首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 124 毫秒
1.
给出红外点源IRAS 20231 3440附近恒星形成区近红外.JHK’和H2成像观测结果,以及与该IRAS点源成协的近红外点源IRS1的K波段分光观测结果..JHK’观测显示该区域存在嵌埋的年轻星天体,H2窄波段观测揭示了若干个氢分子发射结点,其中有几个结点排列成线形,暗示分子氢喷流的存在.喷流的北部与已知观测的分子外流成协,表明二者之间存在联系.喷流的走向提示IRS1可能是其激发源,对IRS1的K波段分光观测给出了进一步的证据.从近红外、MSX及IRAS资料估计出IRS1的能谱分布,表明它是一个处于ClassI状态的中等质量的年轻星天体.  相似文献   

2.
房敏  姚永强 《天文学报》2004,45(1):1-15
给出恒星形成区GGD12-15的宽波段JHK和窄波段H2v=1-0S(1)近红外成像观测.观测图像揭示了致密的年轻红外星团和与红外源成协的红外星云,并发现了以H2发射结表征的星团外流活动.大多数红外点源在光学波段不可见;对76颗红外点源的JHK′测光结果显示,有32颗具有红外超,其中5颗表现原恒星特征,表明分子云中的恒星形成活动很活跃.以B8光谱型作为大质量星分界,由色星等图估计出大质量星所占星团比例为-10%~26%.GGD12—15星团的K′星等分布的峰值位于15.0mag,并在13.0mag-16.0mag平坦分布;[H—K′]色分布的峰值出现在-0.7mag,在此以上更红的星团成分占70%.在GGD12-15区新发现的氢分子发射结集中在星团中心领域,其空间分布明显与剧烈的恒星形成活动相关;有5个发射结位于分子外流的中心区域,暗示其激发可能与分子外流同源.  相似文献   

3.
CO的射电转动谱线揭示了光学不可见的冷宇宙、银河系最大天体-巨分子云和恒星形成过程中的一个普遍存在的重要的相-双极外流。CO在67~186um波段的转动谱线是探测动能温度数百度以上的热天体(诸如富碳、富氧演化星包层,行星状星云、年轻星和恒星形成区复合体)物理条件的重要探针。对CO分子转动谱线的天体物理研究方法和在该领域的近期进展作了简单的评述。  相似文献   

4.
报告分子外流源L1211 中新发现的12 个近红外HH 天体.在L1211 的~4’区域,取得了JHK’宽带和H2  v = 10  S(1) 发射线窄带的近红外图像.分析表明,新探测到的许多红外源与浓密分子云物理成协,其中有20 多个源表现出典型的T Tauri 星、Herbig Ae/Be星和原恒星的红外超.L1211 中的IRAS点源没有被观测到,可能是更深地埋于分子云中.对红外观测和分子线观测消光估计的比较显示,小于2μm 的近红外观测还不足以揭示深埋于分子云的整个年轻星团.根据近红外HH 天体的形态分布和红外源性质,能进一步证认这些HH 天体的激发源.其结果表明,L1211 分子云中具有多个红外源驱动的多个外流活动  相似文献   

5.
近红外偏振是研究恒星形成的有效工具.该文介绍了近红外偏振器的工作原理,然后分几个方面介绍了近红外偏振在恒星形成研究中的应用.红外反射云能很好地示踪年轻星天体及分子外流,通过分析偏振矢量的方法确定红外反射云的偏振对称中心,从而确定它的照亮源;偏振波长相关曲线包含了年轻星天体的星周物质的很多信息;年轻星的分子外流导致了红外反射云的形成,因此红外反射云的照亮源通常与年轻星天体成协,并是分子外流的驱动源;一些年轻星天体埋藏得很深,一般在近红外波段无法直接探测到,人们称之为深埋源,通过分析偏振矢量的方法可以找到深埋源;一般认为比较年轻的年轻星天体都是有尘埃盘的,尘埃盘的存在会导致它的偏振形态出现偏振盘,偏振盘町以用来研究尘埃盘;恒星形成区里成员星的偏振主要是由尘埃的二色性消光产生的,这样偏振方向会平行于致使尘埃排列的磁场的方向,从而能够揭示磁场的结构.最后进行了总结,并论述了中远红外偏振研究的优势和意义.  相似文献   

