首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Climate change and land use and cover change (LUCC) have had great impacts on watershed hydrological processes. Although previous studies have focused on quantitative assessment of the impacts of climate change and human activities on decreasing run‐off change, few studies have examined regions that have significant increasing run‐off due to both climate variability and land cover change. We show that annual run‐off had a significant increasing trend from 1956 to 2014 in the U.S. lower Connecticut River Basin. Abrupt change point years of annual run‐off for four subbasins are detected by nonparametric Mann–Kendall–Sneyers test and reconfirmed by the double mass curve. We then divide the study period into 2 subperiods at the abrupt change point year in the early 1970s for each subbasin. The Choudhury–Yang equation based on Budyko hypothesis was used to calculate precipitation and potential evapotranspiration, and landscape elasticities of run‐off. The results show that the difference in mean annual run‐off between 2 subperiods for each subbasin ranged from 102 to 165.6 mm. Climate variations were the primary drivers of increasing run‐off in this region. Quantitative contributions of precipitation and potential evapotranspiration in all subbasins are 106.5% and ?3.6% on average, respectively. However, LUCC contributed both positively and negatively to run‐off: ?18.6%, ?13.3%, and 10.1% and 9.9% for 4 subbasins. This may be attributed to historical LUCC occurring after the abrupt change point in each subbasin. Our results provide critical insight on the hydrological dynamics of north‐east tidal river systems to communities and policymakers engaged in water resources management in this region.  相似文献   

2.
Land‐cover/climate changes and their impacts on hydrological processes are of widespread concern and a great challenge to researchers and policy makers. Kejie Watershed in the Salween River Basin in Yunnan, south‐west China, has been reforested extensively during the past two decades. In terms of climate change, there has been a marked increase in temperature. The impact of these changes on hydrological processes required investigation: hence, this paper assesses aspects of changes in land cover and climate. The response of hydrological processes to land‐cover/climate changes was examined using the Soil and Water Assessment Tool (SWAT) and impacts of single factor, land‐use/climate change on hydrological processes were differentiated. Land‐cover maps revealed extensive reforestation at the expense of grassland, cropland, and barren land. A significant monotonic trend and noticeable changes had occurred in annual temperature over the long term. Long‐term changes in annual rainfall and streamflow were weak; and changes in monthly rainfall (May, June, July, and September) were apparent. Hydrological simulations showed that the impact of climate change on surface water, baseflow, and streamflow was offset by the impact of land‐cover change. Seasonal variation in streamflow was influenced by seasonal variation in rainfall. The earlier onset of monsoon and the variability of rainfall resulted in extreme monthly streamflow. Land‐cover change played a dominant role in mean annual values; seasonal variation in surface water and streamflow was influenced mainly by seasonal variation in rainfall; and land‐cover change played a regulating role in this. Surface water is more sensitive to land‐cover change and climate change: an increase in surface water in September and May due to increased rainfall was offset by a decrease in surface water due to land‐cover change. A decrease in baseflow caused by changes in rainfall and temperature was offset by an increase in baseflow due to land‐cover change. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Variations in streamflows of five tributaries of the Poyang Lake basin, China, because of the influence of human activities and climate change were evaluated using the Australia Water Balance Model and multivariate regression. Results indicated that multiple regression models were appropriate with precipitation, potential evapotranspiration of the current month, and precipitation of the last month as explanatory variables. The NASH coefficient for the Australia Water Balance Model was larger than 0.842, indicating satisfactory simulation of streamflow of the Poyang Lake basin. Comparison indicated that the sensitivity method could not exclude the benchmark‐period human influence, and the human influence on streamflow changes was overestimated. Generally, contributions of human activities and climate change to streamflow changes were 73.2% and 26.8% respectively. However, human‐induced and climate‐induced influences on streamflow were different in different river basins. Specifically, climate change was found to be the major driving factor for the increase of streamflow within the Rao, Xin, and Gan River basins; however, human activity was the principal driving factor for the increase of streamflow of the Xiu River basin and also for the decrease of streamflow of the Fu River basin. Meanwhile, impacts of human activities and climate change on streamflow variations were distinctly different at different temporal scales. At the annual time scale, the increase of streamflow was largely because of climate change and human activities during the 1970s–1990s and the decrease of streamflow during the 2000s. At the seasonal scale, climate change was the main factor behind the increase of streamflow in the spring and summer season. Human activities increase the streamflow in autumn and winter, but decrease the streamflow in spring. At the monthly scale, different influences of climate change and human activities were detected. Climate change was the main factor behind the decrease of streamflow during May to June and human activities behind the decrease of streamflow during February to May. Results of this study can provide a theoretical basis for basin‐scale water resources management under the influence of climate change and human activities. