for many hydrological applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Simulation of soil moisture content requires effective soil hydraulic parameters that are valid at the modelling scale. This study investigates how these parameters can be estimated by inverse modelling using soil moisture measurements at 25 locations at three different depths (at the surface, at 30 and 60 cm depth) on an 80 by 20 m hillslope. The study presents two global sensitivity analyses to investigate the sensitivity in simulated soil moisture content of the different hydraulic parameters used in a one‐dimensional unsaturated zone model based on Richards' equation. For estimation of the effective parameters the shuffled complex evolution algorithm is applied. These estimated parameters are compared to their measured laboratory and in situ equivalents. Soil hydraulic functions were estimated in the laboratory on 100 cm3 undisturbed soil cores collected at 115 locations situated in two horizons in three profile pits along the hillslope. Furthermore, in situ field saturated hydraulic conductivity was estimated at 120 locations using single‐ring pressure infiltrometer measurements. The sensitivity analysis of 13 soil physical parameters (saturated hydraulic conductivity (Ks), saturated moisture content (θs), residual moisture content (θr), inverse of the air‐entry value (α), van Genuchten shape parameter (n), Averjanov shape parameter (N) for both horizons, and depth (d) from surface to B horizon) in a two‐layer single column model showed that the parameter N is the least sensitive parameter. Ks of both horizons, θs of the A horizon and d were found to be the most sensitive parameters. Distributions over all locations of the effective parameters and the distributions of the estimated soil physical parameters from the undisturbed soil samples and the single‐ring pressure infiltrometer estimates were found significantly different at a 5% level for all parameters except for α of the A horizon and Ks and θs of the B horizon. Different reasons are discussed to explain these large differences. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
Probabilistic water balance modelling provides a useful framework for investigating the interactions between soil, vegetation, and the atmosphere. It has been used to estimate temporal soil moisture dynamics and ecohydrological responses at a point. This study combines a nonlinear rainfall–runoff theory with probabilistic water balance model to represent varied source area runoff as a function of rainfall depth and a runoff coefficient at hillslope scale. Analytical solutions of the soil‐moisture probability density function and average water balance model are then developed. Based on a sensitivity analysis of soil moisture dynamics, we show that when varied source area runoff is incorporated, mean soil moisture is always lower and total runoff higher, compared with the original probabilistic water balance model. The increased runoff from the inclusion of varied source area runoff is mainly because of a reduction in leakage when the index of dryness is less than one and evapotranspiration when the index of dryness is greater than one. Inclusion of varied source area runoff in the model means that the actual evapotranspiration is limited by less available water (i.e. water limit), which is stricter than Budyko’s and Milly’s water limit. Application of the model to a catchment located in Western Australia showed that the method can predict annual value of actual evapotranspiration and streamflow accurately. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Flume experiments simulating concentrated runoff were carried out on remolded silt loam soil samples (0·36 × 0·09 × 0·09 m3) to measure the effect of rainfall‐induced soil consolidation and soil surface sealing on soil erosion by concentrated flow for loess‐derived soils and to establish a relationship between soil erodibility and soil bulk density. Soil consolidation and sealing were simulated by successive simulated rainfall events (0–600 mm of cumulative rainfall) alternated by periods of drying. Soil detachment measurements were repeated for four different soil moisture contents (0·04, 0·14, 0·20 and 0·31 g g?1). Whereas no effect of soil consolidation and sealing is observed for critical flow shear stress (τcr), soil erodibility (Kc) decreases exponentially with increasing cumulative rainfall depth. The erosion‐reducing effect of soil consolidation and sealing decreases with a decreasing soil moisture content prior to erosion due to slaking effects occurring during rapid wetting of the dry topsoil. After about 100 mm of rainfall, Kc attains its minimum value for all moisture conditions, corresponding to a reduction of about 70% compared with the initial Kc value for the moist soil samples and only a 10% reduction for the driest soil samples. The relationship estimating relative Kc values from soil moisture content and cumulative rainfall depth predicts Kc values measured on a gradually consolidating cropland field in the Belgian Loess Belt reasonably well (MEF = 0·54). Kc is also shown to decrease linearly with increasing soil bulk density for all moisture treatments, suggesting that the compaction of thalwegs where concentrated flow erosion often occurs might be an alternative soil erosion control measure in addition to grassed waterways and double drilling. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
