首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Twenty groundwater samples were collected from Enugu metropolis over two seasonal periods in order to characterize the groundwater and to determine its quality for domestic and irrigation purposes. The results show that groundwater of the area is strongly acidic to slightly alkaline in nature and varied from “soft water” to “moderately hard” water type. The major ionic trend is in the order Cl> Na> HCO3 ? > K> Mg2+ > Ca2+ > SO4 2?and Mg2+ > Cl> Na> K> Ca2+ > HCO 3 > SO4 2? in abundance for dry and rainy seasons, respectively. The results also reveal that there is an increase in trend of the ionic concentrations during the dry season, which arises from weathering of the host rocks and anthropogenic activities. Two hydrochemical facies were identified, namely, Na+ –K+ –Cl? –SO4 2?and Ca2+ –Mg2+ –Cl? –SO4 2? , with Na+ –K+ –Cl? –SO4 2? as the dominant facies for the two seasons. Groundwater quality ranges from “very poor water” to “good water” and “water unsuitable for drinking purposes” to “good water” for the dry season and rainy season investigations, respectively. The groundwater is suitable for irrigation purposes for the two seasons.  相似文献   

2.
Groundwater samples collected from the East Bokaro coalfield of Jharkhand state, India during the dry and rainy seasons of the year 2012. Samples were analyzed for the assessment of groundwater quality in the study area. The results of the chemical analysis indicate that the pH values were found alkaline in nature during both the season. The major cations in groundwater was in the order of Na+>Ca2+>Mg2+>K+ during the dry season while Ca2+>Na+>Mg2+>K+ during the rainy season. The abundance of the major anions was of HCO3->SO42->Cl->NO3->F- did not change on the seasonal basis. The average NO3-concentration was exceeded the desirable limit for drinking water as per Indian standard in the rainy season. Silicate weathering was inferred to be a dominant process, controlling the groundwater chemistry in both seasons, with lesser contributions by carbonate weathering and ion exchange. Leaching of salts from the unsaturated zone also has a major impact on groundwater quality during the rainy season. The water quality data indicate that groundwater is generally suitable for irrigation. However, higher salinity and residual sodium carbonate values at some sites may limit groundwater use and therefore an adequate drainage and water management plan for the study area is required.  相似文献   

3.
Hydrogeochemistry of Wujiang River Water in Guizhou Province,China   总被引:9,自引:3,他引:9  
The chemical composition of Wujiang River water represents that of river water from the typical carbonate areas.Ite hydrogeochemical characteristics are different from those of global major rivers.The Wujiang River and its tributaries have high total dissolved solid concentrations,with Ca^2 and HCO3^- being dominant,Mg^2 and SO4^2- coming next.Both Na^ K^ and Cl^- Si account for 5%-10% of the total cations and anions,respectively,These general features show the chemical composition of river water is largely controlled by carbonate weathering,with the impact of silicate and evaporate weathering being of less importance.Production activity,minin practice and industrial pollution also have some influence on the chemical composition of rive water.  相似文献   

4.
The hydrochemistry of a perennial river has been investigated with multivariate cluster analysis (CA) and principal component analysis/factor analysis (PCA/FA). The aim was to investigate parameters responsible for spatial and temporal variations of river water quality. Water quality was monitored along the river basin at 20 different sites over a period of 1 year from July, 2008 to June, 2009. Multivariate statistics revealed that Ca2+, Mg2+, Na+, K+, HCO3 ?, Cl?, H4SiO4, SO4 2?, NO2 ?, and PO4 3? were influenced by seasonal and spatial variations and that water quality was in the first place determined more by natural weathering processes than by anthropogenic activities. We could prove by (a) Box and Whisker plot, (b) matrix scatter score mean plot, (c) ternary plot, and (d) Gibbs plot that the chemistry of river water is controlled by lithogenic weathering processes. The higher concentration of dissolved silica during summer and the pre-monsoon season is explained by natural and tropical climatic conditions of the environment.  相似文献   

