首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Three different models have been proposed for LiBeB production bycosmic rays: the CRI model in which the cosmic rays areaccelerated out of an ISM of solar composition scaled withmetallicity; the CRS model in which cosmic rays with compositionsimilar to that of the current epoch cosmic rays are acceleratedout of fresh supernova ejecta; and the LECR model in which adistinct low energy component coexists with the postulated cosmicrays of the CRI model. These models are usually distinguished bytheir predictions concerning the evolution of the Be and Babundances. Here we emphasize the energetics which favor the CRSmodel. This model is also favored by observations showing that thebulk (80 to 90%) of all supernovae occur in hot, low densitysuperbubbles, where supernova shocks can accelerate the cosmicrays from supernova ejecta enriched matter. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Numerical simulations of the multi-phase interstellar medium have been carried out, using a 3D, nonlinear, magnetohydrodynamic, shearing-box model, with random motions driven by supernova explosions. These calculations incorporate the effects of magnetic fields and rotation in 3D; these play important dynamical roles in the galaxy, but are neglected in many other simulations. The supernovae driving the motions are not arbitrarily imposed, but occur where gas accumulates into cold, dense clouds; their implementation uses a physically motivated model for the evolution of such clouds. The process is self-regulating, and produces mean supernova rates as part of the solution. Simulations with differing mean density show a power law relation between the supernova rate and density, with exponent 1.7; this value is within the range suggested from observations (taking star formation rate as a proxy for supernova rate). The global structure of the supernova driven medium is strongly affected by the presence of magnetic fields; e.g. for one solution the filling factor of hot gas is found to vary from 0.19 (with no field) to 0.12 (with initial mid-plane field B 0 = 6 μG).  相似文献   

3.
The feedback effect of supernova explosions on dwarf galaxies in the cold dark matter dominated universe is studied. A mass loss model of galaxies and a method of comparing the model with observations are developed. It is found that when a galaxy is surrounded by a dark halo, the mass loss caused by supernova explosions is severely restricted, but not as severely as was expected. if we assume the collapse redshift to be z = 2 ∼ 8, the model agrees with the observations for the range of parameters chosen, and indicates that less massive galaxies are formed first.  相似文献   

4.
The origin of cosmic rays is one of the key questions in high-energy astrophysics. Supernovae have been always considered as the dominant sources of cosmic rays below the energy spectrum knee. Multi-wavelength observations indeed show that supernova remnants are capable for accelerating particles into sub-PeV (1015 eV) energies. Diffusive shock acceleration is considered as one of the most efficient acceleration mechanisms of astrophysical high-energy particles, which may just operate effectively in the large-scale shocks of supernova remnants. Recently, a series of high-precision ground and space experiments have greatly promoted the study of cosmic rays and supernova remnants. New observational features challenge the classical acceleration model by diffusive shock and the application to the scenario of supernova remnants for the origin of Galactic cosmic rays, and have deepened our understanding to the cosmic high-energy phenomena. In combination with the time evolution of radiation energy spectrum of supernova remnants, a time-dependent particle acceleration model is established, which can not only explain the anomalies in cosmic-ray distributions around 200 GV, but also naturally form the cosmic-ray spectrum knee, even extend the contribution of supernova particle acceleration to cosmic ray flux up to the spectrum ankle. This model predicts that the high-energy particle transport behavior is dominated by the turbulent convection, which needs to be verified by future observations and plasma numerical simulations relevant to the particle transport.  相似文献   