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Climate change has fundamentally altered the water cycle in tropical islands, which is a critical driver of freshwater ecosystems. To examine how changes in streamflow regime have impacted habitat quality for native migratory aquatic species, we present a 50‐year (1967–2016) analysis of hydrologic records in 23 unregulated streams across the five largest Hawaiian Islands. For each stream, flow was separated into direct run‐off and baseflow and high‐ and low‐flow statistics (i.e., Q10 and Q90) with ecologically important hydrologic indices (e.g., frequency of flooding and low flow duration) derived. Using Mann–Kendall tests with a running trend analysis, we determined the persistence of streamflow trends through time. We analysed native stream fauna from ~400 sites, sampled from 1992 to 2007, to assess species richness among islands and streams. Declines in streamflow metrics indicated a general drying across the islands. In particular, significant declines in low flow conditions (baseflows), were experienced in 57% of streams, compared with a significant decline in storm flow conditions for 22% of streams. The running trend analysis indicated that many of the significant downward trends were not persistent through time but were only significant if recent decades (1987–2016) were included, with an average decline in baseflow and run‐off of 10.90% and 8.28% per decade, respectively. Streams that supported higher native species diversity were associated with moderate discharge and baseflow index, short duration of low flows, and negligible downward trends in flow. A significant decline in dry season flows (May–October) has led to an increase in the number of no‐flow days in drier areas, indicating that more streams may become intermittent, which has important implications for mauka to makai (mountain to ocean) hydrological connectivity and management of Hawai'i's native migratory freshwater fauna.  相似文献   

5.
Land use/cover (LULC) and climate change are two main factors affecting watershed hydrology. In this paper, individual and combined impacts of LULC and climate change on hydrologic processes were analysed applying the model Soil and Water Assessment Tool in a coastal Alabama watershed in USA. Temporally and spatially downscaled Global Circulation Model outputs predict a slight increase in precipitation in the study area, which is also projected to experience substantial urban growth in the future. Changes in flow frequency and volume in the 2030s (2016–2040) compared to a baseline period (1984–2008) at daily, monthly and annual time scales were explored. A redistribution of daily streamflow is projected when either climate or LULC change was considered. High flows are predicted to increase, while low flows are expected to decrease. Combined change effect results in a more noticeable and uneven distribution of daily streamflow. Monthly average streamflow and surface runoff are projected to increase in spring and winter, but especially in fall. LULC change does not have a significant effect on monthly average streamflow, but the change affects partitioning of streamflow, causing higher surface runoff and lower baseflow. The combined effect leads to a dramatic increase in monthly average streamflow with a stronger increasing trend in surface runoff and decreasing trend in baseflow. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Understanding climate change impacts on hydrological regime and assessing future water supplies are essential to effective water resources management and planning, which is particularly true for the Tibetan Plateau (TP), one of the most vulnerable areas to climate change. In this study, future climate change in the TP was projected for 2041–2060 by a high‐resolution regional climate model, RegCM4, under 3 representative concentration pathways (RCPs): 2.6, 4.5, and 8.5. Response of all key hydrological elements, that is, evapotranspiration, surface run‐off, baseflow, and snowmelt, to future climate in 2 typical catchments, the source regions of Yellow and Yangtze rivers, was further investigated by the variable infiltration capacity microscale hydrological model incorporated with a 2‐layer energy balance snow model and a frozen soil/permafrost algorithm at a 0.25°×0.25° spatial scale. The results reveal that (a) spatial patterns of precipitation and temperature from RegCM4 agree fairly well with the data from China Meteorological Forcing Dataset, indicating that RegCM4 well reproduces historical climatic information and thus is reliable to support future projection; (b) precipitation increase by 0–70% and temperature rise by 1–4 °C would occur in the TP under 3 RCPs. A clear south‐eastern–north‐western spatial increasing gradient in precipitation would be seen. Besides, under RCP8.5, the peak increase in temperature would approach to 4 °C in spring and autumn in the east of the TP; (c) evapotranspiration would increase by 10–60% in 2 source regions due to the temperature rise, surface run‐off and baseflow in higher elevation region would experience larger increase dominantly due to the precipitation increase, and streamflow would display general increases by more than 3% and 5% in the source regions of Yellow and Yangtze rivers, respectively; (d) snowmelt contributes 11.1% and 16.2% to total run‐off in the source regions of Yellow and Yangtze rivers, respectively, during the baseline period. In the source region of Yangtze River, snowmelt run‐off would become more important with increase of 17.5% and 18.3%, respectively, under RCP2.6 and RCP4.5 but decrease of 15.0% under RCP8.5.  相似文献   

7.
