首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The potential for fluid leakage from sub-surface reservoirs has important implications for CO2 storage, hydrocarbon reservoirs and water resources. Understanding the genesis, morphology, fluid flow mechanisms and extent of fluid escape from reservoirs allows for better risking of geological resources and storage potential. Here we describe in detail the structures of fluid escape pipes from the Loyal Field, observed from a 3D full and partial stack seismic dataset. The seismic imagery suggests that the fluid escape pipes are rooted at least in the main Paleocene reservoir and by-pass the reservoir seal to cross the post Lista Formation overburden up to the intra-Neogene units. The pipes extend for a few hundred meters to a few kilometres and show varying shape and structure from blow-out structures to incipient mud volcanoes. A detailed analysis of the seismic characteristics observed both from main baseline and partial stack data allows a division of the pipes into two families: (1) seeps and pipes following structural discontinuities and (2) pipes unrelated to the pre-existing structural features. The pipes internal seismic response, the reflector termination of the main conduits and the distribution of stacked bright reflectors suggest an upward migration mechanism (during pipe birth and development), requiring a cyclic switching from non-Darcy hydrofracturing (during overpressure) to Darcy flow lateral migration (during low-pressure stage).  相似文献   

2.
A group of nearly 400 pipe structures from the continental slope of northern Namibia are analysed for their spatial and temporal distribution. The pipes most likely formed as a result of highly focused fluid venting, and understanding the factors controlling their distribution in space and time is key to their genesis. We analysed their spatio-temporal distribution using an arbitrary chronostratigraphic timescale, from which it is concluded that the pipes did not form at the same time. Pipe formation is shown to be intermittent and persistent, with 2–29 pipes forming in each of the >20 arbitrary time intervals that are considered to span the Neogene period. The spatial distribution of these pipes is clustered to dispersed. Spatial statistics conducted on the distribution of pipe formation timings have shown that two statistically significant groups of pipes exist within the population, (1) in the North and West and (2) in the South, with the former occurring prior to the latter. Locally, pipe formation is sporadic with clusters and outliers occurring during the same time period. A conceptual model is proposed whereby pipe formation in specific locations is the result of localised breaching of the seals for isolated pressure cells which are locally independent yet broadly controlled. An inferred basinal fluid source is thought to determine the broader patterns of pipe formation, and the focus of this fluid source shifts from North to South with time. At a local scale, multiple local factors interact producing a sporadic pipe formation distribution through a prolonged period of highly focused fluid migration. Once formed, the pipes continued to focus fluids intermittently, leading in some cases to later pockmark formation.  相似文献   

3.
This study presents seismic observation of pipe anomalies from offshore Nigeria, outcrops of blow-out pipes from Rhodes, Greece, and geophysical modelling of an acoustic pipe. The studies give insight into how pipes form, their internal structure, the seismic image and geophysical artefacts related to the pipes. Over one hundred seafloor craters, 100 m-700 m wide and up to 30 m deep, have been observed on the seafloor offshore Nigeria. They are underlain by interpreted cones and seismic pipe anomalies that can be traced down to reservoir zones at 1000 m-1300 m below the seafloor. The seismic pipe anomalies are 50 m-150 m wide and almost vertical. They are interpreted as up-scaled pipes found in outcrops on Rhodes, Greece. The outcrops show pipe-related structures at three levels. Lowest, the reservoir rock contains metre-sized cavities which are filled with a mixture of clay derived from the overlying cap rock. In the middle, several circular to oval structures in plane view of pipes are observed in the lowest part of the cap rock. Highest, 15 m into the clay cap rock, strongly sheared country rock forms circular structures with a core of structureless clay. Based on outcrop observation on Rhodes we constructed an acoustic model of a 50 m wide and 1000 m long pipe. Seismic modelling proves that such pipes would be expressed in seismic data, that they are similar to the seismic pipe anomalies offshore Nigeria but this study also revealed that prominent intra-pipe reflections are artefacts. A formation model for the pipes is suggested: High fluid overpressure in the reservoir generated hydro fractures from the reservoir to seafloor where a mixture of gas and fluid flowed at high speed to form pipes, cones and seafloor craters. After hours to weeks of gas and fluid flow through the pipe the pore pressure in the reservoir dropped and the blow-out terminated. Muddy slurry fell back and plugged the cavity in the reservoir and the pipe.  相似文献   