This article investigates the soil moisture dynamics within two catchments (Stanley and Krui) in the Goulburn River in NSW during a 3‐year period (2005–2007) using the HYDRUS‐1D soil water model. Sensitivity analyses indicated that soil type, and leaf area index were the key parameters affecting model performance. The model was satisfactorily calibrated on the Stanley microcatchment sites with a single point rainfall record from this microcatchment for both surface 30 cm and full‐profile soil moisture measurements. Good correlations were obtained between observed and simulated soil water storage when calibrations for one site were applied to the other sites. We extended the predictions of soil moisture to a larger spatial scale using the calibrated soil and vegetation parameters to the sites in the Krui catchment where soil moisture measurement sites were up to 30 km distant from Stanley. Similarly good results show that it is possible to use a calibrated soil moisture model with measurements at a single site to extrapolate the soil moisture to other sites for a catchment with an area of up to 1000 km2 given similar soils and vegetation and local rainfall data. Site predictions were effectively improved by our simple data assimilation method using only a few sample data collected from the site. This article demonstrates the potential usefulness of continuous time, point‐scale soil moisture data (typical of that measured by permanently installed TDR probes) and simulations for predicting the soil wetness status over a catchment of significant size (up to 1000 km2). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Relationships between gravimetric soil moisture content (w) and matric potential (ϕ), and between volumetric soil moisture content (θv) and pressure head (h) were approximated for the unsaturated zone on Long Island, New York. Soil samples were collected from two sites using a hand auger. The soil moisture content was determined using the filter‐paper (wf) and gravimetric (w) methods, respectively. The wf was then used in an empirical equation to estimate ϕm. Each set of ϕm and w was combined with a straight‐line empirical model to obtain a wm) relationship. Soil ϕm was converted to h, and w to the volumetric moisture content θv, in order to produce a θv(h) curve. Graphical and statistical comparison showed that the resulting θv(h) curves fell within one order of magnitude of similar curves generated by a more sophisticated non‐linear model developed previously. The simplicity and low cost of the filter‐paper approach described in this study recommends it for preliminary studies of hydraulic properties in the unsaturated zone. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
Soil moisture is highly variable both spatially and temporally. It is widely recognized that improving the knowledge and understanding of soil moisture and the processes underpinning its spatial and temporal distribution is critical. This paper addresses the relationship between near‐surface and root zone soil moisture, the way in which they vary spatially and temporally, and the effect of sampling design for determining catchment scale soil moisture dynamics. In this study, catchment scale near‐surface (0–50 mm) and root zone (0–300 mm) soil moisture were monitored over a four‐week period. Measurements of near‐surface soil moisture were recorded at various resolutions, and near‐surface and root zone soil moisture data were also monitored continuously within a network of recording sensors. Catchment average near‐surface soil moisture derived from detailed spatial measurements and continuous observations at fixed points were found to be significantly correlated (r2 = 0·96; P = 0·0063; n = 4). Root zone soil moisture was also found to be highly correlated with catchment average near‐surface, continuously monitored (r2 = 0·81; P < 0·0001; n = 26) and with detailed spatial measurements of near‐surface soil moisture (r2 = 0·84). The weaker relationship observed between near‐surface and root zone soil moisture is considered to be caused by the different responses to rainfall and the different factors controlling soil moisture for the soil depths of 0–50 mm and 0–300 mm. Aspect is considered to be the main factor influencing the spatial and temporal distribution of near‐surface soil moisture, while topography and soil type are considered important for root zone soil moisture. The ability of a limited number of monitoring stations to provide accurate estimates of catchment scale average soil moisture for both near‐surface and root zone is thus demonstrated, as opposed to high resolution spatial measurements. Similarly, the use of near‐surface soil moisture measurements to obtain a reliable estimate of deeper soil moisture levels at the small catchment scale was demonstrated. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Surface hydrological behaviour is important in drylands because it affects the distribution of soil moisture and vegetation and the hydrological functioning of slopes and catchments. Microplot scale run‐off can be relatively easily measured, i.e. by rainfall simulations. However, slope or catchment run‐off cannot be deduced from microplots, requiring long‐time monitoring, because run‐off coefficients decrease with increasing drainage area. Therefore, to determine the slope length covered by run‐off (run‐off length) is crucial to connect scales. Biological soil crusts (BSCs) are good model systems, and their hydrology at slope scale is insufficiently known. This study provides run‐off lengths from BSCs, by field factorial experiments using rainfall simulation, including two BSC types, three rain types, three antecedent soil moistures and four plot lengths. Data were analysed by generalized linear modelling, including vascular plant cover as covariates. Results were the following: (i) the real contributing area is almost always much smaller than the topographical contributing area; (ii) the BSC type is key to controlling run‐off; run‐off length reached 3 m on cyanobacterial crust, but hardly over 1 m on lichen crust; this pattern remained through rain type or soil moisture; (iii) run‐off decreased with BSC development because soil sealing disappears; porosity, biomass and roughness increase and some changes occur in the uppermost soil layer; and (iv) run‐off flow increased with both rain type and soil moisture but run‐off coefficient only with soil moisture (as larger rains increased both run‐off and infiltration); vascular plant cover had a slight effect on run‐off because it was low and random. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Hydrological processes in mountain headwater basins are changing as climate and vegetation change. Interactions between hydrological processes and subalpine forest ecological function are important to mountain water supplies due to their control on evapotranspiration (ET). Improved understanding of the sensitivity of these interactions to seasonal and interannual changes in snowmelt and summer rainfall is needed as these interactions can impact forest growth, succession, health, and susceptibility to wildfire. To better understand this sensitivity, this research examined ET for a sub-alpine forest in the Canadian Rockies over two contrasting growing seasons and quantified the contribution of transpiration (T) from the younger tree population to overall stand ET. The younger population was focused on to permit examination of trees that have grown under the effect of recent climate change and will contribute to treeline migration, and subalpine forest densification and succession. Research sites were located at Fortress Mountain Research Basin, Kananaskis, Alberta, where the subalpine forest examined is composed of Abies lasiocarpa (Subalpine fir) and Picea engelmannii (Engelmann spruce). Seasonal changes in water availability from snowmelt, precipitation, soil moisture reserves yielded stark differences in T and ET between 2016 and 2017. ET was higher in the drier year (2017), which had late snowmelt and lower summer rainfall than in the wetter year (2016) that had lower snowmelt and a rainy summer, highlighting the importance of spring snowmelt recharge of soil moisture. However, stand T of the younger trees (73% of forest population) was greater (64 mm) in 2016 (275 mm summer rainfall) than 2017 (39 mm T, 147 mm summer rainfall), and appears to be sensitive to soil moisture decreases in fall, which are largely a function of summer period rainfall. Relationships between subalpine forest water use and different growing season and antecedent (snowmelt period) hydrological conditions clarify the interactions between forest water use and alpine hydrology, which can lead to better anticipation of the hydrological response of subalpine forest-dominated basins to climate variability and change.  相似文献   

17.
Abstract

Soil water content (θ) and saturated hydraulic conductivity (Ks) vary in space. The objective of this study was to examine the effects of initial soil water content (θi) and Ks variability on runoff simulations using the LImburg Soil Erosion Model (LISEM) in a small watershed in the Chinese Loess Plateau, based on model parameters derived from intensive measurements. The results showed that the total discharge (TD) and peak discharge (PD) were underestimated when the variability of θi and Ks was partially considered or completely ignored compared with those when the variability was fully considered. Time to peak (TP) was less affected by the spatial variability compared to TD and PD. Except for TP in some cases, significant differences were found in all hydrological variables (TD, PD and TP) between the cases in which spatial variability of θi or Ks was fully considered and those in which spatial variability was partially considered or completely ignored. Furthermore, runoff simulations were affected more strongly by Ks variability than by θi variability. The degree of spatial variability influences on runoff simulations was related to the rainfall pattern and θi. Greater rainfall depth and instantaneous rainfall intensity corresponded to a smaller influence of the spatial variability. Stronger effects of the θi variability on runoff simulation were found in wetter soils, while stronger effects of the Ks variability were found in drier soils. For accurate runoff simulation, the θi variability can be completely ignored in cases of a 1-h duration storm with a return period greater than 10 years, while Ks variability should be fully considered even in the case of a 1-h duration storm with a return period of 20 years.
Editor D. Koutsoyiannis; Associate editor A. Fiori  相似文献   

18.