Climate variability and human activity were regarded as two contributors to streamflow alteration. However, the contributions of the two factors were still unclear in Dongting Lake. Therefore, it was crucial to quantify the relative impact of climate variability and human activity on streamflow alteration. The time series (1961–2010) was divided into three periods, namely, natural period (1961–1980), change period I (1981–2002) and change period II (2003–2010). Sensitivity analysis based on Budyko‐type equations was applied to reveal the contributions of climate variability and human activity in those two change periods, respectively. The results showed that during the change period I, climate variability was the main factor responsible for streamflow alteration in most parts of Dongting Lake, accounting for 60.07–67.27%. However, the impact of climate variability was slightly smaller than that of human activity in West Dongting Lake (the former accounting for 43.20% while the latter accounting for 56.80%). For the change period II, human activity was the dominate factor for streamflow alteration, accounting for 58.89–78.33%. The impact of climate variability gradually decreased while the impact of human activity gradually increased. Along with the intensification of the human activity, the impact of it became more dominant. The results could provide a reference for water resources planning and management decisions. Under the condition of uncontrollable climatic factor, effective measures should be put forward in controlling human activity, such as reservoir/dam operation, closed management of protected area and so on. Besides, it is essential to study the impact of climate variability on future water resources and water resource management under different climate change scenarios. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Identifying aquifer vulnerability to climate change is of vital importance in the Sierra Nevada and other snow‐dominated basins where groundwater systems are essential to water supply and ecosystem health. Quantifying the component of new (current year's) snowmelt in groundwater and surface water is useful in evaluating aquifer vulnerability because significant annual recharge may indicate that streamflow will respond rapidly to annual variability in precipitation, followed by more gradual decreases in recharge as recharge declines over decades. Hydrologic models and field‐based studies have indicated that young (<1 year) water is an important component of streamflow. The goal of this study was to utilize the short‐lived, naturally occurring cosmogenic isotope sulfur‐35 (35S) to quantify new snowmelt contribution to groundwater and surface waters in Sagehen Creek Basin (SCB) and Martis Valley Groundwater Basin (MVGB) located within the Tertiary volcanics of the central Sierra Nevada, CA. Activities of 35S were measured in dissolved sulfate (35SO42?) in SCB and MVGB snowpack, groundwater, springs, and streamflow. The percent of new snowmelt (PNS) in SCB streamflow ranged from 0.2 ± 6.6% during baseflow conditions to 14.0 ± 3.4% during high‐flow periods of snowmelt. Similar to SCB, the PNS in MVGB groundwater and streamflow was typically <30% with the largest fractions occurring in late spring or early summer following peak streamflow. The consistently low PNS suggests that a significant fraction of annual snowmelt in SCB and MVGB recharges groundwater, and groundwater contributions to streamflow in these systems have the potential to mitigate climate change impacts on runoff.  相似文献   

9.
《水文科学杂志》2012,57(1):71-86
ABSTRACT

Climate variability and human activities are considered to be the most likely reasons for negative trends in river inflow and the water level of some lakes and wetlands in the world. To quantify the uncertain impacts of climate variations and anthropogenic activities on Ajichay River flow in Iran, a multi-model ensemble approach based on the Bayesian model averaging (BMA) method is applied. Several statistical and simulation-based methods are used to distinguish the impacts of climatic and anthropogenic factors on river flow. The results show that almost all the methods identified human activities as the dominant impact on streamflow (about 73–85% of the change). The between-model and within-model uncertainty analyses using BMA showed that the 95% uncertainty intervals of the individual approaches have relatively large deviation ranges. The BMA mean prediction could reduce the range of between-model uncertainties to 14–27% for climate impacts and 74–80% for human impacts. This approach provides a way to better understand the contributions of climatic and anthropogenic impacts on river flow change.  相似文献   

10.
