首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fine‐grained (<62·5 µm) suspended sediment transport is a key component of the geochemical flux in most fluvial systems. The highly episodic nature of suspended sediment transport imposes a significant constraint on the design of sampling strategies aimed at characterizing the biogeochemical properties of such sediment. A simple sediment sampler, utilizing ambient flow to induce sedimentation by settling, is described. The sampler can be deployed unattended in small streams to collect time‐integrated suspended sediment samples. In laboratory tests involving chemically dispersed sediment, the sampler collected a maximum of 71% of the input sample mass. However, under natural conditions, the existence of composite particles or flocs can be expected to increase significantly the trapping efficiency. Field trials confirmed that the particle size composition and total carbon content of the sediment collected by the sampler were representative statistically of the ambient suspended sediment. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
Suspended sediment has been identified as a vector for nutrient and contaminant transport in the fluvial environment. A time‐integrated sampler (the Phillips sampler), which emerged over a decade ago as a cost‐effective tool for in situ suspended sediment collection, is increasingly being used to collect samples for the analysis of sediment properties such as particle size composition, and nutrient and contaminant concentrations. This study evaluates the sampler under both flume and field conditions for efficiency in the mass and grain size of the suspended sediment collected. The sampler was tested in a flume using both kaolinite and sediment samples (sieved to < 180 µm) collected from the Quesnel River, British Columbia, Canada. In the kaolinite trails, the sampler preferentially collected coarser grain sizes compared to the original sediment, probably due to finer sediment remaining in suspension and therefore passing through the sampler, and also possibly due to flocculation of the kaolinite upon introduction to the flume. Conversely, the sampler collected river sediment that was finer than the original sediment, probably due to some settling of coarser sediment observed at the bottom of the flume. Once allowance was made for these operational issues associated with the flume, maximum sediment mass efficiency for kaolinite and river sediment was 43% and 87%, respectively. Sediment collected by the time‐integrated sampler during field deployment and adjacent channel bed sediment were also compared. The sampler collected sediment with a representative grain size distribution. However, there were differences in the geochemical (arsenic and selenium) concentrations of channel bed sediment and sediment collected by the Phillips sampler which may be a function of differences in the behavior of geochemical elements associated with the two types of sediment. This work suggests that further research is needed to evaluate the role of the Phillips sampler in collecting sediment for contaminant and nutrient analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
The accurate measurement of suspended sediment (<200 μm) in aquatic environments is essential to understand and effectively manage changes to sediment, nutrient, and contaminant concentrations on both temporal and spatial scales. Commonly used sampling techniques for suspended sediment either lack the ability to accurately measure sediment concentration (e.g., passive sediment samplers) or are too expensive to deploy in sufficient number to provide landscape‐scale information (e.g., automated discrete samplers). Here, we evaluate a time‐integrated suspended sediment sampling technique, the pumped active suspended sediment (PASS) sampler, which collects a sample that can be used for the accurate measurement of time‐weighted average (TWA) suspended sediment concentration and sediment particle size distribution. The sampler was evaluated against an established passive time‐integrated suspended sediment sampling technique (i.e., Phillips sampler) and the standard discrete sampling method (i.e., manual discrete sampling). The PASS sampler collected a sample representative of TWA suspended sediment concentration and particle size distribution of a control sediment under laboratory conditions. Field application of the PASS sampler showed that it collected a representative TWA suspended sediment concentration and particle size distribution during high flow events in an urban stream. The particle size distribution of sediment collected by the PASS and Phillips samplers were comparable and the TWA suspended sediment concentration of the samples collected using the PASS and discrete sampling techniques agreed well, differing by only 4% and 6% for two different high flow events. We should note that the current configuration of the PASS sampler does not provide a flow‐weighted measurement and, therefore, is not suitable for the determination of sediment loads. The PASS sampler is a simple, inexpensive, and robust in situ sampling technique for the accurate measurement of TWA suspended sediment concentration and particle size distribution.  相似文献   

4.
