首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
鲜水河断裂与龙门山断裂交会区具有特殊的构造性质。通过对交会区GPS观测,得到欧亚框架下运动速度场。利用所得的运动速度结果,采用刚性地块假设下的最小二乘法拟合方法,得到川滇、川青、扬子地块运动速度分别为(19.2±2.8)mm/a、(10.7±3.2)mm/a、(9.7±1.6)mm/a,地块运动方向由SE逐渐变成SEE,呈现出顺时针旋卷特征;鲜水河断裂运动速度为(9.3±2.8)mm/a,断裂性质为左旋走滑;龙门山断裂运动速度为(1.2±2.2)mm/a,断裂性质为右旋挤压。  相似文献   

2.
通过对川滇地体、思茅地体白垩纪、古近纪地层古地磁数据以及新生代地壳构造特征的分析,结合青藏高原东南缘GPS监测研究结果,揭示了新生代时期青藏高原东南缘地壳块体的旋转变形特征.根据古地磁数据模拟计算得出~5Ma以来哀牢山-红河走滑断裂带(ARF)受川滇地体挤压而发生弯曲变形的南北向偏移速率至少为~13.05mm/a,奠边俯左旋走滑断裂带(DBPF)西侧思茅地体内部自~5Ma以来至少存在~2.08mm/a的东西向伸展分量,而DBPF 5Ma以来的南北向平均左旋走滑速度则至少为~1.66mm/a,与现今GPS监测结果基本一致.证明鲜水河-小江左旋走滑断裂带(XXF)的左旋走滑运动虽然没有切断ARF,但是川滇地体的南向顺时针旋转挤压作用导致了断裂带的南向弯曲变形,从而吸收了部分左旋走滑速率,造成左旋走滑运动在跨过ARF传递到DBPF后走滑速率发生了突变,由~10mm/a减小于2~3mm/a.缅泰地块和思茅地体在经历了渐新世-中新世时期以高黎贡山-实楷右旋走滑断裂带和ARF为边界的东南侧向顺时针旋转挤出运动之后,自5Ma开始,至少思茅地体与川滇地体一起,以XXF和DBPF为旋转边界发生了以东喜马拉雅构造节为近似中心的旋转挤出运动.  相似文献   

3.
鲜水河-小江左旋走滑断裂系是调节青藏高原东南部物质向东南挤出的大型边界断裂。云南巧家断裂作为小江断裂带北段,其晚第四纪走滑速率是认识川滇地块东部边界应变调节方式的关键。本文利用无人机航摄和地面激光扫描技术,获取了该断裂段穿过金沙江河谷区红路和蒙姑两处的高分辨率地形数据,恢复出断层错动T2和T3两期阶地陡坎上缘的左旋位错量分别为120±5~128±1 m和193±1~202±1 m。根据T3中次生碳酸盐的AMS-14C法测年结果,结合已有的类似阶地年龄数据,并经气候曲线校正后认为,区域上T2和T3被废弃应分别发生在冰后期和末次盛冰期末期,时间为8.5~11.2 ka BP和18.6~21.4 ka BP。据此估算,小江断裂带巧家段的晚第四纪平均走滑速率为10~13 mm/a。进一步统计分析小江断裂带的晚第四纪走滑速率,发现巧家至宜良以北的段落,总体保持着10~15 mm/a的高走滑速率。但从宜良向南,断裂走滑速率出现了分段递减的特征,至建水以南快速减小到中-北段的近十分之一。小江断裂带中-北段的高走滑速率以及向南的分段式递减现象,反映在宜良以北,小江断裂带的走滑剪切...  相似文献   

4.
川青地块在地貌上为川西高原,亦是青藏高原东北边缘最重要的构造单元。新的GPS监测资料表明,在欧亚框架内,川青地块及其邻近的龙门山带和华南地块西缘的地壳运动水平速度,具有自西向东由25.66mm/a递变下降到6.99mm/a的总趋势。速度矢量表现出顺时针涡旋转动。川青地块内具有局部应变积累的非均一的区域剪切。横切鲜水河断裂带中段新的GPS测量结果揭示,两侧地块间的平均左旋滑动速率约8mm/a;由于局部应变积累,断裂系南西侧的主断裂的移动速率为9.3mm/a,其间为拉分盆地和小的横向伸展断裂。鲜水河断裂系的左旋断裂滑动作用,调节了川青地块与川滇地块之间的相对运动。  相似文献   