Temporal streamflow variability in an inland hydrologic station and temporal trends and frequency changes at three weather stations in a semiarid river basin located in Loess Plateau, China, were detected by using linear regression, Mann–Kendall analysis, and wavelet transform methods. Double cumulative curve and ordered clustering were used to identify the hydrological periods of upper Sang‐kan (USK) basin between 1957 and 2012. The results indicate that (1) precipitation in the USK basin over the study period did not show any trend, while the temperature showed a significant increase; (2) streamflow flowing out of the USK basin indicated a significant decrease; (3) two distinct hydrological periods – the ‘natural period’ from 1957 to 1984 and the ‘human impact period’ from 1985 to 2012 – were present; and (4) the contributions of climate change and human activities to reduce the streamflow were 36.9% and 63.1% respectively. The results indicate that human activities may be contributing to a decrease in streamflow in the USK basin. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
The formation of baseflow and stormflow was examined in the 1.18 km2 part of the headwater catchment Uhlí?ská, Jizera Mountains, Czech Republic, over the period 2007–2011, by means of run‐off data and environmental tracers 18O and SiO2. The baseflow, computed using the digital filter approach BFLOW, contributes 67% to total streamflow and has a mean residence time of 12.3 months. It is formed by groundwater discharge from the valley deluviofluvial granitic sediments, in combination with soil water in weathered layers on hillslopes during rainfall and snowmelt periods. The prevailing source of the groundwater is the infiltration of snowmelt water. Analysis of 20 run‐off events and their hysteretic patterns demonstrated that the stormflow water has a residence time of about 4 months and is generated by preferential flow on hillslopes combined by soil matrix drainage. Because of slower flow in the soil matrix, the enrichment of pore water in SiO2 is more pronounced. The stormflow and snowmelt water flowing via preferential pathways of upslope minerals soils pushes the pre‐event groundwater through the pathways in wetlands to the stream, and the wetland can be therefore considered as groundwater supplied. This mechanism has been found to be typical for the groundwater‐supplied headwater catchments of the Jizera Mountains and can be also assumed in other mountainous headwaters of the granitic massif in Central Europe. The main methodological contribution of this study are the residence time calculations stratified by baseflow and event flow, identifying run‐off components of different travel times to streams and linking them with geochemical run‐off sources. This achievement was possible because of a comprehensive dataset on hydrology, stable isotopes and silica hydrochemistry in all relevant run‐off generation components. This concept indicates that a possible long‐term change in snowmelt may affect the run‐off regime of headwater catchments to climate or land‐use changes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Investigating the changes in streamflow regimes in response to various influencing factors contributes to our understanding of the mechanisms of hydrological processes in different watersheds and to water resource management strategies. This study examined streamflow regime changes by applying the indicators of hydrologic alteration method and eco-flow metrics to daily runoff data (1965–2016) from the Sandu, Hulu and Dali Rivers on the Chinese Loess Plateau, and then determined their responses to terracing, afforestation and damming. The Budyko water balance equation and the double mass curve method were used to separate the impacts of climate change and human activities on the mean discharge changes. The results showed that the terraced and dammed watersheds exhibited significant decreases in annual runoff. All hydrologic metrics indicated that the highest degree of hydrologic alteration was in the Sandu River watershed (terraced), where the monthly and extreme flows reduced significantly. In contrast, the annual eco-deficit increased significantly, indicating the highest reduction in streamflow among the three watersheds. The regulation of dams and reservoirs in the Dali River watershed has altered the flow regime, and obvious decreases in the maximum flow and slight increases in the minimum flow and baseflow indices were observed. In the Hulu River watershed (afforested), the monthly flow and extreme flows decreased slightly and were categorized as low-degree alteration, indicating that the long-term delayed effects of afforestation on hydrological processes. The magnitude of the eco-flow metrics varied with the alteration of annual precipitation. Climate change contributed 67.47% to the runoff reduction in the Hulu River watershed, while human activities played predominant roles in reducing runoff in the Sandu and Dali River watersheds. The findings revealed distinct patterns and causes of streamflow regime alteration due to different conservation measures, emphasizing the need to optimize the spatial allocation of measures to control soil erosion and utilize water resources on the Loess Plateau.  相似文献   

13.
量化气候变化和人类活动对流域水文影响及其对流域水资源规划和管理具有重要的理论与现实意义.采用水文模型和多元回归法定量分析气候变化和人类活动对鄱阳湖"五河"径流的影响,并通过与灵敏度分析法对比来进一步验证分析结果 .研究表明,1970-2009年,气候变化和人类活动对鄱阳湖流域径流增加的贡献率分别为73%和27%.气候变化是饶河、信江和赣江径流增加的主导因素,而人类活动是修水径流增加的主要因素,是抚河径流减少的主要原因.另外,不同季节影响径流变化的主导因素又有不同,人类活动为干季(11月到次年2月)径流增加和湿季(4-6月)径流减小的主导因素,其贡献率分别为78.9%和82.7%.本研究可为鄱阳湖流域防洪抗旱及水资源优化配置提供重要科学依据.  相似文献   

14.