Delivery of fine sediment to fluvial systems is of considerable concern given the physical and ecological impacts of elevated levels in drainage networks. Although it is possible to measure the transfer of fine sediment at high frequency by using a range of surrogate and automated technologies, the demands for assessing sediment flux and sediment properties at multiple spatially distributed locations across catchments can often not be met using established sampling techniques. The time‐integrated mass‐flux sampler (TIMS) has the potential to bridge this gap and further our understanding of fine sediment delivery in fluvial systems. However, these devices have undergone limited testing in the field. The aim of this paper was to provide a critical validation of TIMS as a technique for assessing fluvial fine sediment transfer. Fine sediment flux and sediment properties were assessed over 2 years with individual sampling periods of approximately 30 days. Underestimation of sediment flux ranged between 66% and 99% demonstrating that TIMS is unsuitable for assessing absolute sediment loads. However, assessment of relative efficiency showed that six of seven samplers produced statistically strong relationships with the reference sediment load (P < 0.05). Aggregated data from all sites produced a highly significant relationship between reference and TIMS loads (R2 = 0.80; P < 0.001) demonstrating TIMS may be suitable for characterizing patterns of suspended sediment transfer. Testing also illustrated a consistency in sediment properties between multiple samplers in the same channel cross section. TIMS offers a useful means of assessing spatial and temporal patterns of fine sediment transfer across catchments where expensive monitoring frameworks cannot be commissioned. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Deposition and storage of fine‐grained (<62·5 μm) sediment in the hyporheic zone of gravel bed rivers frequently represents an important cause of aquatic habitat degradation. The particle size characteristics of such fine‐grained bed sediment (FGBS) exert an important control on its hydrodynamic properties and environmental impact. Traditionally, particle size analysis of FGBS in gravel bed rivers has focused on the absolute size distribution of the chemically dispersed mineral fraction. However, recent work has indicated that in common with fluvial suspended sediment, significant differences may exist between the absolute and the in situ, or effective, particle size composition of FGBS, as a result of the existence of aggregates, or composite particles. In the investigation reported in this paper, sealable bed traps that could be remotely opened to sample sediment deposited during specific storm runoff events and a laser back‐scatter probe were used to quantify the temporal and spatial variability of both the absolute and effective particle size composition of FGBS, and the associated suspended sediment from four gravel bed rivers in the Exe Basin, Devon, UK. The absolute particle size distributions of both the FGBS and suspended sediment evidenced c. >95%<62·5 μm sized primary particles and displayed a seasonal winter–summer fining, while the opposite trend was displayed by the effective particle size distribution of the FGBS and suspended sediment. The effective particle size distributions of both were typically highly aggregated, comprising up to 68%>62·5 μm sized particles. Spatial variation in the effective particle size and aggregation parameters was of secondary importance relative to temporal variation. The effective particle size distribution of the FGBS was consistently coarser and more aggregated than the associated suspended sediment and there was evidence of aggregate break‐up in samples of resuspended bed sediment. The implications of these findings for sediment transport modelling are considered. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
Gully erosion is a significant source of fine suspended sediment (<63 μm) and associated nutrient pollution to freshwater and marine waterways. Researchers, government agencies, and monitoring groups are currently using monitoring methods designed for streams and rivers (e.g., autosamplers, rising stage samplers, and turbidity loggers) to evaluate suspended sediment in gullies. This is potentially problematic because gullies have several hydrological features and monitoring operational challenges that differ to those of continually flowing streams and rivers (e.g., short and intense flows, high suspended sediment concentrations, and rapid scouring and aggradation). Here we present a laboratory and field-based assessment of the performance of common suspended sediment monitoring techniques applied to gullies. We also evaluate a recently-described method; the pumped active suspended sediment (PASS) sampler, which has been modified for monitoring suspended sediment in gully systems. Discrete autosampling provided data at high temporal resolution, however, it had poor collection efficiency (25 ± 10%) of coarser sediment particles (i.e., sand). Rising stage sampling, while robust and cost-effective, suffered from large amounts of condensation under field conditions (25–35% of sampler volume), due to harsh climatic conditions creating large diurnal temperature differences at the field site, thereby diluting sample concentrations and introducing additional measurement uncertainty. The turbidity logger exhibited a highly variable response when calibrated at each site with physically collected suspended sediment samples (R2 = 0.17–0.83), highlighting that this approach should be used with caution. The modified PASS sampler proved to be a reliable and representative measurement method for gully sediment water quality, however, the time-integrated nature of the method limits its temporal resolution compared to the other monitoring methods. We recommend monitoring suspended sediment in alluvial gully systems using a combination of complementary techniques (e.g., PASS and RS samplers) to account for the limitations associated with individual methods.  相似文献   

7.