6.
使用德国Th(u|¨)ringer Landessternwarte Tautenburg(TLS)的2 m望远镜对Aquila Rift的16个区域进行了Hα、R和I共3个波段的成像观测.这些观测区域大约覆盖了Aquila Rift 7平方度的天区.除去3个数据质量不高的天区,对其余的13个区域进行了测光分析,从中证认出点源,并利用双色图的方法最终证认出7颗Hα发射线星候选体.这7个候选体是从5个观测区域中选出的,其中3颗位于银道面区域,4颗位于银纬高于4°的区域.对于这5个天区,证认了其中点源的2MASS对应体,并利用双色图的方法进一步分析了7个Hα发射线星候选体的性质.这些Hα发射线星候选体的近红外辐射并没有明显的红外超现象,有一颗还落在了主序分支上.这也说明有Hα发射的年轻星并不都伴随有红外超现象.Hα发射线观测和红外超观测的结果是相互补充的.如果将这7颗Hα发射线星候选体作为年轻星候选体,则Aquila Rift区域的年轻星数目是较少的.对于这些候选体的进一步证认还需要后续的光谱观测.  相似文献   

7.
江治波  王敏  杨戟 《天文学报》2000,41(1):28-35
利用紫金山天文台青海观测站13.7米射电望远镜对红外源IRAS05437-0001和IRAS05351+3549附近区域进行了CO(J=1-0)的分子谱线观测.发现在这两个源的方向都有很强的CO发射,CO谱线还有明显的线翼成分,这暗示两个红外源存在分子外流.同时还获得了每个源5'×5'的成图.通过对高速气体的空间分布的观测和分析,认为这两个源为分子外流源.其中IRAS05437-0001附近区域的外流结构比较复杂,可能这一区域的外流是多极的.IRAS05351+3549附近的外流结构较简单.从两个源的红外光谱分类以及外流的动力学时标得出都是年轻星(年龄~105yrs).通过对这两个外流源的参数估算,得出两个外流源的质量损失率.  相似文献   

8.
对恒星形成活跃区NGC1333周围5°×5°区域进行了物端稜镜发射线星巡天观测,此次观测到的H_a发射线星的极限星等约为16.7星等。在此范围內观测到了25颗H_a发射线星(包括11颗已被发现过的L_kH_a星)。这些星在[(G-U),(R-G)]图上的分布与主星序星完全不同。从两色图和暗星云中的空间分布推测,这些发射线星可能大部是金牛座T Tau型星。最后简单讨论了恒星形成区的环境条件。  相似文献   

9.
报告在NGC7538中利用H2(2.12μm)发射线测新发现的两个喷流和18个近红外HH天体,在IRS1-3星云中观测到了强H2发射壳层结构环绕在星云的北边。星云中红外源的UV辐射场的外流活动都可能导致这一H2发射。在HRS1-3星云的南边和东边探测到了5个H2knots.在IRS1南边发现的H2喷流暗示该区域有一个南北向的外流,在IRS11星团的周围发现了9个H2hnots.在西北-东南方向和东  相似文献   

10.
棒旋星系NGC7582的光学发射线显示出它具有Seyfert2和星爆星系的双重特点。本利用射电和红外观测数据对它中心区附近的性质进行了研究。结果表明NGC7582中心附近可能存在着一个活动性很强的恒星形成区,恒星的形成率比银河系高得多,星爆对这个Seyfert2星系的性质起了重要作用。  相似文献   