5.
玉龙雪山地区大气降水中粉尘颗粒物特征研究   总被引:4,自引:1,他引:3  
以在玉龙雪山地区采集的大气降水样品为主要研究载体,分析了大气降水中粉尘颗粒物随时间的变化特征和影响大气降水中粉尘含量的潜在因素. 结果表明:大气降水中颗粒物浓度和典型粉尘特征化学离子含量的变化具有很好的一致性,且季风期末大气降水中的微粒含量显著升高,显示了明显的季节性变化特征. 丽江市和甘海子盆地大气降水中粉尘化学离子含量(SO42-,Mg2+,Ca2+,K+,NH4+,NO3-,粉尘浓度)之间具有较好的相关性,反映了这些离子共同的来源. 降水中pH值和电导率的变化很大程度上受到粉尘活动的影响,海盐气溶胶粒子对玉龙雪山地区大气降水中典型粉尘微粒(除Cl-和部分Na+之外)的沉降没有贡献. 此外,降水化学和微粒分析表明,丽江市区的大气环境不排除人为活动的影响.  相似文献   

6.
Groundwater of the unconfined aquifer (1,100 sq. km) of a two-tier coastal aquifer located in the Amol–Ghaemshahr plain, Mazandaran Province, Northern Iran, is classified into fresh and brackish water types. Fresh groundwater (FGW) samples (n = 36) are characterized by Ca2+ > Na> Mg2+ > K+ and HCO3 ? > Cl? > SO4 2? > NO3 ?. Spearman’s rank correlation coefficient matrices, factor analysis data, values of the C-ratio (av. = 0.89) and CAI and values of the molar ratios of Ca2+/HCO3 ?, Ca2+/SO4 2?, Mg2+/HCO3 ? and Mg2+/SO4 2? indicate that the ionic load in the FGW is derived essentially from carbonic acid-aided weathering of carbonates and aluminosilicates, saline/sea water trapped in the aquifer sediments (now admixed with the groundwater) and ion exchange reactions. Values of the CAI and Na+/Cl? molar ratio suggest that the part of the Ca2+ (±Mg2+) content in 23 FGW samples is derived from clay minerals of the aquifer matrix, and part of the Na+ content in 20, 12, and 3 FGW samples is derived, respectively, from alkali feldspar weathering, clay minerals of the aquifer matrix and rain water and/or halite. Brackish groundwater (BGW) samples (n = 4) contain Cl? as the dominant anion and their average total ionic concentration (38.65 meq/L) is 1.79 times higher than that of the FGW samples (21.50 meq/L). BGW pockets were generated by non-conservative mixing of FGW with the upconed saline water from the underlying saline groundwater zone of the semi-confined aquifer along bore wells involved in excessive extraction of groundwater from the unconfined aquifer. Groundwater belongs essentially to “high salinity, low sodium” irrigation water class.  相似文献   

7.
The Ganges River water and riverbank shallow groundwater were studied during a single wet season using the hydrochemical and isotopic composition of its dissolved load. The dissolved concentrations of major ions (Cl?, SO4 2?, NO3 ?, HCO3 ?, Ca2+, Na+, Mg2+, and K+), trace elements (barium (Ba) and strontium (Sr)) and stable isotopes (O and D) were determined on samples collected from the Ganges River and its riverbank shallow aquifers. In the present study, the shallow groundwater differs significantly from the Ganges River water; it shows distinct high concentrations of Ca2+, Mg2+, HCO3 ?, Ba, and Sr due to water–rock interaction and this in particular suggests that the Ganges River may not contribute significantly to the riverbank shallow aquifers during wet season. Besides, the sum of the total cationic charge (∑+, in milliequivalents per liter) in the groundwater shows high values (2.48 to 13.91 meq/L, average 9.12 meq/L), which is much higher than the sum of the cations observed in the Ganges water (1.36 to 3.10 meq/L, average 1.94 meq/L). Finally, the more depleted stable isotopic (δ 18O and δ 2H) compositions of the Ganges River water are in contrast to those of the riverbank aquifer having enriched stable isotopic values during the wet season and the riverbank groundwater thus has a purely local origin from precipitation.  相似文献   