5.
川青地块在地貌上为川西高原,亦是青藏高原东北边缘最重要的构造单元.新的GPS监测资料表明,在欧亚框架内,川青地块及其邻近的龙门山带和华南地块西缘的地壳运动水平速度,具有自西向东由25.66 mm/a递变下降到6.99 mm/a的总趋势.速度矢量表现出顺时针涡旋转动.川青地块内具有局部应变积累的非均一的区域剪切.横切鲜水河断裂带中段新的GPS测量结果揭示,两侧地块间的平均左旋滑动速率约8mm/a;由于局部应变积累,断裂系南西侧的主断裂的移动速率为93mm/a,其间为拉分盆地和小的横向伸展断裂.鲜水河断裂系的左旋断裂滑动作用,调节了川青地块与川滇地块之间的相对运动.  相似文献   

6.
地表地质调查发现,位于滇西北菱形断块中南部的周城—清水断裂在上新世早期已经开始活动,而断裂强烈活动时期在中更新世,晚更新世以来活动性减弱。断裂运动方式以左旋走滑为主,兼有逆冲分量,并发生过从逆冲到正断的转换,全新世活动不明显。根据断裂断错的上新世昔格达组湖相沉积地质及河流地貌进行的初步分析,可以判断该断裂晚第四纪以来的垂直活动速率为0.1 mm/a左右,明显小于周城—清水断裂北侧川滇菱形块体向南东方向的运动速度(13~14 mm/a)。这表明周城—清水断裂对印度板块与欧亚板块碰撞所形成的次生构造———川滇菱形块体的侧向挤出的调节作用很有限。  相似文献   

7.
川青地块在地貌上为川西高原,亦是青藏高原东北边缘最重要的构造单元。新的GPS监测资料表明,在欧亚框架内,川青地块及其邻近的龙门山带和华南地块西缘的地壳运动水平速度,具有自西向东由25.66mm/a递变下降到6.99mm/a的总趋势。速度矢量表现出顺时针涡旋转动。川青地块内具有局部应变积累的非均一的区域剪切。横切鲜水河断裂带中段新的GPS量结果揭示,两侧地块间的平均左旋滑动速率约8mm/a;由于局部应变积累,断裂系南西侧的主断裂的移动速率为9.3mm/a,其间为拉分盆地和小的横向伸展断裂。鲜水河断裂系的左旋断裂滑动作用,调节了川青地块与/11滇地块之间的相对运动。  相似文献   

8.
青藏高原中段活动断层运动速度及驱动机理   总被引:4,自引:1,他引:3  
在大比例尺活动断层勘测调查基础上,通过测定典型断层位移和活动时代,计算重要活动断层运动速度,分析青藏高原中段地壳水平运动规律。发现青藏高原中段晚更新世~全新世发育大量iW-iWW一近EW向活动断裂,其中昆仑山活动断裂、可可西里南缘活动断裂、通天河活动断裂、崩错活动断裂、念青唐古拉山东麓活动断裂和雅鲁藏布江活动断裂水平运动速度达6~10mm/a,风火山活动断裂、乌丽活动断裂和雁石坪活动断裂水平运动速度达3~4mm/a,唐古拉山活动断裂与格仁错活动断裂水平运动速度约2mm/a。自晚更新世以来,青藏高原中段存在显著的地壳东向运动,相对于柴达木地块的地壳东向运动速度自南北两侧向中部逐步增大,至唐古拉山地区达最大值约40mm/a。青藏高原中段断裂活动、地壳运动与近SN向构造挤压及地壳内部东向水平剪切存在动力学成因联系。  相似文献   

9.
右江地区北西向断裂起源于晚古生代右江盆地内发育的同沉积断裂,这些断裂近等间距平行分布,新生代以来发生了多期次左旋走滑活动,进而导致了右江地区整体发生简单剪切变形。利用三维沙箱模型展开了物理模拟实验,对新生代右江地区的变形机制进行了分析。实验结果表明,早期在红河断裂的左旋剪切错动和印支地块的顺时针旋转联合作用下,右江地区北西向断裂复活,并发生明显的左旋走滑活动;随后川滇地块发生东南向的挤出运动,对右江地区产生侧向挤压,导致了右江地区北西向断裂新一轮的快速左旋走滑活动,同时还导致了右江地区西部的地壳压缩增厚。实验证实新生代右江地区的简单剪切变形以及北西向断裂的走滑活动是印支地块和川滇地块挤出运动共同作用的结果,同时也是印度-欧亚板块碰撞产生的连锁反应之一。   相似文献   