11.
Recent observations show the existence of an increasing number of collimated outflows ejected by young, low-mass stars which are embedded in H  ii regions. At distances of a few tens of au from the star, at least one lobe of these outflows will be shielded from the ambient ionizing radiation by the compact, high-extinction circumstellar disc. Within these shielded regions, the jets are probably mostly neutral, similar to the jets in 'normal' Herbig–Haro (HH) objects. At larger distances, these jets emerge into the photoionized nebula, and start to be photoionized by the radiation from the ionizing photon source of the nebula.
In this paper, we model the photoionization of an initially neutral HH jet. This process begins as an ionization front at the side of the jet, which is directed towards the ionizing star of the nebula, and progresses into the beam of the jet. There are two possible solutions. In the first solution, the jet beam becomes fully ionized through the passage of an R-type ionization front. In the second solution, the ionization front slows down enough to become a D-type front (or is already a D-type front at the point in which the jet emerges into the photoionized nebula), forming a partially ionized jet beam, with an expanding photoionized region and a compressed neutral region.
We explore these two types of solutions both analytically and numerically, and discuss the observational effects introduced by this jet photoionization process, concentrating in a region of parameter space that straddles the parameters deduced for HH 444 (the jet from V 510 Orionis).  相似文献   

12.
The expected lifetimes for molecular clouds has become a topic of considerable debate as numerical simulations have shown that MHD turbulence, the nominal means of support for clouds against self-gravity, will decay on short timescales. Thus it appears that either molecular clouds are transient features or they are resupplied with turbulent energy through some means. Jets and molecular outflows are recognized as a ubiquitous phenomena associated with star formation. Stars however form not isolation but in clusters of different density and composion. The ubiquity and high density of outflows from young stars in clusters make them an intriguing candidate for the source of turbulence energy in molecular clouds. In this contribution we present new studies, both observational and theoretical, which address the issue of jet/outflow interactions and their abilityto drive turbulent flows in molecular clouds. Our studies focus on scales associated with young star forming clusters. In particular we first show that direct collisions between active outflows are not effective at stirring the ambient medium. We then show that fossil cavities from “extinct” outflows may provide the missing link in terms of transferring momentum and energy to the cloud.  相似文献   

13.
Jets and outflows are ubiquitous in the process of formation of stars since outflow is intimately associated with accretion. Free–free (thermal) radio continuum emission in the centimeter domain is associated with these jets. The emission is relatively weak and compact, and sensitive radio interferometers of high angular resolution are required to detect and study it. One of the key problems in the study of outflows is to determine how they are accelerated and collimated. Observations in the cm range are most useful to trace the base of the ionized jets, close to the young central object and the inner parts of its accretion disk, where optical or near-IR imaging is made difficult by the high extinction present. Radio recombination lines in jets (in combination with proper motions) should provide their 3D kinematics at very small scale (near their origin). Future instruments such as the Square Kilometre Array (SKA) and the Next Generation Very Large Array (ngVLA) will be crucial to perform this kind of sensitive observations. Thermal jets are associated with both high and low mass protostars and possibly even with objects in the substellar domain. The ionizing mechanism of these radio jets appears to be related to shocks in the associated outflows, as suggested by the observed correlation between the centimeter luminosity and the outflow momentum rate. From this correlation and that of the centimeter luminosity with the bolometric luminosity of the system it will be possible to discriminate between unresolved HII regions and jets, and to infer additional physical properties of the embedded objects. Some jets associated with young stellar objects (YSOs) show indications of non-thermal emission (negative spectral indices) in part of their lobes. Linearly polarized synchrotron emission has been found in the jet of HH 80–81, allowing one to measure the direction and intensity of the jet magnetic field, a key ingredient to determine the collimation and ejection mechanisms. As only a fraction of the emission is polarized, very sensitive observations such as those that will be feasible with the interferometers previously mentioned are required to perform studies in a large sample of sources. Jets are present in many kinds of astrophysical scenarios. Characterizing radio jets in YSOs, where thermal emission allows one to determine their physical conditions in a reliable way, would also be useful in understanding acceleration and collimation mechanisms in all kinds of astrophysical jets, such as those associated with stellar and supermassive black holes and planetary nebulae.  相似文献   