5.
We investigate whether the recently observed population of high-velocity white dwarfs can be derived from a population of binaries residing initially within the thin disc of the Galaxy. In particular, we consider binaries where the primary is sufficiently massive to explode as a Type II supernova. A large fraction of such binaries are broken up when the primary then explodes as a supernova, owing to the combined effects of the mass loss from the primary and the kick received by the neutron star on its formation. For binaries where the primary evolves to fill its Roche lobe, mass transfer from the primary leads to the onset of a common envelope phase during which the secondary and the core of the primary spiral together as the envelope is ejected. Such binaries are the progenitors of X-ray binaries if they are not broken up when the primary explodes. For those systems that are broken up, a large number of the secondaries receive kick velocities ∼100–200 km s−1 and subsequently evolve into white dwarfs. We compute trajectories within the Galactic potential for this population of stars and relate the birth rate of these stars over the entire Galaxy to those seen locally with high velocities relative to the local standard of rest (LSR) . We show that for a reasonable set of assumptions concerning the Galactic supernova rate and the binary population, our model produces a local number density of high-velocity white dwarfs compatible with that inferred from observations. We therefore propose that a population of white dwarfs originating in the thin disc may make a significant contribution to the observed population of high-velocity white dwarfs.  相似文献   

6.
宇宙线的起源是高能天体物理的核心问题之一.一直以来,超新星爆发被认为是能谱膝区以下宇宙线的主要来源.多波段观测表明,超新星遗迹有能力加速带电粒子至亚PeV (10~(15)eV)能量.扩散激波加速被认为是最有效的天体高能粒子加速机制之一,而超新星遗迹的大尺度激波正好为这一机制提供平台.近年来,一系列较高精度的地面和空间实验极大地推动了对宇宙线以及超新星遗迹的研究.新的观测事实挑战着传统的扩散激波加速模型以及其在银河系宇宙线超新星遗迹起源学说上的应用,深化了人们对宇宙高能现象的认识.结合超新星遗迹辐射能谱的时间演化特性,构建的时间依赖的超新星遗迹粒子加速模型,不仅能够解释200 GV附近宇宙线的能谱反常,还自然地形成能谱膝区,甚至可以将超新星遗迹粒子加速对宇宙线能谱的贡献延伸至踝区.该模型预期超新星遗迹中粒子的输运行为表现为湍流扩散,这需要未来的观测以及与粒子输运相关的等离子体数值模拟工作来进一步验证.  相似文献   

7.
We present an analysis of archival X-ray observations of the Type IIL supernova SN 1979C. We find that its X-ray luminosity is remarkably constant at (6.5 ± 0.1) × 1038 erg s?1 over a period of 12 years between 1995 and 2007. The high and steady luminosity is considered as possible evidence for a stellar-mass (~5–10 M) black hole accreting material from either a supernova fallback disk or from a binary companion, or possibly from emission from a central pulsar wind nebula. We find that the bright and steady X-ray light curve is not consistent with either a model for a supernova powered by magnetic braking of a rapidly rotating magnetar, or a model where the blast wave is expanding into a dense circumstellar wind.  相似文献   

8.
We present new results of our kinematic study of the supernova remnant S8 in the galaxy IC 1613. Based on our observations at the 6-m Special Astrophysical Observatory telescope with the two-dimensional MPFS spectrograph and the SCORPIO focal reducer in the mode of a scanning Fabry-Perot interferometer, we have determined the expansion velocity of the bright optical nebula. Analysis of the 21-cm VLA radio observations for the galaxy confirms our previously suggested model for a supernova explosion in a cavity surrounded by a dense HI shell and a collision of S8 with the shell wall.  相似文献   

9.
Very recently the Chandra first light observation discovered a point-like source in the Cassiopeia A supernova remnant. This detection was subsequently confirmed by the analyses of the archival data from both ROSAT and Einstein observations. Here we compare the results from these observations with the scenarios involving both black holes (BHs) and neutron stars (NSs). If this point source is a BH, we offer as a promising model a disk-corona type model with a low accretion rate in which a soft photon source at approximately 0.1 keV is Comptonized by higher energy electrons in the corona. If it is an NS, the dominant radiation observed by Chandra most likely originates from smaller, hotter regions of the stellar surface, but we argue that it is still worthwhile to compare the cooler component from the rest of the surface with cooling theories. We emphasize that the detection of this point source itself should potentially provide enormous impacts on the theories of supernova explosion, progenitor scenario, compact remnant formation, accretion to compact objects, and NS thermal evolution.  相似文献   