Flume experiments were conducted in order to monitor changes in flow turbulence intensity and suspended sediment concentration at seven stages across the ripple–dune transition and at three different positions above the bed surface. Three‐dimensional velocity measurements were obtained using an acoustic Doppler velocimeter (ADV). Suspended sediment concentration (SSC) was monitored indirectly using ADV signal amplitude. Although limited to time‐averaged parameters, the analysis reveals that SSC varies significantly with stage across the transition and with sampling height. The statistical analysis also reveals an apparent uniformity of suspended sediment concentration with height above the bed in the lower half of the flow depth at the critical stage in the transition from ripples to dunes. This is also the stage at which turbulence intensity is maximized. Statistically significant correlations were also observed between suspended sediment concentrations and root‐mean‐square values of vertical velocity fluctuations. These correlations reflect the various levels of shear‐layer activity and the distinct turbulent flow regions across the transition. Conversely, time‐averaged values of Reynolds shear stress exhibit a very weak relationship with suspended sediment concentrations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Most of the existing data on the effective particle size characteristics of fluvial suspended sediment derive from instantaneous sampling methods that may not be representative of the overall suspended sediment loads. This presents difficulties when there is a need to incorporate effective particle size data into numerical models of floodplain sedimentation and sediment‐associated contaminant transfer. We have used a field‐based water elutriation apparatus (WEA) to assemble a large (36 flood) database on the time‐integrated nature of the effective and absolute particle size characteristics of suspended sediment in four subcatchments of the River Exe basin of southwest England. These catchments encompass a wide range of terrains and fluvial environments that are broadly representative of much of the UK and temperate, low relief northwest Europe. The WEA provides important data on the physical characteristics of composite particles that are not attainable using other methods. This dataset has allowed, for the first time, detailed interbasin comparisons of the time‐integrated particle size characteristics of suspended sediment and reliable estimates of the contribution of five effective size classes to the mean annual suspended sediment load of the study catchments. The suspended sediment load of each river is dominated by composite rather than primary particles, with, for example, almost 60% (by mass) of the sediment load of the River Exe at Thorverton transported as composite particles > 16 µm in size. All the effective size classes contain significant clay components. A key outcome of this study is the recognition that each catchment has a distinctive time‐integrated effective particle size signature. In addition, the time‐integrated effective particle size characteristics of the suspended loads in each of the catchments display much greater spatial variability than the equivalent absolute particle size distributions. This indicates that the processes producing composite particles vary significantly between these catchments, and this has important implications for our understanding of the dynamics of suspended sediment properties. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
This paper explores changes in suspended sediment transport and fine sediment storage at the reach and patch scale associated with the reintroduction of partial large wood (LW) jams in an artificially over‐widened lowland river. The field site incorporates two adjacent reaches: a downstream section where LW jams were reintroduced in 2010 and a reach immediately upstream where no LW was introduced. LW pieces were organized into ‘partial’ jams incorporating several ‘key pieces’ which were later colonized by substantial stands of aquatic and wetland plants. Reach‐scale suspended sediment transport was investigated using arrays of time‐integrated suspended sediment samplers. Patch‐scale suspended sediment transport was explored experimentally using turbidity sensors to track the magnitude and velocity of artificially generated sediment plumes. Fine sediment storage was quantified at both reach and patch scales by repeat surveys of fine sediment depth. The results show that partial LW jams influence fine sediment dynamics at both the patch and reach scale. At the patch‐scale, introduction of LW led to a reduction in the concentration and increase in the time lag of released sediment plumes within the LW, indicating increased diffusion of plumes. This contrasted with higher concentrations and lower time lags in areas adjacent to the LW; indicating more effective advection processes. This led to increased fine sediment storage within the LW compared with areas adjacent to the LW. At the reach‐scale there was a greater increase in fine sediment storage through time within the restored reach relative to the unrestored reach, although the changes in sediment transport responsible for this were not evident from time‐integrated suspended sediment data. The results of the study have been used to develop a conceptual model which may inform restoration design. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