14.
We present preliminary results of our X‐shooter survey in star forming regions. In this contribution we focus on subsamples of young stellar and sub‐stellar objects (YSOs) in the Lupus star forming region and in the TW Hya association. We show that the X‐shooter spectra are suitable for conducting several parallel studies such as YSO + disk fundamental parameters, accretion and outflow activity in the very low‐mass (VLM) and sub‐stellar regimes, as well as magnetic activity in young VLM YSOs, and Li abundance determinations. The capabilities of X‐shooter in terms of wide spectral coverage, resolution and limiting magnitudes, allow us to assess simultaneously the accretion/outflow, magnetic activity, and disk diagnostics, from the UV and optical to the near‐IR, avoiding ambiguities due to possible YSO variability (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
We present the results of experiments in which jets are created through the collision of two laser-produced plasmas. These experiments use a simple ‘v-foil’ target design: two thin foils are placed at an angle of 140° to each other, and irradiated with a high-energy laser. The plasmas from the rear face of these foils collide and drive plasma jets moving with a velocity of ~300 km?s?1. By choosing the foil thickness and material to suit the laser conditions available, it has proven possible to create plasma jets for which the relevant scaling parameters show significant overlap with those of outflows associated with young stellar objects (YSOs). Preliminary results are also shown from experiments to study the effect of an ambient gas on jet propagation. Nominally identical experiments are conducted either in vacuum or in an ambient medium of 5 mbar of nitrogen gas. The gas is seen to increase the jet collimation, and to introduce shock structures at the head of the outflow.  相似文献   

16.
Young stars produce both molecular outflows and, at a later evolutionary stage, well-collimated optical jets. The simplest explanation is that the molecular outflows are driven byobscured optical jets, rather than directly, by a disk wind for example, but the optical jets appear to have too small a momentum flux. Recent statistical studies however show that the molecular flows must be quasi-stationary, which means that the dynamical lifetime is a gross underestimate of the true age. As a consequence much less thrust is required. We present recent observations of RNO 43, which has well-defined optical and molecular outflows lying close to the plane of the sky. Excellent agreement with the observations is obtained with a simple kinematic model for the molecular material, which supposes that it lies in a parabolic shell around the optical jet with the highest velocities at the working surface. Together with our modelling of the NGC2024 outflow, this is very strong evidence that molecular outflows are produced by prompt entrainment of molecular material in a neutral or weakly-ionized jet.  相似文献   

17.
The first mapping observations of the cold infrared sources IRAS 02459 6029 and 05363 3127 in the molecular lines 12CO(1-0), 13CO(1-0) and C18o(1-0) were made using the 13.7 m millimeter wave telescope in Qinghai. Both the integrated intensity maps and position-velocity diagrams show that each has two components adjacent in both space and velocity which means possible cloud-cloud collisions in the two regions. The near-infrared color-color diagram from the 2MASS database reveals that the density of YSOs in the colliding site is much higher than in the surrounding regions. The results appear to indicate that star forming activities have taken place in the two regions due to the cloud-cloud collision. We conclude that both sources are cloud collision candidates.  相似文献   

18.
We present hydrodynamic simulations of molecular outflows driven by jets with a long period of precession, motivated by observations of arc-like features and S-symmetry in outflows associated with young stars. We simulate images of not only H2 vibrational and CO rotational emission lines, but also of atomic emission. The density cross-section displays a jaw-like cavity, independent of precession rate. In molecular hydrogen, however, we find ordered chains of bow shocks and meandering streamers which contrast with the chaotic structure produced by jets in rapid precession. A feature particularly dominant in atomic emission is a stagnant point in the flow that remains near the inlet and alters shape and brightness as the jet skims by. Under the present conditions, slow jet precession yields a relatively high fraction of mass accelerated to high speeds, as also attested to in simulated CO line profiles. Many outflow structures, characterized by HH 222 (continuous ribbon), HH 240 (asymmetric chains of bow shocks) and RNO 43N (protruding cavities), are probably related to the slow-precession model.  相似文献   

19.
Close links between jet evolution and protostellar evolution are beginning to be understood. Firstly, stellar jets are reviewed here, establishing the accretion-outflow connection. Then, outflows from young stars are reviewed, suggesting a synchronised development in the star and outflow. This yields a unification scheme in which rising molecular jets dominate the early protostellar epoch, followed by a jet-driven outflow stage and, finally, a bow-driven ballistic stage. This scheme is quantified, yielding the systematic changes in the bolometric, mechanical and shock luminosities and the cross-over phase from dense molecular jets to light atomic jets. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号