8.
Major ions showed high concentrations, ionic strength and chemical activity in the surface waters of Govind Ballabh Pant Sagar reservoir. Various geochemical ratios showed the dominance of silicate over carbonate weathering and major ions such as Na+ + K+ account for about 52 % of the cation budget. The high Na+ and K+ showed sedimentation of rock/coal particles consisting of highly weathered silicate minerals contributed by the discharge of mine water, fly ash mixing during transportation, etc. Further, Ca2+ + Mg2+/Na+ + K+ ratio was <1 (0.92) indicating the occurrence of silicate weathering in the reservoir catchment. The comparative assessment showed that the proportion of Ca2+ + Mg2+/Na+ + K+ tends to be lower along the coal mining belts compared to non-coal mining regions in the world. The Ca2+/SO4 2? ratio <1 revealed not only H2CO3 but H2SO4 also acting as a source of protons for rock weathering. The cause underlying these differences can be related directly to geological substrate and anthropogenic activities.  相似文献   

9.
The chemistry of the rainwater indirectly reflects the composition of the ions in the atmosphere. The study of the rainwater gains its own importance as it forms the basis for the agricultural, domestic and drinking water. Twelve rainwater samples were collected along the southeastern coast of India during southwest monsoon. The samples were analyzed for the major anions (Cl?, SO4 2?, PO4 3? and HCO3 ?) and cations (Na+, K+, Ca2+ and Mg2+). The majority of the samples reflect acidic pH. The general dominance of the cations is in the order of Na+ > Ca2+ > K+ > Mg2+ and that of anions is HCO3 ? > Cl? > SO4 2? > PO4 3?. The water is classified as calcium bicarbonate to sodium bicarbonate type. The decrease of pH value also increases the pCO2. In order to study the impact of acidic and alkaline species on rainwater, correlation coefficients were determined for establishing the relationship between different ions. Good correlation was established between cations, and sulfate has no correlation with other ions and pH. Factor analysis reveals that land use pattern, marine source and methanogenesis from the tidal influenced mangroves play a major role in determining the rainwater chemistry of the region.  相似文献   

10.
Agricultural activities act as dominant polluter of groundwater due to increased fertilizers and pesticides usage. Bist-Doab region, Punjab, India, is one such region facing deterioration of groundwater quality due to usage of fertilizers. This study aims in delineating and evaluating the groundwater quality in the region. Water samples are collected from canals, reservoir, and shallow and deep groundwater. Water types in canal and reservoir in Kandi region are Mg2+HCO3 ? and Mg2+Ca2+Na+HCO3 ?, respectively. While water types of shallow and deep groundwaters are found to be of two types: Na+Mg2+Ca2+HCO3 ? and Ca2+Mg2+Na+HCO3 ?. Presence of Mg2+ in groundwater at locations adjoining canals indicates recharge due to canal. The major ion (Na+, Mg2+, Ca2+, HCO3 ?) chemistry of the region is due to weathering of rocks that are rich in sodic minerals and kankar. Deep groundwater quality in the region meets BIS and WHO standards for drinking purpose, unlike shallow groundwater which is of poor quality at many locations. Both shallow and deep groundwater with high sodium concentration (>1.5 meq/l) affect cropping yield and permeability of soil matrix. High concentration of SO4 2? and NO3 2? (>1 meq/l) in shallow groundwater at few locations indicates influence of anthropogenic (fertilizer) activity. Factor analysis indicates that the major cations, bicarbonate and chloride are derived from weathering/dissolution of source rocks. Higher concentration of nitrate and presence of sulphate in shallow groundwater at few locations is due to usage of fertilizers and pesticides.  相似文献   