On December 26, 2015 (Boxing Day), an exceptional flood event occurred in the Irwell catchment, United Kingdom, when the neighbouring Mersey catchment experienced a much more typical winter run‐off event. This provided an opportunity to examine the influence of high‐magnitude hydrological processes on the behaviour of fine‐grained metal‐contaminated bed sediments. Forty sites across the two catchments were sampled for channel bed fine sediment storage and sediment‐associated metal(loid) concentrations prior to, and following, the flooding. Sediments were analysed for total As, Cr, Cu, Pb, and Zn and then subjected to a five‐step sequential extraction procedure. Despite a significant reorganisation of fine‐grained (<63 μm) sediment storage, metal(loid) concentrations demonstrated markedly conservative behaviour with no significant difference observed between pre‐flooding and post‐flooding values across both catchments. Estimates of the channel bed storage of sediment‐associated metal(loid)s also showed minimal change as a result of the flooding. The metal partitioning data reveal only minor changes in the mobility of bed sediment‐associated metal(loid)s, indicating that such flood events do not increase the availability of sorbed contaminants in these catchments. Post‐flooding bed sediment metal(loid) loadings remain high, indicating persistent and long‐lasting sources of contamination within the Irwell and upper Mersey fluvial network.  相似文献   

11.
This paper presents a field investigation on river channel storage of fine sediments in an unglaciated braided river, the Bès River, located in a mountainous region in the southern French Prealps. Braided rivers transport a very large quantity of bedload and suspended sediment load because they are generally located in the vicinity of highly erosive hillslopes. Consequently, these rivers play an important role because they supply and control the sediment load of the entire downstream fluvial network. Field measurements and aerial photograph analyses were considered together to evaluate the variability of fine sediment quantity stored in a 2·5‐km‐long river reach. This study found very large quantities of fine sediment stored in this reach: 1100 t per unit depth (1 dm). Given that this reach accounts for 17% of the braided channel surface area of the river basin, the quantities of fine sediment stored in the river network were found to be approximately 80% of the mean annual suspended sediment yields (SSYs) (66 200 t year?1), comparable to the SSYs at the flood event scale: from 1000 t to 12 000 t depending on the flood event magnitude. These results could explain the clockwise hysteretic relationships between suspended sediment concentrations and discharges for 80% of floods. This pattern is associated with the rapid availability of the fine sediments stored in the river channel. This study shows the need to focus on not only the mechanisms of fine sediment production from hillslope erosion but also the spatiotemporal dynamics of fine sediment transfer in braided rivers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Our ability to understand erosion processes in semi‐arid ecosystems depends on establishing relationships between rainfall and runoff. This requires collection of extensive and accurate hydrologic and sediment data sets. A supercritical flume with a total load traversing slot sediment sampler used on several sites at the Walnut Gulch Experimental Watershed (WGEW) near Tombstone, AZ has proven to be a reliable way to measure flow and sediment discharge from small watersheds. However, it requires installation of a costly structure that is only suitable for relatively small flows. A more commonly used method based on ease of installation and expense is the pump sampler. One example of this is a set of instrumentation developed by the Australian Commonwealth Scientific and Industrial Research Organization (CSIRO), in which the pump sediment sampler is part of an in‐channel, fully automated system for measuring water velocity, depth, turbidity and collecting runoff samples. A 3.7 ha arid watershed at WGEW was instrumented with both systems and hydrologic and sediment data were collected and compared during a 2 year period. Total sediment yield for the entire period measured by the CSIRO pump sampler (11.6 t ha‐1) was similar to that by traversing slot sampler (11.5 t ha‐1). The pump sampler accurately estimated the amount of fine (< 0.5 mm) sediment fractions exported, but consistently underestimated the coarse (>0.5 mm) sediment fractions. Median sediment diameter of samples collected by traversing slot and pump sampler were 0.32 and 0.22 mm, respectively. This study outlines the benefits and limitations of the pump sampler based system for monitoring sediment concentration and yield in high‐energy headwater catchments, and makes recommendations for improvement of its performance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The structure of fluvial sediments in streams has environmental implications to