4.
This study describes and analyses an extraordinary array of pockmarks at the modern seabed of the Lower Congo Basin (offshore Angola), in order to understand the fluid migration routes and shallow plumbing system of the area. The 3D seismic visualization of feeding conduits (pipes) allowed the identification of the source interval for the fluids expelled during pockmark formation. Spatial statistics are used to show the relationship between the underlying (polarised) polygonal fault (PPFs) patterns and seabed pockmarks distributions. Our results show PPFs control the linear arrangement of pockmarks and feeder pipes along fault strike, but faults do not act as conduits. Spatial statistics also revealed pockmark occurrence is not considered to be random, especially at short distances to nearest neighbours (<200 m) where anti-clustering distributions suggest the presence of an exclusion zone around each pockmark in which no other pockmark will form. The results of this study are relevant for the understanding of shallow fluid plumbing systems in offshore settings, with implications on our current knowledge of overall fluid flow systems in hydrocarbon-rich continental margins.  相似文献   

5.
Sandwich pipes (SP), a composite structure consisting of two concentric steel tubes and a polymeric or cement-based core has been proposed to be well-insulated and withstand high installation and operational loads in deepwater oil and gas field. In the paper, the post-buckling responses and pressure capacity of sandwich pipes filled with the solid polypropylene annular were investigated. The degree of the inter-layer adhesion condition between the core layer and the surrounding pipes was modeled by the contact surfaces adopting different maximum shear strength values to allow the relative displacement between the layers. The effects such as inter-layer adhesion interactions, thickness-to-radius ratios, the core thickness, the material parameters, the relative initial ovality directions and the inelastic anisotropy on the collapse pressure of SPs were discussed. More than 2000 finite element (FE) models of the sandwich pipes with practical configurations were constructed and analyzed using the programming language Python within the FE software package ABAQUS. Based on the FE results, a simplified equation was developed and recommended for the collapse pressure calculation of sandwich pipes with the polypropylene annular.  相似文献   

6.
The sudden release of superheated fluids at depth can cause surface disturbances in the form of vents, mud volcanoes, or seafloor pockmarks. I have performed calculations with the Sage hydrocode (from Los Alamos and Science Applications International) of superheated venting in an idealised geometry, varying the pressure and velocity of hot fluid injected at depth. The simulations show several different patterns of propagation and fracturing in the deformable overburden. The simulations performed so far show, for different conditions, upward-propagating cylindrical pipes with hardened walls, narrowly diverging conical pipes, cone sheets, downward-propagating cracks, and funnel-shaped craters.  相似文献   

7.
The dynamic characteristics of marine risers/pipes often present serried modes with various frequencies due to high levels of structural flexibility and slenderness, especially when the flow velocity is non-uniformly distributed along the span. Therefore, the vortex-induced vibration (hence VIV) for slender risers/pipes is usually characterized by multi-mode motions. In this paper, by means of a newly developed empirical mode decomposition (EMD) method which contributes to more efficient instantaneous multi-mode identification and analysis, new characteristics of a multi-mode “lock-in” vibration process of a large-scale flexible pipe subject to shear flow were discussed. Because the two-degree vibration along the span can be analyzed simultaneously, the effects of multi-mode VIV were investigated systematically. From the given illustrative examples, it was found that the vibration energy diffusion between the fluid and the structure, and among the participating modes, may be repeatable and reversible, or even irreversible, which causes VIV to be highly intricate. The coexistence of multiple modes, energy transfer, and mode switching/jump is observed when the reduced velocity is relatively high. The multi-dominant mode phenomenon is also found in both cross-flow (CF) and in-line (IL) VIVs. Energy transfers between the CF and IL directions occasionally occur, and CF VIV is apt to dominate the vibration process, because it is superior to IL VIV with the increment of the reduced velocity.  相似文献   