11.
Groundwater survey has been carried out in the area of Gummanampadu sub-basin located in Guntur District, Andhra Pradesh, India for assessing the factors that are responsible for changing of groundwater chemistry and consequent deterioration of groundwater quality, where the groundwater is a prime source for drinking and irrigation due to non-availability of surface water in time. The area is underlain by the Archaean Gneissic Complex, over which the Proterozoic Cumbhum rocks occur. The results of the plotting of Ca2+ + Mg2+ versus HCO3 ? + CO3 2?, Ca2+ + Mg2+ versus total cations, Na+ + K+ versus total cations, Cl? + SO4 2? versus Na+ + K+, Na+ versus Cl?, Na+ versus HCO3 ? + CO3 2?, Na+ versus Ca2+ and Na+: Cl? versus EC indicate that the rock–water interaction under alkaline condition is the main mechanism in activating mineral dissociation and dissolution, causing the release of Ca2+, Mg2+, Na+, K+, HCO3 ?, CO3 2?, SO4 2? and F? ions into the groundwater. The ionic relations also suggest that the higher concentrations of Na+ and Cl? ions are the results of ion exchange and evaporation. The influences of anthropogenic sources are the other cause for increasing of Mg2+, Na+, Cl?, SO4 2? and NO3 ? ions. Further, the excess alkaline condition in water accelerates more effective dissolution of F?-bearing minerals. Moreover, the chemical data plotted in the Piper’s, Gibbs’s and Langelier–Ludwig’s diagrams, computed for the chloro-alkaline and saturation indices, and analyzed in the principal component analysis, support the above hypothesis. The groundwater quality is, thus, characterized by Na+ > Ca2+ > Mg2+ > K+: HCO3 ? + CO3 2? > Cl? > SO4 2? > NO3 ? > F? facies. On the other hand, majority of groundwater samples are not suitable for drinking with reference to the concentrations of TDS, TH, Mg2+ and F?, while those are not good for irrigation with respect to USSL’s and Wilcox’s diagrams, residual sodium carbonate, and magnesium hazard, but they are safe for irrigation with respect to permeability index. Thus, the study recommends suitable management measures to improve health conditions as well as to increase agricultural output.  相似文献   

12.
In order to study the major ion chemistry and controls of groundwater, 65 groundwater samples were collected and their major ions measured from wells within Lhasa River Basin. Groundwater has the characteristics of slightly alkaline and moderate total dissolved solid (TDS). TDS concentration ranged from 122.0 to 489.9 mg/L with a median value of 271.2 mg/L. Almost all the groundwater samples suited for drinking and irrigation. The major cations of groundwater are Ca2+ and Mg2+, accounting for 59.6 and 31.3% of the cations, respectively. Meanwhile, HCO3? and SO42? constituted about 56.7 and 36.9% of the anions, respectively, in Lhasa River Basin. The hydrochemical type of groundwater is HCO3-SO4-Ca-Mg. The chemical composition of groundwater samples located in the middle of Gibbs model, which indicates that the major chemical process of groundwater is controlled by rock weathering. Carbonate weathering was the dominant hydro-geochemical process controlling the concentration of major ions in groundwater within Lhasa River Basin, but silicate weathering also plays an important role.  相似文献   