contaminant fate, nutrient budgeting and the carbon flux associated with fine particulate organic matter (FPOM). However, the influence of sediment structure is lacking in environmental predictive models. To this end, the present study links field‐based results of sediment aggregate structure to seasonal biological functions in the surface fine‐grained laminae (SFGL) of a low‐gradient stream. Fluvial sediment collection, microscopy and image analysis are used to show that aggregates collected over a 20 month time period support the concept that aggregate structure can vary seasonally in low‐gradient streams where temporarily stored sediment is prominent. Results show that the structure of the transported aggregates is more irregular in the summer with the structure being elongated about the long axes. In the winter, the aggregate structure is compacted and more spherical. Statistical analysis and results suggest that heterotrophic and autotrophic biological activity within the SFGL exhibits seasonal control upon the morphology of transported sediments. Implications of this research are highlighted through calculations of the reactive surface area of the transported suspended sediment load. The surface area of transported sediment is estimated to be 40% greater in the summer as compared to the winter time period, which implies that (i) the affinity of sediments to sorb contaminants is higher in summer months and (ii) the downstream reactivity of FPOM in large rivers, lakes and estuaries is not just a function of microbial drivers but also the seasonally dependent structure of transported FPOM derived from low‐order streams. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
In debris‐flow‐prone channels, normal fluvial sediment transport occurs (nearly exclusively in suspended mode) between episodic debris‐flow events. Observations of suspended sediment transport through a winter season in a steepland gully in logged terrain revealed two event types. When flows exceeded a threshold of 270 l s−1, events yielded significant quantities of sediment and suspended sediment concentration increased with flow. Smaller events were strongly ‘supply limited’; sediment concentration decreased as flow increased. Overall, there is no consistent correlation between runoff and sediment yield. Within the season, three subseasons were identified (demarcated by periods of freezing weather) within which a pattern of fine sediment replenishment and evacuation occurred. Finally, a signature of fine sediment mobilization and exhaustion was observed within individual events. Fine sediment transport occurred in discrete pulses within storm periods, most of the yield occurring within 5 to 15% of storm runoff duration, so that it is unlikely that scheduled sampling programs would identify significant transport. Significant events are, however, generally forecastable on the basis of regional heavy rainfall warnings, providing a basis for targeted observations. Radiative snowmelt events and rain‐on‐snow remain difficult to forecast, since the projection of temperatures from the nearest regular weather station yields variable results. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Since the 1970s, there has been both continuing and growing interest in developing accurate estimates of the annual fluvial transport (fluxes and loads) of suspended sediment and sediment‐associated chemical constituents. This study provides an evaluation of the effects of manual sample numbers (from 4 to 12 year?1) and sample scheduling (random‐based, calendar‐based and hydrology‐based) on the precision, bias and accuracy of annual suspended sediment flux estimates. The evaluation is based on data from selected US Geological Survey daily suspended sediment stations in the USA and covers basins ranging in area from just over 900 km2 to nearly 2 million km2 and annual suspended sediment fluxes ranging from about 4 Kt year?1 to about 200 Mt year?1. The results appear to indicate that there is a scale effect for random‐based and calendar‐based sampling schemes, with larger sample numbers required as basin size decreases. All the sampling schemes evaluated display some level of positive (overestimates) or negative (underestimates) bias. The study further indicates that hydrology‐based sampling schemes are likely to generate the most accurate annual suspended sediment flux estimates with the fewest number of samples, regardless of basin size. This type of scheme seems most appropriate when the determination of suspended sediment concentrations, sediment‐associated chemical concentrations, annual suspended sediment and annual suspended sediment‐associated chemical fluxes only represent a few of the parameters of interest in multidisciplinary, multiparameter monitoring programmes. The results are just as applicable to the calibration of autosamplers/suspended sediment surrogates currently used to measure/estimate suspended sediment concentrations and ultimately, annual suspended sediment fluxes, because manual samples are required to adjust the sample data/measurements generated by these techniques so that they provide depth‐integrated and cross‐sectionally representative data. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

16.