8.
Based on the analysis of the high-resolution 3D seismic data from the SW Barents Sea we study the hydrocarbon plumbing system above the Snøhvit and Albatross gas field to investigate the geo-morphological manifestation and the dynamics of leakage from the reservoir. Fluid and gas escape to the seafloor is manifested in this area as mega-pockmarks 1–2 km-wide, large pockmarks (<100 m wide) and giant pockmarks 100–300 m-wide. The size of the mega pockmarks to the south of the study area may indicate more vigorous venting, whilst the northern fluid flow regime is probably characterised by a widespread fluid and gas release. Buried mega depressions and large-to-giant pockmarks are also identified on the base Quaternary and linked to deep and shallow faults as well as to seismic pipes. A high density of buried and seafloor giant pockmarks occur above a network of faults overlying an interpreted Bottom Simulating Reflector (BSR), whose depth coincides with the estimated base of the hydrate stability zone for a thermogenically derived gas hydrate with around 90 mol% methane. Deep regional faults provide a direct route for the ascending thermogenic fluids from the reservoir, which then leaked through the shallow faults linked to seismic pipes. It is proposed that the last episodic hydrocarbon leakage from the reservoir was responsible for providing a methane source for the formation of gas hydrates. We inferred that at least two temporally and dynamically different fluid and gas venting events took place in the study area: (1) prior to late Weichselian and recorded on the Upper Regional Unconformity (URU) and (2) following the Last Glacial Maximum between ∼17 and 16 cal ka BP and recorded on the present-day seafloor.  相似文献   

9.
In the framework of finite deformation theory, the burst failure analysis of end-opened defect-free pipes with plastic anisotropy under internal pressure is carried out. The analytical solutions of burst pressure and the corresponding equivalent stress and strain are obtained for thin-walled pipes, which can take into account the effects of material plastic anisotropy and strain hardening exponent. The influences of plastic anisotropy on the burst pressure and the corresponding equivalent stress and strain are discussed. It is shown that the burst pressure and the corresponding equivalent stress and strain are dependent upon the plastic anisotropy of material, and the degree of dependence is related to the strain hardening exponent of material. In addition, the effects of the strain hardening exponent on burst failure are investigated.  相似文献   

10.
Metallic strip flexible pipes (MSFP), a relatively new style of unbonded flexible pipes, are considered as an attractive alternative to traditional submarine pipes. Pipelines will inevitably confront torsion load which may affect the integrity and safety during their installation and application. Throughout this paper, the mechanical behavior of MSFP subjected to pure torsion is investigated by both experimental and numerical methods. Results from these two methods are essentially in agreement with each other. The finite element method (FEM) can be adopted to predict the failure torque of MSFP under torsion and analyze the detailed stress conditions of each layer. In addition, the effects of boundary conditions, layout manners of steel strips, friction coefficients between contact surfaces, twist directions and tension loads are discussed. The obtained conclusions will benefit cross-section design of MSFP and relative practical engineering.  相似文献   

11.
Considering the shear deformation and thickness stretching of large deformation, a modified numerical calculation method based on the thick shell theory is established to determine the collapse pressure of thick-walled pipes. Verification experiments are conducted on ten pipe specimens in hyperbaric chambers. The good agreement between experimental results and numerical predictions shows the validity and reliability of the new numerical calculation method. Combining DNV specification, the characteristic collapse pressure is also calculated for comparison. The difference between experimental results and DNV calculations illustrates the latter one is much conservative in predicting collapse pressure for thick-walled pipes. Sensitivity analysis on manufacturing imperfections and material properties is investigated for pipes with different D/t ratios. Thick-walled pipes are easier to be affected by initial ovality, residual stress and hardening factor. Based on the stress distribution at the moment of collapse, a novel discovery is found that the collapse pressure of thick-walled pipes is dominated by material plastic behavior.  相似文献   

12.
Differences in fluids origin, creation of overpressure and migration are compared for end member Neogene fold and thrust environments: the deepwater region offshore Brunei (shale detachment), and the onshore, arid Central Basin of Iran (salt detachment). Variations in overpressure mechanism arise from a) the availability of water trapped in pore-space during early burial (deepwater marine environment vs arid, continental environment), and b) the depth/temperature at which mechanical compaction becomes a secondary effect and chemical processes start to dominate overpressure development. Chemical reactions associated with smectite rich mud rocks in Iran occur shallow (∼1900 m, smectite to illite transformation) causing load-transfer related (moderate) overpressures, whereas mechanical compaction and inflationary overpressures dominate smectite poor mud rocks offshore Brunei. The basal detachment in deepwater Brunei generally lies below temperatures of about 150 °C, where chemical processes and metagenesis are inferred to drive overpressure development. Overall the deepwater Brunei system is very water rich, and multiple opportunities for overpressure generation and fluid leakage have occurred throughout the growth of the anticlines. The result is a wide variety of fluid migration pathways and structures from deep to shallow levels (particularly mud dykes, sills, laccoliths, volcanoes and pipes, fluid escape pipes, crestal normal faults, thrust faults) and widespread inflationary-type overpressure. In the Central Basin the near surface environment is water limited. Mechanical and chemical compaction led to moderate overpressure development above the Upper Red Formation evaporites. Only below thick Early Miocene evaporites have near lithostatic overpressures developed in carbonates and marls affected by a wide range of overpressure mechanisms. Fluid leakage episodes across the evaporites have either been very few or absent in most areas. Locations where leakage can episodically occur (e.g. detaching thrusts, deep normal faults, salt welds) are sparse. However, in both Iran and Brunei crestal normal faults play an important role in the transmission of fluids in the upper regions of folds.  相似文献   