The catchments in the Loess Plateau, in China's middle reaches of the Yellow River Basin, experienced unprecedented land use changes in the last 50 years as a result of large‐scale soil conservation measure to control soil erosion. The climate of the region also exhibited some levels of change with decreased precipitation and increased temperature. This study combined the time‐trend analysis method with a sensitivity‐based approach and found that annual streamflow in the Loess Plateau decreased significantly since the 1950s and surface runoff trends appear to dominate the streamflow trends in most of the catchments. Annual baseflow exhibited mostly downward trends, but significant upward trends were also observed in 3 out of 38 gauging stations. Mean annual streamflow during 1979?2010 decreased by up to 65% across the catchments compared with the period of 1957?1978, indicating significant changes in the hydrological regime of the Loess Plateau. It is estimated that 70% of the streamflow reduction can be attributed to land use change, while the remaining 30% is associated with climate variability. Land use change because of the soil conservation measures and reduction in precipitation are the key drivers for the observed streamflow trends. These findings are consistent with results of previous studies for the region and appear to be reasonable given the accelerated level of the soil conservation measures implemented since the late 1970s. Changes in sea surface temperature in the Pacific Ocean, as indicated by variations in El Niño–Southern Oscillation and phase shifts of the Pacific Decadal Oscillation, appear to have also affected the annual streamflow trends. The framework described in this study shows promising results for quantifying the effects of land use change and climate variability on mean annual streamflow of catchments within the Loess Plateau. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The Loess Plateau has been experiencing large‐scale land use and cover changes (LUCCs) over the past 50 years. It is well known about the significant decreasing trend of annual streamflow and sediment load in the catchments in this area. However, how surface run‐off and sediment load behaved in response to LUCC at flood events remained a research question. We investigated 371 flood events from 1963 to 2011 in a typical medium‐sized catchment within the Plateau in order to understand how LUCC affected the surface run‐off generation and sediment load and their behaviours based on the analysis of return periods. The results showed that the mean annual surface run‐off and sediment load from flood events accounted for 49.6% and 91.8% of their mean annual totals. The reduction of surface run‐off and associated sediment yield in floods explained about 85.0% and 89.2% of declines in the total annual streamflow and sediment load, respectively. The occurrences of flood events and peak sediment concentrations greater than 500 kg/m3 showed a significantly downward trend, yet the counterclockwise loop events still dominated the flood event processes in the catchment. The results suggest that LUCC over the past 50 years resulted in significant changes in the water balance components and associated soil erosion and sediment transportation in the catchment. This was achieved mainly by reducing surface run‐off and sediment yield during floods with return period of less than 5 years. Run‐off–sediment load behaviour during the extreme events with greater than 10‐year return periods has not changed. Outcomes from this study are useful in understanding the eco‐hydrological processes and assisting the sustainable catchment management and land use planning on the Loess Plateau, and the methodologies are general and applicable to similar areas worldwide.  相似文献   

16.
17.
While the effects of land use change in urban areas have been widely examined, the combined effects of climate and land use change on the quality of urban and urbanizing streams have received much less attention. We describe a modelling framework that is applicable to the evaluation of potential changes in urban water quality and associated hydrologic changes in response to ongoing climate and landscape alteration. The grid‐based spatially distributed model, Distributed Hydrology Soil Vegetation Model‐Water Quality (DHSVM‐WQ), is an outgrowth of DHSVM that incorporates modules for assessing hydrology and water quality in urbanized watersheds at a high‐spatial and high‐temporal resolution. DHSVM‐WQ simulates surface run‐off quality and in‐stream processes that control the transport of non‐point source pollutants into urban streams. We configure DHSVM‐WQ for three partially urbanized catchments in the Puget Sound region to evaluate the water quality responses to current conditions and projected changes in climate and/or land use over the next century. Here, we focus on total suspended solids (TSS) and total phosphorus (TP) from non‐point sources (run‐off), as well as stream temperature. The projection of future land use is characterized by a combination of densification in existing urban or partially urban areas and expansion of the urban footprint. The climate change scenarios consist of individual and concurrent changes in temperature and precipitation. Future precipitation is projected to increase in winter and decrease in summer, while future temperature is projected to increase throughout the year. Our results show that urbanization has a much greater effect than climate change on both the magnitude and seasonal variability of streamflow, TSS and TP loads largely because of substantially increased streamflow and particularly winter flow peaks. Water temperature is more sensitive to climate warming scenarios than to urbanization and precipitation changes. Future urbanization and climate change together are predicted to significantly increase annual mean streamflow (up to 55%), water temperature (up to 1.9 °C), TSS load (up to 182%) and TP load (up to 74%). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
In hydrological modelling, the challenge is to identify an optimal strategy to exploit tools and available observations in order to enhance model reliability. The increasing availability of data promotes the use of new calibration techniques able to make use of additional information on river basins. In the present study, a lumped hydrological model—designed with the aim of utilizing remotely sensed data—is introduced and calibrated, adopting four different schemes that adopt, to varying extents, available physical information. The physically consistent conceptualization of the hydrological model used allowed development of a step by step calibration based on a combination of information, such as remotely sensed data describing snow cover, recession curves obtained from streamflow measurements, and time series of surface run‐off obtained with a baseflow mathematical filter applied to the streamflow time‐series. Results suggest that the use of physical information in the calibration procedure tends to increase model reliability with respect to approaches where the parameters are calibrated using an overall statistic based, considerably or exclusively, on streamflow data.  相似文献   

19.