10.
吴富峣  蒋良文  张广泽  宋章 《地质学报》2019,93(10):2656-2665
青藏高原的隆升和向东挤出使得青藏高原内部和周缘形成一系列强烈变形的次级块体,川滇地块是其中变形最为活跃的地块。德钦 中甸断裂是川滇地块的西边界断裂之一,晚第四纪以来断裂主要表现为右旋滑动,同时发育倾滑分量。在奔子栏镇 瓦卡镇以南至中甸一带,断层发育明显的正倾滑分量,在奔子栏镇 瓦卡镇以北则发育明显的逆倾滑分量。奔子栏镇一带是断层运动特征的改变部位,也是断层宏观走向改变的部位,这些特征表明奔子栏镇更是德钦 中甸走滑断裂的枢纽部位。研究表明德钦 中甸断裂在奔子栏镇附近的古地震平均复发周期为11. 35±2. 4ka,长期滑动速率1. 3~1. 7mm/a。按照构造类比原则,奔子栏镇是德钦 中甸断裂的地震成核部位,其潜在震级下限不会低于M7,潜在地震烈度下限不会低于Ⅹ度。  相似文献   

11.
通过对2013年"4.20"四川芦山地震前后GPS观测数据的处理,得到地震周围地区GPS测站同震位移及速度矢量场。GPS测站同震位移大小为5.09~51.05mm,平均为14.18mm;GPS测站运动速度为2.64~52.37mm/a,平均为18.89mm/a。利用断裂两侧GPS测站速度矢量差得到了龙门山断裂带南段次级断裂的运动速度,龙门山断裂带南段的后山断裂、中央断裂、前山断裂运动速度大小分别为49.66±3.90mm/a、79.58±3.33mm/a、50.94±3.91/a;中央断裂以右旋挤压为主,而后山断裂、前山断裂表现为左旋拉张的特性。综合分析表明,芦山地震是发生在龙门山断裂带南段东南侧的逆冲型地震,发震构造为前山断裂与新津断裂之间的小断层。芦山地震对周围地区的影响不大,主要集中在龙门山断裂带南段及震中附近区域。  相似文献   

12.
The geology and tectonics in the eastern margin of Tibetan Plateau are complex. The main tectonic framework is composed of blocks and faults. Using discontinuous global positioning system survey data for 2008–2014, the velocity field for the Eurasia reference framework was obtained. Based on the velocity field, the present-day velocities of the blocks and boundary faults were estimated. The results reveal that the movement rates of the Chuan-Qing, South China, Chuan-Dian and Indo-China blocks are(17.02±0.60) mm/a,(8.77±1.51) mm/a,(13.85±1.31) mm/a and(6.84 ± 0.74) mm/a, respectively, and their movement directions are 99.5°, 120.3°, 142.9° and 153.3°, respectively. All blocks exhibit clockwise rotation. The displacement rates of the Xianshuihe, Longmenshan, Anninghe, Zemuhe, Xiaojiang and Red River faults are(7.30±1.25–8.30±1.26) mm/a,(10.07±0.97–11.79±0.89) mm/a,(0.96±0.74–2.98±1.73) mm/a,(2.03±0.49–3.20±0.73) mm/a,(3.45±0.40–6.02±0.50) mm/a and(6.23±0.56) mm/a, respectively. The Xianshuihe, Anninghe, Zemuhe and Xiaojiang faults show leftlateral strike-slip movement, while the Longmenshan and Red River faults show right-lateral strikeslip. These characteristics of the blocks and faults are related to the particular tectonic location and dynamic mechanism.  相似文献   

13.
《Comptes Rendus Geoscience》2015,347(4):161-169
The Dead Sea Fault is a major strike-slip fault bounding the Arabia plate and the Sinai subplate. On the basis of three GPS campaign measurements, 12 years apart, at 19 sites distributed in Israel and Jordan, complemented by Israeli permanent stations, we compute the present-day deformation across the Wadi Arava fault, the southern segment of the Dead Sea Fault. Elastic locked-fault modelling of fault-parallel velocities provides a slip rate of 4.7 ± 0.7 mm/yr and a locking depth of 11.6 ± 5.3 km in its central part. Along its northern part, south of the Dead Sea, the simple model proposed for the central profile does not fit the velocity field well. To fit the data, two faults have to be taken into account, on both sides of the sedimentary basin of the Dead Sea, each fault accommodating  2 mm/yr. Locking depths are small (less than 2 km on the western branch, ∼ 6 km on the eastern branch). Along the southern profile, we are once again unable to fit the data using the simple model, similar to the central profile. It is very difficult to propose a velocity greater than 4 mm/yr, i.e. smaller than that along the central profile. This leads us to propose that a part of the relative movement from Sinai to Arabia is accommodated along faults located west of our profiles.  相似文献   