13.
Differences in fluids origin, creation of overpressure and migration are compared for end member Neogene fold and thrust environments: the deepwater region offshore Brunei (shale detachment), and the onshore, arid Central Basin of Iran (salt detachment). Variations in overpressure mechanism arise from a) the availability of water trapped in pore-space during early burial (deepwater marine environment vs arid, continental environment), and b) the depth/temperature at which mechanical compaction becomes a secondary effect and chemical processes start to dominate overpressure development. Chemical reactions associated with smectite rich mud rocks in Iran occur shallow (∼1900 m, smectite to illite transformation) causing load-transfer related (moderate) overpressures, whereas mechanical compaction and inflationary overpressures dominate smectite poor mud rocks offshore Brunei. The basal detachment in deepwater Brunei generally lies below temperatures of about 150 °C, where chemical processes and metagenesis are inferred to drive overpressure development. Overall the deepwater Brunei system is very water rich, and multiple opportunities for overpressure generation and fluid leakage have occurred throughout the growth of the anticlines. The result is a wide variety of fluid migration pathways and structures from deep to shallow levels (particularly mud dykes, sills, laccoliths, volcanoes and pipes, fluid escape pipes, crestal normal faults, thrust faults) and widespread inflationary-type overpressure. In the Central Basin the near surface environment is water limited. Mechanical and chemical compaction led to moderate overpressure development above the Upper Red Formation evaporites. Only below thick Early Miocene evaporites have near lithostatic overpressures developed in carbonates and marls affected by a wide range of overpressure mechanisms. Fluid leakage episodes across the evaporites have either been very few or absent in most areas. Locations where leakage can episodically occur (e.g. detaching thrusts, deep normal faults, salt welds) are sparse. However, in both Iran and Brunei crestal normal faults play an important role in the transmission of fluids in the upper regions of folds.  相似文献   

14.
王玮  陈耕 《中国海洋工程》2011,25(4):737-746
The unbonded flexible pipe of eight layers,in which all the layers except the carcass layer are assumed to have isotropic properties,has been analyzed.Specifically,the carcass layer shows the orthotropic characteristics.The effective elastic moduli of the carcass layer have been developed in terms of the influence of deformation to stiffness.With consideration of the effective elastic moduli,the structure can be properly analyzed.Also the relative movements of tendons and relative displacements of wires in helical armour layer have been investigated.A three-dimensional nonlinear finite element model has been presented to predict the response of flexible pipes under axial force and torque.Further,the friction and contact of interlayer have been considered.Comparison between the finite element model and experimental results obtained in literature has been given and discussed,which might provide practical and technical support for the application of unbonded flexible pipes.  相似文献   

15.
海底载流管道是典型的土-固-液三相耦合问题.利用Flügge壳体运动方程,结合弹性动力学方程,建立海底载流管道轴对称运动时的频散方程,分析自由振动波的性质及其随频率变化的规律.结果表明管道周围的土壤介质对其自由振动波的传播特性影响显著,而土壤介质刚度的增大使得自由振动波的截止频率随之增加.  相似文献   

16.
Unbonded flexible pipe is one of the important pieces of equipment in floating production systems for transport of oil and gas between floaters and subsea wells located in deep water. To assure safety over a long-term service period, analysis of fatigue behavior under alternative bending is a key requirement. An analytical model for prediction of bending behavior is essential for understanding the mechanism of the local stress distribution in the helical wires of the tension armor layers under alternative curvatures and rapid estimation of the service life of flexible pipes for designers in engineering practice. In this paper, seven analytical models available in the literature are selected and summarized. Although the experimental results reported in the literature are limited, a three-dimensional finite element model is developed for investigation of the seven models, and the validity and limitations of these models for different structural parameters of helical wire are discussed, i.e., the width-thickness ratio of the wire section and helical angle. The analytical model based on spring theory resulted in a satisfactory estimation of bending stress for most cases and is recommended as a tool for the basic design of the helical armor wire structures in flexible pipes.  相似文献   