10.
A nonlinear model of cosmic-ray acceleration at the shock fronts in the supernova remnants W28, W44, and IC433 is investigated. The hydrodynamic evolution of a supernova remnant, including the shock modification by the pressure of accelerated particles and the streaming instability of particles upstream of the shock propagating in a partially ionized interstellar gas, is modeled. The electromagnetic radiation generated by accelerated particles is calculated and compared with observations in a wide range of photon energies.  相似文献   

11.
If Type II supernovae – the evolutionary end points of short-lived, massive stars – produce a significant quantity of dust  (>0.1 M)  then they can explain the rest-frame far-infrared emission seen in galaxies and quasars in the first Gyr of the Universe. Submillimetre (submm) observations of the Galactic supernova remnant, Cas A, provided the first observational evidence for the formation of significant quantities of dust in Type II supernovae. In this paper, we present new data which show that the submm emission from Cas A is polarized at a level significantly higher than that of its synchrotron emission. The orientation is consistent with that of the magnetic field in Cas A, implying that the polarized submm emission is associated with the remnant. No known mechanism would vary the synchrotron polarization in this way and so we attribute the excess polarized submm flux to cold dust within the remnant, providing fresh evidence that cosmic dust can form rapidly. This is supported by the presence of both polarized and unpolarized dust emission in the north of the remnant where there is no contamination from foreground molecular clouds. The inferred dust polarization fraction is unprecedented  ( f pol∼ 30 per cent)  which, coupled with the brief time-scale available for grain alignment (<300 yr), suggests that supernova dust differs from that seen in other Galactic sources (where   f pol= 2−7  per cent) or that a highly efficient grain alignment process must operate in the environment of a supernova remnant.  相似文献   

12.
Massive stars     
We describe the present state of massive star research seen from the viewpoint of stellar evolution, with special emphasis on close binaries. Statistics of massive close binaries are reasonably complete for the Solar neighbourhood. We defend the thesis that within our knowledge, many scientific results where the effects of binaries are not included, have an academic value, but may be far from reality. In chapter I, we summarize general observations of massive stars where we focus on the HR diagram, stellar wind mass loss rates, the stellar surface chemistry, rotation, circumstellar environments, supernovae. Close binaries can not be studied separately from single stars and vice versa. First, the evolution of single stars is discussed (chapter I). We refer to new calculations with updated stellar wind mass loss rate formalisms and conclusions are proposed resulting from a comparison with representative observations. Massive binaries are considered in chapter II. Basic processes are briefly described, i.e. the Roche lobe overflow and mass transfer, the common envelope process, the spiral-in process in binaries with extreme mass ratio, the effects of mass accretion and the merging process, the implications of the (asymmetric) supernova explosion of one of the components on the orbital parameters of the binary. Evolutionary computations of interacting close binaries are discussed and general conclusions are drawn. The enormous amount of observational data of massive binaries is summarized. We separately consider the non-evolved and evolved systems. The latter class includes the semi-detached and contact binaries, the WR binaries, the X-ray binaries, the runaways, the single and binary pulsars. A general comparison between theoretical evolution and observations is combined with a discussion of specially interesting binaries: the evolved binaries HD 163181, HD 12323, HD 14633, HD 193516, HD 25638, HD 209481, Per and Sgr; the WR+OB binary V444 Cyg; the high mass X-ray binaries Vela X-1, Wray 977, Cyg X-1; the low mass X-ray binaries Her X-1 and those with a black hole candidate; the runaway Pup, the WR+compact companion candidates Cyg X-3, HD 50896 and HD 197406. We finally propose an overall evolutionary model of massive close binaries as a function of primary mass, mass ratio and orbital period. Chapter III deals with massive star population synthesis with a realistic population of binaries. We discuss the massive close binary frequency, mass ratio and period distribution, the observations that allow to constrain possible asymmetries during the supernova explosion of a massive star. We focuss on the comparison between observed star numbers (as a function of metallicity) and theoretically predicted numbers of stellar populations in regions of continuous star formation and in starburst regions. Special attention is given to the O-type star/WR star/red supergiant star population, the pulsar and binary pulsar population, the supernova rates. Received 17 July 1998  相似文献   