13.
A comprehensive and systematic study to understand various geochemical processes as well as process drivers controlling the water quality and patterns of the hydrochemical composition of river water in Muthirapuzha River Basin, MRB (a major tributary of Periyar, the longest river in Kerala, India), was carried out during various seasons, such as monsoon, post-monsoon and pre-monsoon of 2007–2008, based on the data collected at 15 monitoring stations (i.e., 15 × 3 = 45 samples). Ca2+ and Mg2+ dominate the cations, while Cl? followed by HCO3 ? dominates the anions. In general, major ion chemistry of MRB is jointly controlled by weathering of silicate and carbonate rocks, which is confirmed by relatively larger Ca2+ + Mg2+/Na+ K+ ratios as well as Ca2+/Na+ vs. Mg2+/Na+ and Ca2+/Na+ vs. HCO3 ?/Na+ scatter plots. The relationship between Cl? and Na+ implies stronger contributions of anthropogenic activities modifying the hydrochemical composition, irrespective of seasons. The water types emerged from this study are transitional waters or waters that changed their chemical character by mixing with waters of geochemically different ionic signatures. However, various ionic ratios, hydrochemical plots and graphical diagrams suggest seasonality over the hydrochemical composition, which is solely controlled by the rainfall pattern. Relatively higher pCO2 indicates the disequilibrium existing in natural waterbodies vis-à-vis the atmosphere, which is an outcome of both the contribution of groundwater to stream discharge and anthropogenic activities. Hence, continuous monitoring of hydrochemical composition of mountain rivers is essential in the context of climate change, which has serious implications on tropical mountain fluvial-hydro systems.  相似文献   

14.
Mine water samples collected from different mines of the North Karanpura coalfields were analysed for pH, electrical conductivity, total dissolved solids (TDS), total hardness (TH), major anions, cations and trace metals to evaluate mine water geochemistry and assess solute acquisition processes, dissolved fluxes and its suitability for domestic, industrial and irrigation uses. Mine water samples are mildly acidic to alkaline in nature. The TDS ranged from 185 to 1343 mg L?1 with an average of 601 mg L?1. Ca2+ and Mg2+ are the dominant cations, while SO4 2? and HCO3 ? are the dominant anions. A high concentration of SO4 2? and a low HCO3 ?/(HCO3 ? + SO4 2?) ratio (<0.50) in the majority of the water samples suggest that either sulphide oxidation or reactions involving both carbonic acid weathering and sulphide oxidation control solute acquisition processes. The mine water is undersaturated with respect to gypsum, halite, anhydrite, fluorite, aluminium hydroxide, alunite, amorphous silica and oversaturated with respect to goethite, ferrihydrite, quartz. About 40% of the mine water samples are oversaturated with respect to calcite, dolomite and jarosite. The water quality assessment shows that the coal mine water is not suitable for direct use for drinking and domestic purposes and needs treatment before such utilization. TDS, TH, F?, SO4 2?, Fe, Mn, Ni and Al are identified as the major objectionable parameters in these waters for drinking. The coal mine water is of good to suitable category for irrigation use. The mines of North Karanpura coalfield annually discharge 22.35 × 106 m3 of water and 18.50 × 103 tonnes of solute loads into nearby waterways.  相似文献   

15.
The detailed hydro-chemical study of meltwater draining from Khangri glacier Arunachal Pradesh has been carried out to evaluate the major ion chemistry and weathering processes in the drainage basin. The investigative results shows that the meltwater is almost neutral to slightly acidic in nature with Mg–HCO3-dominated hydro-chemical facies. In glacial meltwater, Ca+?2 is the most dominated cation followed by Mg+2, Na+, and K+, while HCO3? is the most dominant anion followed by SO42?, NO3?, and Cl?. The dominant cations such as Ca+2 and Mg+2 show a good relation with the minerals abundance of the rocks. Calcite (CaCO3) and biotite [K(Mg,Fe)3AlSi3O10(F,OH)2] are the most abundant minerals in the deformed carbonate-rich metasedimentary rocks near to the snout with some K feldspar (KAlSi3O8) and quartz (SiO2). This suggests Ca+2 have definitely entered into the water due to the dissolution of calcite and Ca feldspar (CaAl2Si2O8), while one of the source of Mg+2 is biotite. Na feldspar (NaAlSi3O8) has contributed towards the availability of sodium ion, while potassium ion is derived from the chemical weathering of K feldspar and biotite. The chemical weathering is the foremost mechanism controlling the hydro-chemistry of the Khangri glacier because of the least anthropogenic interferences. The mineralogy of surrounding rocks is studied to understand better, the rock–water interaction processes, and their contribution towards ionic concentration of meltwater. The meltwater discharge and individual ion flux of the catchment area have also been calculated, to determine the ionic denudation rate for the ablation season. The high elemental ratio of (Ca?+?Mg)/(Na?+?K) (7.91?±?0.39 mg/l) and low elemental ratio of (Na?+?K)/total cations (0.11?±?0.004) indicate that the chemical composition of meltwater is mainly controlled by carbonate weathering and moderately by silicate weathering. The scatter plot result between (Ca?+?Mg) and total cations confirms that carbonate weathering is a major source of dissolved ions in Khangri glacier meltwater. In addition, the statistical analysis was also used to determine the correlation between physical parameters of glacier meltwater which controlled the solute dynamics.  相似文献   