Aggregation processes of fine sediments have rarely been integrated in numerical simulations of cohesive sediment transport in riverine systems. These processes, however, can significantly alter the hydrodynamic characteristics of suspended particulate matter (SPM), modifying the particle settling velocity, which is one of the most important parameters in modelling suspended sediment dynamics. The present paper presents data from field measurements and an approach to integrate particle aggregation in a hydrodynamic sediment transport model. The aggregation term used represents the interaction of multiple sediment classes (fractions) with corresponding multiple deposition behaviour. The k–ε–turbulence model was used to calculate the coefficient of vertical turbulent mixing needed for the two‐dimensional vertical‐plane simulations. The model has been applied to transport and deposition of tracer particles and natural SPM in a lake‐outlet lowland river (Spree River, Germany). The results of simulations were evaluated by comparison with field data obtained for two levels of river discharge. Experimental data for both discharge levels showed that under the prevailing uniform hydraulic conditions along the river reach, the settling velocity distribution did not change significantly downstream, whereas the amount of SPM declined. It was also shown that higher flow velocities (higher fluid shear) resulted in higher proportions of fast settling SPM fractions. We conclude that in accordance with the respective prevailing turbulence structures, typical aggregation mechanisms occur that continuously generate similar distribution patterns, including particles that settle toward the river bed and thus mainly contribute to the observed decline in the total SPM concentration. In order to determine time‐scales of aggregation and related mass fluxes between the settling velocity fractions, results of model simulations were fitted to experimental data for total SPM concentration and of settling velocity frequency distributions. The comparison with simulations for the case of non‐interacting fractions clearly demonstrated the practical significance of particle interaction for a more realistic modelling of cohesive sediment and contaminant transport. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Despite increasing recognition of the potential of aquatic biota to act as ‘geomorphic agents’, key knowledge gaps exist in relation to biotic drivers of fine sediment dynamics at microscales and particularly the role of invasive species. This study explores the impacts of invasive signal crayfish on suspended sediment dynamics at the patch scale through laboratory and field study. Three hypotheses are presented and tested: (1) that signal crayfish generate pulses of fine sediment mobilisation through burrowing and movement that are detectable in the flow field; (2) that such pulses may be more frequent during nocturnal periods when signal crayfish are known to be most active; and (3) that cumulatively the pulses would be sufficient to drive an overall increase in turbidity. Laboratory mesocosm experiments were used to explore crayfish impacts on suspended sediment concentrations for two treatments: clay banks and clay bed substrate. For the field study, high frequency near‐bed and mid‐flow turbidity time series from a lowland river with known high densities of signal crayfish were examined. Laboratory data demonstrate the direct influence of signal crayfish on mobilisation of pulses of fine sediment through burrowing into banks and fine bed material, with evidence of enhanced activity levels around the mid‐point of the nocturnal period. Similar patterns of pulsed fine sediment mobilisation identified under field conditions follow a clear nocturnal trend and appear capable of driving an increase in ambient turbidity levels. The findings indicate that signal crayfish have the potential to influence suspended sediment yields, with implications for morphological change, physical habitat quality and the transfer of nutrients and contaminants. This is particularly important given the spread of signal crayfish across Europe and their presence in extremely high densities in many catchments. Further process‐based studies are required to develop a full understanding of impacts across a range of river styles. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A record spanning almost 20 years of suspended sediment and discharge measurements on two reaches of an agricultural watershed is used to assess the influence of in‐channel sediment supplies and bed composition on suspended sediment concentrations (SSC). We analyse discharge‐SSC relationships from two small streams of similar hydrology, climate and land use but widely different bed compositions (one dominated by sand, the other by gravel). Given that sand‐dominated systems have more fine sediment available for transport, we use bed composition and the relative proportion of surface sand and gravel to be representative of in‐channel sediment supply. Both high flow events and lower flows associated with onset and late recessional storm flow (‘low flows’) are analysed