14.
In 2006, a cooperation project between China Geological Survey and the Geological Survey of Canada started the monitoring of the landslide along the deep-cut valley in the western Sichuan using integrated GPS and InSAR observation at the Jiaju landslide. Both GPS and InSAR techniques provided complementary measurements with the GPS providing horizontal movement and InSAR providing vertical motion. Meanwhile, InSAR images demonstrate also an effective tool to recognize new landslides in complex steep mountain region. The GPS observations provide continuous monitoring data while InSAR data provide monthly measurements. The differential InSAR results show a deformation information that divided the Jiaju landslide to two areas, the north and south parts. The north part is sliding greater than the southern part in spatial domain. The sliding was faster in 2008 than that in 2006 in time domain, suggesting a gradual increased acceleration over time. The GPS displacement data during the past 2  years show the northern part slid horizontally 55–207 mm/a and vertically −23 mm/a, while the southern part slid horizontally 12–34 mm/a; and the vertical displacement mainly moved downward 0.05 to 12 mm/a. On average, the observations from December of 2006 to January of 2008 indicate that the northern part is sliding at 41.6 mm/a horizontally and 43.9 mm/a vertically, while the southern part is sliding at 16.1 mm/a horizontally and 17.5 mm/a vertically. The data acquired through the GPS and InSAR are generally comparable. Geological survey revealed some secondary landslides, cracks, and fissures within the deformation of the Jiaju landslide that could be induced by following factors: surface water drainage, river erosion, and slope cutting and overloading.  相似文献   

15.
中国大陆现今构造运动的GPS速度场与活动地块   总被引:141,自引:11,他引:130  
张培震  王琪  马宗晋 《地学前缘》2002,9(2):430-441
GPS观测结果给出了在欧亚参考框架下周边板块的运动状态 ,印度板块的运动方向约NE2 0° ,速度是 40~ 42mm/a ;北美板块的运动方向约NW 2 80°~ 2 90° ,速度是 2 1~ 2 3mm/a ;菲律宾板块的运动方向是NW 2 90°~ 310° ,速度是 37~ 45mm/a ;哈萨克—西伯利亚地盾的运动方向约NE130° ,速度是 3~ 5mm/a。GPS所揭示的中国大陆现今运动场清晰地表现出了以活动地块为单元的分块运动特征。文中给出了各主要活动地块的运动方向和速度。大部分活动地块内部结构完整 ,以整体性的运动为主 ;个别活动地块内部发生构造变形 ,地块的整体性不好。中国大陆以活动地块为单元的现今构造变形可能与大陆岩石圈的结构和性质有关 ,上地壳以脆性变形为主 ,下地壳和上地幔以粘塑性的流变为特征 ,从底部驱动着上覆脆性地块的整体运动。  相似文献   

16.
The Dabie–Sulu collision belt in China extends to the Hongseong–Odesan belt in Korea while the Okcheon metamorphic belt in Korea is considered as an extension of the Nanhua rift within the South China block. The Hongseong–Odesan belt divides Korea's Gyeonggi massif into northern and southern portions. The southern Gyeonggi massif and the Yeongnam massif are correlated with China's Yangtze and Cathaysia blocks, respectively, while the northern Gyeonggi massif is part of the southern margin of the North China block. The southern and northern Gyeonggi massifs rifted from the Rodinia supercontinent during the Neoproterozoic, to form the borders of the South China and North China blocks, respectively. Subduction commenced along the southern and eastern borders of the North China block in the Ordovician and continued until a Triassic collision between the North China and South China blocks. While subduction was occurring on the margin of the North China block, high-P/T metamorphic belts and accretionary complexes developed along the inner zone of southwest Japan from the Ordovician to the Permian. During the subduction, the Hida belt in Japan grew as a continental margin or continental arc. Collision between the North and South China blocks began in Korea during the Permian (290–260 Ma), and propagated westwards until the Late Triassic (230–210 Ma) creating the sinistral TanLu fault in China and the dextral fault in the Hida and Hida marginal belt in Japan. Phanerozoic subduction and collision along the southern and western borders of the North China block led to formation of the Qinling–Dabie–Sulu–Hongseong–Hida–Yanji belt.  相似文献   