13.
We propose to use a global (wide-angle, of the order of several degrees) distribution of linearly polarized emission over the sky to detect light echoes of historical supernovae exploded in our Galaxy. The echo emission must be polarized tangential to the direction of the supernova explosion site, and its degree of polarization must exhibit a characteristic dependence on angular distance. The near infrared is an optimum spectral range for detection. A spotted structure in the shape of a ring ~5° in diameter and ~3° in width with a total brightness of ~12–13m in polarized light with a tangential orientation of the electric vector must be currently seen in the direction where Tycho Brahe observed a supernova explosion in 1572. A comparison of the expected intensity of the echo with the intensities of the zodiacal light and the atmosphere shows that it can be detected in principle during long-term observations from space and, under favorable conditions, even from the ground.  相似文献   

14.
It is greatly expected that the relic neutrino background from past supernovae will be detected by Superkamiokande (SK) which is now under construction. We calculate the spectrum and the event rate at SK systematically by using the results of simulations of a supernova explosion and reasonable supernova rates. We also investigate the effect of a cosmological constant, Λ, on the spectrum, since some recent cosmological observations strongly suggest the existence of Λ. We find following results. (1) The spectrum has a peak at about 3 MeV, which is much lower than that of previous estimates (6–10 MeV). (2) The event rate at SK in the range from 10 MeV to 50 MeV, where the relic neutrinos from past supernovae are dominant, is about 25h502(RSN/0.1 yr−1)(nGh50−3/0.02 Mpc−3) events per year, where RSN is the supernova rate in a galaxy, nG is the number density of galaxies, and h50 = H0/(50 km/s Mpc), where H0 is the Hubble constant. (3) The event rate is almost insensitive to Λ. The flux increases in the low energy side (< 10 MeV) with increasing Λ, but decreases in the high energy side (> 10 MeV) in models in which the integrated number of supernovae in one galaxy is fixed.  相似文献   

15.
We consider the galactic population of gamma-ray pulsars as possible sources of cosmic rays at and just above the “knee” in the observed cosmic ray spectrum at 1015–1016 eV. We suggest that iron nuclei may be accelerated in the outer gaps of pulsars, and then suffer partial photo-disintegration in the non-thermal radiation fields of the outer gaps. As a result, protons, neutrons, and surviving heavier nuclei are injected into the expanding supernova remnant. We compute the spectra of nuclei escaping from supernova remnants into the interstellar medium, taking into account the observed population of radio pulsars.

Our calculations, which include a realistic model for acceleration and propagation of nuclei in pulsar magnetospheres and supernova remnants, predict that heavy nuclei accelerated directly by gamma-ray pulsars could contribute about 20% of the observed cosmic rays in the knee region. Such a contribution of heavy nuclei to the cosmic ray spectrum at the knee can significantly increase the average value of lnA with increasing energy as is suggested by recent observations.  相似文献   


16.
A Monte Carlo code ( artis ) for modelling time-dependent three-dimensional spectral synthesis in chemically inhomogeneous models of Type Ia supernova ejecta is presented. Following the propagation of γ-ray photons, emitted by the radioactive decay of the nucleosynthesis products, energy is deposited in the supernova ejecta and the radiative transfer problem is solved self-consistently, enforcing the constraint of energy conservation in the comoving frame. Assuming a photoionization-dominated plasma, the equations of ionization equilibrium are solved together with the thermal balance equation adopting an approximate treatment of excitation. Since we implement a fully general treatment of line formation, there are no free parameters to adjust. Thus, a direct comparison between synthetic spectra and light curves, calculated from hydrodynamic explosion models, and observations is feasible. The code is applied to the well-known W7 explosion model and the results tested against other studies. Finally, the effect of asymmetric ejecta on broad-band light curves and spectra is illustrated using an elliptical toy model.  相似文献   