17.
The challenges for determining the mechanical behavior of flexible pipes mainly arise from highly non-linear geometrical and material properties and complex contact interaction conditions between and within layers components. This paper develops an innovative model to investigate the linear viscoelastic behavior of flexible pipes under axisymmetric loads in time domain. The model is derived from an equivalent linear elastic axisymmetric model by invoking the elastic-viscoelastic correspondence principle. Analytical formulations that describe the behavior of the metallic helical layers based on a combination of differential geometry concepts and Clebsch–Kirchhoff equilibrium equations for initially curved slender elastic rods are presented. The elastic response of the homogenous polymeric cylindrical layers is also presented. The assemblage of both types of governing algebraic equations that approximate analytical solutions for force and moment distributions, deformations in each layer, as well as contact pressure between near layers, taking time-dependent characteristics of polymeric layers into account are provided and it is clear that the relationship between axial force and elongation is non-linear and encompasses a hysteretic response. Besides, the creep behavior in axial direction can also be found. Some insights into the differences in the behavior for several loading conditions are discussed by considering variable frequencies.  相似文献   

18.
玻纤增强柔性管作为一种新型海底油气输送管道,具有比强度高、柔度大和抗腐蚀性强等特点,因此在深海油气开发中具有非常广阔的应用前景。玻纤增强柔性管主要由内衬层、增强层和外保护层组成,其中增强层的等效模拟是玻纤增强柔性管设计成功与否的关键。根据玻纤增强柔性管的结构特征和材料特性,选取了四种不同的等效简化模型,对比研究了玻纤增强柔性管在轴向拉压荷载、弯曲荷载以及内压荷载作用下的力学性能。将不同简化模型的计算结果与相应的试验数据进行对比,进行等效模型的优选。研究结果表明,在内压载荷和弯曲载荷作用下,基于Halpin-Tsai模型数值结果与试验结果最为接近。在轴向载荷作用下,采用分离式模型或回形模型计算精度更高,若材料达到屈服状态时,则建议采用分离式模型进行模拟。  相似文献   

19.
The steady flow-induced instability of a partially embedded pipeline involves a complex process of pipe-soil interaction. In accordance with the hydrodynamic loading and the dimensionless analyses, a series of pipe-soil interaction tests have been conducted with an updated pipe-soil interaction facility including a load-displacement synchronous measurement system, to reveal the underlying pipe-soil interaction mechanism. The effects of pipe surface roughness, end-constraint and initial embedment are investigated, respectively. The values of lateral-soil-resistance coefficient for the rough pipes are bigger than those for the smooth pipes. For a fixed value of non-dimensional submerged weight, the values of lateral-soil-resistance coefficient for the anti-rolling pipes are much larger than those for the freely laid pipes. The effects of initial embedment on the ultimate soil resistance get less with the decrease of the submerged weight of the pipe. A comparison is made between the results of the present mechanical-actuator tests and those of the previous water-flume tests, indicating that those results are quite comparable. For the equivalent level of dimensionless submerged weight, the directly laid pipe in currents has higher lateral stability than in waves.  相似文献   

20.
Local buckling of submarine pipelines is unavoidable under extreme conditions and it can propagate along the pipeline. Thus, arrestors are installed in a periodic placement along the pipeline to limit the extent of catastrophic collapse between two adjacent arrestors. Generally, the integral buckle arrestors are crossed by two modes: the flattening mode and the flipping mode. This paper focuses on the cross-over mechanisms of arrestors by analyzing results from experiments and numerical simulations. Fifteen groups of full-scale and reduced-scale physical experiments are conducted to investigate the effect of local ovality of the downstream pipes on the arrestor performance. Furthermore, an extensive parametric study of cross-over modes of arrestors is performed by FE models to supplement the experimental results. It is found that the local ovality of the downstream pipes impacts the cross-over modes of integral buckle arrestors, which is more likely to deform by ovalization in the same sense as the local ovality. On the other hand, a new formula involving the major geometric and material characteristics of pipes and arrestors is proposed to estimate the flattening mode and the flipping mode of arrestors when the downstream pipes are intact. And the switch point of the two cross-over modes is 0.265.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号