Soil moisture is crucial to vegetation restoration in karst areas, and climate factors and vegetation restoration are key factors affecting changes in soil moisture. However, there is still much controversy over the long-term changes in soil moisture during vegetation restoration. In order to reveal the changes in soil moisture during vegetation restoration, we conducted long-term positioning monitoring of soil moisture at 0–10 and 10–20 cm on secondary forests sample plot (SF, tree land) and shrubs sample plot (SH, shrub land) in karst areas from 2013 to 2020. The results showed that the aboveground biomass of SF and SH increased by 50% and 240%, respectively, and the soil moisture of the SF and SH showed an increasing trend. When shrubs are restored to trees in karst areas, the soil moisture becomes more stable. However, the correlation coefficients (R2) between the annual rainfall and the annual average soil moisture of SF and SH are 0.84 and 0.55, respectively, indicating that soil moistures in tree land are more affected by rainfall. The soil moisture of shrubs and trees are relatively low during the months of alternating rainy and dry seasons. Rainfall has a very significant impact on the soil moisture of tree land, while air temperature and wind speed have a significant impact on the soil moisture of tree land, but the soil moistures of shrub land are very significantly affected by rainfall and relative humidity. Therefore, during the process of vegetation restoration from shrubs to trees, the main meteorological factors that affect soil moisture changes will change. The results are important for understanding the hydrological processes in the ecological restoration process of different vegetation types in karst areas.  相似文献   

19.
In the semi‐arid western United States, water availability plays a defining role in land use. Soil moisture, vegetation, and microtopography are key variables in the hydrologic function of these ecosystems. Previous research has not addressed the influence of site‐specific aspect, vegetation, or slope gradient on terracette soil moisture patterns in semi‐arid rangelands. Therefore, the objectives of this study were to: (1) assess the influence of terracette site aspect, vegetation cover, and slope on soil moisture; (2) conceptualize conditions at the hillslope scale given terracette morphology; and (3) estimate the extent of terracettes at a regional scale. The Simultaneous Heat and Water (SHAW) model was used to simulate soil water dynamics of terracettes given variations in site conditions. These results were coupled with time‐of‐flight laser scans to quantify terracette bench and riser percent‐area, and statewide assessments of terracette extent using digital orthoimagery and a geographical information system (GIS). Modeling results indicated site aspect had minimal influence (±0.005 m3 m?3) on terracette soil moisture. Vegetation, represented as leaf area index (LAI), had the single‐most influential effect on terracette volumetric water content (θ v) demonstrated by an inverse relationship of LAI to mean terracette hillslope θ v; and slope increases of ≥15% on northern azimuths increased mean θ v which contrasted with southern azimuths for similar slope increases. Laser scanning results indicated bench width and riser length could be estimated from mean site slope (R 2 = 0.82 risers and R 2 = 0.93 benches). Aerial orthoimagery/GIS assessments estimated >159 000 ha of terracettes throughout the State of Idaho, with >41 000 ha (~26%) occurring on lands managed as grazing allotments. These findings provide an increased understanding of rangeland hydrologic processes as influenced by cattle density, vegetation, and terracettes which can aide land managers in their selection and application of best management practices on these lands. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
Often the soil hydraulic parameters are obtained by the inversion of measured data (e.g. soil moisture, pressure head, and cumulative infiltration, etc.). However, the inverse problem in unsaturated zone is ill‐posed due to various reasons, and hence the parameters become non‐unique. The presence of multiple soil layers brings the additional complexities in the inverse modelling. The generalized likelihood uncertainty estimate (GLUE) is a useful approach to estimate the parameters and their uncertainty when dealing with soil moisture dynamics which is a highly non‐linear problem. Because the estimated parameters depend on the modelling scale, inverse modelling carried out on laboratory data and field data may provide independent estimates. The objective of this paper is to compare the parameters and their uncertainty estimated through experiments in the laboratory and in the field and to assess which of the soil hydraulic parameters are independent of the experiment. The first two layers in the field site are characterized by Loamy sand and Loamy. The mean soil moisture and pressure head at three depths are measured with an interval of half hour for a period of 1 week using the evaporation method for the laboratory experiment, whereas soil moisture at three different depths (60, 110, and 200 cm) is measured with an interval of 1 h for 2 years for the field experiment. A one‐dimensional soil moisture model on the basis of the finite difference method was used. The calibration and validation are approximately for 1 year each. The model performance was found to be good with root mean square error (RMSE) varying from 2 to 4 cm3 cm?3. It is found from the two experiments that mean and uncertainty in the saturated soil moisture (θs) and shape parameter (n) of van Genuchten equations are similar for both the soil types. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号