in order to distinguish external from in‐channel sources of sediment and to assess the relationship between low flows and sediment supply. We find that SSC during low flows is affected by changes to sediment supply, not just discharge capacity, indicated by the variation in the discharge‐SSC relationship both within and between low flows. Results also demonstrate that suspended sediment and discharge dynamics differ between reaches; high bed sand fractions provide a steady supply of sediment that is quickly replenished, resulting in more frequent sediment‐mobilizing low flow and relatively constant SSC between floods. In contrast, SSC of a gravel‐dominated reach vary widely between events, with high SSC generally associated with only one or two high‐flow events. Results lend support to the idea that fine sediment is both more available and more easily transported from sand‐dominated streambeds, especially during low flows, providing evidence that bed composition and in‐channel sediment supplies may play important roles in the mobilization and transport of fine sediment. In addition, the analysis of low‐flow conditions, an approach unique to this study, provides insight into alternative and potentially significant factors that control fine sediment dynamics. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Suspended sediment is conventionally regarded as that sediment transported by a fluid that it is fine enough for turbulent eddies to outweigh settling of the particles through the fluid. Early work in the fluvial field attributed suspension to turbulence, and led to the notion of a critical threshold for maintaining sediment in suspension. However, research on both turbulence structures and the interactions between suspended sediment and bedforms in rivers has shown a more complex story and, although there appear to have been no studies of the impact of bedforms on aeolian suspended sediment concentrations, turbulent flow structures and transport rates of saltating particles have been shown to be affected. This research indicates that suspended sediment neither travels with the same velocity as the flow in which it is suspended, nor is it likely to remain in suspension in perpetuity, even under conditions of steady flow or in unsteady flow the where dimensionless critical threshold is permanently exceeded. Rather, like bedload, it travels in a series of hops, and is repeatedly deposited on the bed where it remains until it is re‐entrained. Is there, therefore, a qualitative difference between suspended and saltating sediment, or is it just a quantitative difference in the size of the jump length and the frequency of re‐entrainment? It is our contention that the distinction of suspension as a separate class of sediment transport is both arbitrary and an unhelpful anthropocentric artefact. If we recognize that sediment transport is a continuum and applies to any fluid medium rather than split into different “processes” based on arbitrary thresholds and fluids, then recognizing the continuity will enable development of an holistic approach sediment transport, and thus sediment‐transport models that are likely to be viable across a wider range of conditions than hitherto. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
H. Marttila  B. Kløve 《水文研究》2014,28(17):4756-4765
Lowland catchments in Finland are intensively managed, promoting erosion and sedimentation that negatively affects aquatic environments. This study quantified fine‐grained bed sediment in the main channel and upstream headwaters of the River Sanginjoki (399.93 km2) catchment, Northern Finland, using remobilization sediment sampling during the ice‐free period (May 2010–December 2011). Average bed sediment storage in river was 1332 g m?2. Storage and seasonal variations were greater in small headwater areas (total bed sediment storage mean 1527 g m?2, range 122–6700 g m?2 at individual sites; storage of organic sediment: mean 414 g m?2, range 27–3159 g m?2) than in the main channel (total bed sediment storage: mean 1137 g m?2, range 61–4945 g m?2); storage of organic sediment: mean 329 g m?2, range 13–1938 g m?2). Average reach‐specific bed sediment storage increased from downstream to upstream tributaries. In main channel reaches, mean specific storage was 8.73 t km?1, and mean specific storage of organic sediment 2.45 t km?1, whereas in tributaries, it was 126.94 and 34.05 t km?1, respectively. Total fine‐grained bed sediment storage averaged 563 t in the main channel and 6831 t in the catchment. The proportion of mean organic matter at individual sites was 15–47% and organic carbon 4–455 g C m?2, with both being highest in small headwater tributaries. Main channel bed sediment storage comprised 52% of mean annual suspended sediment flux and stored organic carbon comprised 7% of mean annual total organic carbon load. This indicates the importance of small headwater brooks for temporary within‐catchment storage of bed sediment and organic carbon and the significance of fine‐grained sediment stored in channels for the suspended sediment budget of boreal lowland rivers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号