17.
Observations of the starburst galaxy, M82, have been made with a 20-station global very long-baseline interferometry (VLBI) array at λ 18 cm. Maps are presented of the brightest young supernova remnants (SNR) in M82 and the wide-field mapping techniques used in making images over a field of view of ∼1 arcmin with 3-milliarcsecond resolution are discussed. A limit has been placed on the power-law deceleration of the young supernova remnant (SNR) 43.31+592 with an index greater than 0.73±0.11 from observations with the European VLBI Network. Using the global array we have resolved compact knots of radio emission in the source which, with future global observations, will enable better constraints to be placed on the expansion parameters of this SNR.
The latest global observations have also provided high-resolution images of the most compact radio source in M82, 41.95+575. We determine an upper limit to the radial expansion rate along the major axis of 2000 km s−1. However, the new images also show structure resembling that of collimated ejection which brings into question the previous explanation of the source as being a result of the confinement of a supernova by a high-density circumstellar medium.
It is apparent that we are now able to image the brightest supernova remnants in M82 with a linear scale which allows direct comparison with galactic SNR such as Cassiopeia A.  相似文献   

18.
The loss of angular momentum owing to unstable r-modes in hot young neutron stars has been proposed as a mechanism for achieving the spin rates inferred for young pulsars. One factor that could have a significant effect on the action of the r-mode instability is fallback of supernova remnant material. The associated accretion torque could potentially counteract any gravitational-wave-induced spin-down, and accretion heating could affect the viscous damping rates and hence the instability. We discuss the effects of various external agents on the r-mode instability scenario within a simple model of supernova fallback on to a hot young magnetized neutron star. We find that the outcome depends strongly on the strength of the magnetic field of the star. Our model is capable of generating spin rates for young neutron stars that accord well with initial spin rates inferred from pulsar observations. The combined action of r-mode instability and fallback appears to cause the spin rates of neutron stars born with very different spin rates to converge, on a time-scale of approximately 1 year. The results suggest that stars with magnetic fields ≤1013 G could emit a detectable gravitational wave signal for perhaps several years after the supernova event. Stars with higher fields (magnetars) are unlikely to emit a detectable gravitational wave signal via the r-mode instability. The model also suggests that the r-mode instability could be extremely effective in preventing young neutron stars from going dynamically unstable to the bar-mode.  相似文献   

19.
Supernova rates (hypernova, type II, type Ib/c and type Ia) in a particular galaxy depend on the metallicity (i.e. on the galaxy age), on the physics of star formation and on the binary population. In order to study the time evolution of the galactic supernova rates, we use our chemical evolutionary model that accounts in detail for the evolution of single stars and binaries. In particular, supernovae of type Ia are considered to arise from exploding white dwarfs in interacting binaries and we adopt the two most plausible physical models: the single degenerate model and the double degenerate model. Comparison between theoretical prediction and observations of supernova rates in different types of galaxies allows to put constraints on the population of intermediate mass and massive close binaries.

The temporal evolution of the absolute galactic rates of different types of supernovae (including the type Ia rate) is presented in such a way that the results can be directly implemented into a galactic chemical evolutionary model. Particularly for type Ia’s the inclusion of binary evolution leads to results considerably different from those in earlier population synthesis approaches, in which binary evolution was not included in detail.  相似文献   


20.
We have reanalysed a homogeneous catalogue of shell-type supernova remnants and we find that the radio data are consistent with a birthrate of one in 22±3 yr. Our approach is based on the secular decrease of surface brightness of the historical remnants whose ages are precisely known. The abovementioned birthrate is significantly higher than most previous estimates which range from one in 50–150 yr, and is consistent with the supernova rate in our galaxy derived from historical observations, as well as with recent estimates of the pulsar birthrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号