16.
Biogeochemical processes were investigated in alpine river—Kamni?ka Bistrica River (North Slovenia), which represents an ideal natural laboratory for studying anthropogenic impacts in catchments with high weathering capacity. The Kamni?ka Bistrica River water chemistry is dominated by HCO3 ?, Ca2+ and Mg2+, and Ca2+/Mg2+ molar ratios indicate that calcite weathering is the major source of solutes to the river system. The Kamni?ka Bistrica River and its tributaries are oversaturated with respect to calcite and dolomite. pCO2 concentrations were on average up to 25 times over atmospheric values. δ13CDIC values ranged from ?12.7 to ?2.7 ‰, controlled by biogeochemical processes in the catchment and within the stream; carbonate dissolution is the most important biogeochemical process affecting carbon isotopes in the upstream portions of the catchment, while carbonate dissolution and organic matter degradation control carbon isotope signatures downstream. Contributions of DIC from various biogeochemical processes were determined using steady state equations for different sampling seasons at the mouth of the Kamni?ka Bistrica River; results indicate that: (1) 1.9–2.2 % of DIC came from exchange with atmospheric CO2, (2) 0–27.5 % of DIC came from degradation of organic matter, (3) 25.4–41.5 % of DIC came from dissolution of carbonates and (4) 33–85 % of DIC came from tributaries. δ15N values of nitrate ranged from ?5.2 ‰ at the headwater spring to 9.8 ‰ in the lower reaches. Higher δ15N values in the lower reaches of the river suggest anthropogenic pollution from agricultural activity. Based on seasonal and longitudinal changes of chemical and isotopic indicators of carbon and nitrogen in Kamni?ka Bistrica River, it can be concluded that seasonal changes are observed (higher concentrations are detected at low discharge conditions) and it turns from pristine alpine river to anthropogenic influenced river in central flow.  相似文献   

17.
Groundwater of an aquifer located in the vicinity of a large coal washery near Zarand City, Iran consists of two hydrochemically differing facies, which have been informally designated as groundwater (A) and groundwater (B). Groundwater (A) is native, brackish in composition and is characterized by Na+ > Mg2+ > Ca2+ > K+ and SO4 2? > HCO3 ? > Cl? > NO3 ?. Spearman’s rank correlation coefficient matrices, factor analysis data, and values of chloro-alkaline indices, C ratio and Na+/Cl? molar ratio indicate that in the groundwater (A), the ionic load of Ca2+, Mg2+, Na+, K+, SO4 2? and HCO3 ? is derived essentially from weathering of both carbonates and aluminosilicates and direct cation and reverse cation–anion exchange reactions. Groundwater (B) is the polluted variant of the groundwater (A), brackish to saline in composition, and unlike the groundwater (A), consists of HCO3 ? as the dominant anion. In comparison with the groundwater (A), the groundwater (B) contains higher concentrations of all ions, and its average ionic load (av. = 59.74 me/L) is 1.43 times higher than that of the groundwater (A) (av. = 41.54 me/L). Additional concentrations of Ca2+, Mg2+, K+, SO4 2?, Cl? and HCO3 ? in the groundwater (B) are provided mainly by downward infiltrating water from the coal washery tailings pond and reverse cation–anion exchange reaction between tailings pond water and exchanger of the aquifer matrix during non-conservative mixing process of groundwater (A) and tailings pond water. Certain additional concentrations of Na+, K+ and NO3 ? in the groundwater (B) are provided by other anthropogenic sources. Quality wise, both groundwaters are marginally suitable for cultivation of salt-tolerant crops only.  相似文献   