17.
The north–south trending Xiaojiang fault system accommodates ~10–12 mm/yr sinistral motions between southeastern Tibet and south China. In the south segment, the fault system composes mainly of four parallel strike-slip faults, namely from west to east, the Luzhijiang fault, the Yimen fault, the Puduhe fault, and the Xiaojiang fault. Geological and Seismological observations have shown that these strike-slip faults are all of active, while the slip rates of the Luzhijiang, the Yimen, and the Puduhe faults are much less than that of the Xiaojiang fault. We use finite element modeling to explore the mechanical relation between crustal rheology, effective fault friction and long-term slip rate partitioning among the four parallel faults. The individual faults are simplified as vertical discontinuities embedded in the crust as geophysical explorations have predicted. A large number of models are tested, associating with variations of the crustal rheolohy and the effective fault friction of individual faults. Result shows that if crust bounding the faults trends to behave like rigid blocks and decoupled mechanically from underlying layer, the modeled result is hard to approximate slip rates of the individual faults. To better fit slip rates of the individual faults, viscous deformation of the lower crust should be included. With a heterogeneously viscous lower-crust model that is built upon thermal structure of the heat flow data, associating with relatively low effective friction of the Xiaojiang fault, the modeled results fit the geological slip rates well, with ~1–1.5 mm/yr for the Luzhijiang, the Yimen and the Puduhe faults, and ~6–6.5 mm/yr for the Xiaojiang fault. Thus, in the southward movement of the Tibetan plateau around the eastern Himalayan syntaxis, slip partitioning among the Xiaojiang fault system should be related to viscous deformation of the lower crust associated with different strength of the individual faults, highlighting that deformation of this fault system is coupled mechanically between the frictional upper crust and the viscous lower crust.  相似文献   

18.
对四川丹巴县甲居滑坡开展的GPS监测表明,甲居滑坡可以分为南北两个区域,其中北部区域滑动较为明显;滑坡体北部水平位移速度53mm/a~200mm/a,垂直位移速度-3 mm/a~-21mm/a;滑坡体南部水平位移速度12mm/a~36mm/a,垂直位移速度-1mm/a~-5mm/a。GPS提供的水平位移量趋势性较好,而垂向位移量结果异常较多,反映出GPS的水平监测优势。GPS监测精度达到毫米级,完全满足滑坡监测的精度要求。  相似文献   

19.
《Gondwana Research》2014,25(3-4):946-957
In addition to crustal thickening, distinctly different mechanisms have been suggested to accommodate the huge convergences caused by the continental collision between India and Eurasia. As the transition zone between the two grand tectonic domains of Asia, the Tethys and the Pacific, east Tibet and its surrounding regions are the ideal places to study continental deformation. Pervasive rock deformation may produce anisotropy on the scale of seismic wavelengths; thus, seismic anisotropy provides insight into the deformation of the crust and mantle beneath tectonically active domains. In this study, we calculated receiver function pairs of radial- and transverse-components at 98 stations located in Sichuan and Yunnan provinces, China. We selected 7423 pairs with high signal-to-noise ratio (SNR) and unambiguous Moho converted Ps phases (Pms) to measure the Pms splitting owing to the crustal anisotropy. Both the crustal thickness and the average crustal Vp/Vs ratio were calculated simultaneously by the Hk stacking method. The geodynamic implications were also investigated in relation to surface geological features, GPS velocities, absolute plate motion (APM), SKS/SKKS splitting, and other seismological observations. In addition to the fast polarization directions (FPDs) of the crustal anisotropy, we observed a conspicuous sharper clockwise rotation around the eastern Himalayan syntaxis than was revealed by GPS velocities. The distributed FPDs within and near the main active fault zones also favored the directions parallel to the faults. This implied that the deformation of a continuous medium revealed by GPS motions is a proxy for the deformation of the brittle shallow crust only, while the main active faults and the deep crustal interiors both play important roles in the deep deformation. Our results suggest that the deformation between the crust and upper mantle within the northernmost section of the Indochina block is decoupled due to the large difference in the directions between the observations related to the crust (GPS and crustal anisotropy) and mantle (APM and mantle anisotropy). Focusing on the transition zone between the plateau and the South China and Indochina blocks, we suggest that the motion of the Central Yunnan sub-block is a southeastward extrusion by way of tectonic escape. There is less deformation in the deep crust and the motion is controlled by the active boundary faults of the Ailaoshan–Red River shear zone to the west and the Xianshuihe–Xiaojiang fault to the east; the lower crustal flow within the plateau southeastward reached the Lijiang–Xiaojinhe fault, but further south it was obstructed by the Central Yunnan sub-block.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号