Understanding the impacts of climate change and human activity on the hydrological processes in river basins is important for maintaining ecosystem integrity and sustaining local economic development. The objective of this study was to evaluate the impact of climate variability and human activity on mean annual flow in the Wei River, the largest tributary of the Yellow River. The nonparametric Mann–Kendall test and wavelet transform were applied to detect the variations of hydrometeorological variables in the semiarid Wei River basin in the northwestern China. The identifications were based on streamflow records from 1958 to 2008 at four hydrological stations as well as precipitation and potential evapotranspiration (PET) data from 21 climate stations. A simple method based on Budyko curve was used to evaluate potential impacts of climate change and human activities on mean annual flow. The results show that annual streamflow decreased because of the reduced precipitation and increased PET at most stations. Both annual and seasonal precipitation and PET demonstrated mixed trends of decreasing and increasing, although significant trends (P < 0.05) were consistently detected in spring and autumn at most stations. Significant periodicities of 0.5 and 1 year (P < 0.05) were examined in all the time series. The spectrum of streamflow at the Huaxian station shows insignificant annual cycle during 1971–1975, 1986–1993 and 1996–2008, which is probably resulted from human activities. Climate variability greatly affected water resources in the Beiluo River, whereas human activities (including soil and water conservation, irrigation, reservoirs construction, etc.) accounted more for the changes of streamflow in the area near the Huaxian station during different periods. The results from this article can be used as a reference for water resources planning and management in the semiarid Wei River basin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Inter‐basin differences in streamflow response to changes in regional hydroclimatology may reflect variations in storage characteristics that control the retention and release of water inputs. These aspects of storage could mediate a basin's sensitivity to climate change. The hypothesis that temporal trends in stream baseflow exhibit a more muted reaction to changes in precipitation and evapotranspiration for basins with greater storage was tested on the Oak Ridges Moraine (ORM) in Southern Ontario, Canada. Long‐term (>25 years) baseflow trends for 16 basins were compared to corresponding trends in precipitation amount and type and in potential evapotranspiration as well as shorter trends in groundwater levels for monitoring wells on the ORM. Inter‐basin differences in storage properties were characterized using physiographic, hydrogeologic, land use/land cover, and streamflow metrics. The latter included the slope of the basin's flow duration curve and basin dynamic storage. Most basins showed temporal increases in baseflow, consistent with limited evidence of increases and decreases in regional precipitation and snowfall: precipitation ratio, respectively, and recent increases in groundwater recharge along the crest of the ORM. Baseflow trend magnitude was uncorrelated to basin physiographic, hydrogeologic, land use/land cover, or flow duration curve characteristics. However, it was positively related to a basin's dynamic storage, particularly for basins with limited coverage of open water and wetlands. The dynamic storage approach assumes that a basin behaves as a first‐order dynamical system, and extensive open water and wetland areas in a basin may invalidate this assumption. Previous work suggested that smaller dynamic storage was linked to greater damping of temporal variations in water inputs and reduced interannual variability in streamflow regime. Storage and release of water inputs to a basin may assist in mediating baseflow response to temporal changes in regional hydroclimatology and may partly account for inter‐basin differences in that response. Such storage characteristics should be considered when forecasting the impacts of climate change on regional streamflow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号