18.
19.
The Begnas Lake in the Pokhara Valley is one of the threatened habitats in Nepal. The major ion chemistry explains the status of most of the inorganic nutrients and their possible sources. However, the earlier studies mostly cover limnological investigations, and phytoplankton and zooplankton diversity. Thus, the present study has been conducted to investigate the geochemical processes and to examine the seasonal variation of chemical composition within Begnas Lake. The results showed that SO 4 2- , PO 4 3- , and NO 3 - increased compared with the previous values. The domination of Ca2+, Mg2+, and HCO 3 - explains the influence of carbonate weathering on the major ion concentration. In general, pH and dissolved oxygen decreased with the depth of water-column, while electric conductivity, total dissolved solids, HCO 3 - , Cl-, H4SiO4, K+, Mg2+, Ca2+, Mn2+, and Fe increased. Among the cations, the predominance of Ca2+ and Mg2+ as characterized by high (>0.6) (Ca2+ + Mg2+)/(Tz+) and (>0.8) (Ca2+ + Mg2+)/(Na+ + K+) equivalent ratios, also suggests prevalence of carbonate weathering. The low value of (Na+ + K+)/Tz+ ratio shows deficiency of Na+ and K+, suggesting low contribution of cations via aluminosilicate weathering. The C-ratio suggests a proton source derived both from oxidation of sulfide and dissolution and dissociation of atmospheric CO2 during different seasons. Though the major hydro-chemical parameters are within permissible limit, the increase in trophic state of the lake suggests that inherent biogeochemical processes make the limiting nutrients available, rendering eutrophic effect. Therefore, further comprehensive studies incorporating sediment–water interaction ought to be carried out to explain the ongoing phenomena and curb the eutrophication process in the lake.  相似文献   

20.
As one of the most arid regions in the world, the study area, Zhangye Basin is located in the middle reaches of the Heihe River, northwest China. Besides aridity, rapid social and economic development also stimulates greater demand for water, which is gradually fulfilled by groundwater extraction. In this study, the conventional hydrochemical techniques and statistical analyses were applied to examine the major ions chemistry and hydrochemical processes of groundwater in the Zhangye Basin. The results of chemical analysis indicate that no one pair of cations and anions proportions is more than 50% in the groundwater samples of the study area. High-positive correlations were obtained among the following ions: HCO3 ?–Mg2+, SO4 2?–Mg2+, SO4 2?–Na+ and Cl?–Na+. TDS depends mainly on the concentration of major ions such as HCO3 ?, SO4 2?, Cl?, Mg2+ and Na+. The hydrochemical types in the area can be divided into two major groups: the first group includes Mg2+–Na+–HCO3 ?, Mg2+–Na+–Ca2+–HCO3 ?–SO4 2? and Mg2+–Ca2+–Na+–SO4 2?–HCO3 ? types. The second group comprises Mg2+–Ca2+–SO4 2? type, Mg2+–Ca2+–SO4 2?–Cl? type and Mg2+–Na+–SO4 2?–Cl? type. The ionic ratio plot and saturation index calculation suggests that the silicate weathering, to some extent, and evaporation are dominant factors that determine the major ionic composition in the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号