首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The oxidation and subsequent dissolution of sulfide minerals within mine tailings impoundments releases H+, Fe(II), SO4 and trace elements to the tailings pore water. Subsequent pH-buffering and hydrolysis reactions result in the precipitation of secondary phases such as gypsum, goethite and jarosite. In areas of intense precipitation, cemented layers or “hardpans” often form within the shallow tailings. Three cemented layers within pyrrhotite-bearing mine tailings at the Fault Lake, Nickel Rim and East Mine impoundments located near Sudbury, Canada, were examined. The location of the three cemented layers within the tailings stratigraphy varies as does their location relative to the water table. The morphology, mineralogy and chemical composition of the cemented layers also vary between sites. The bulk density within the three cemented layers all showed an increase relative to the surrounding uncemented tailings ranging from 9% to 29%. The porosity of each cemented layer decreased relative to the surrounding uncemented tailings ranging from an 8% to 18% decrease. The cemented layers also showed relative enrichment of total sulfur, carbon and trace elements relative to the surrounding uncemented tailings. Arsenic concentrations showed an enrichment in the cemented layers of up to 132%, Cd up to 99%, Co up to 84%, Cu up to 144%, Ni up to 693% and Zn up to 145% relative to the surrounding uncemented tailings. All the cemented layers studied show an evolution of the secondary phases with time from a gypsum–jarosite-based cement to a goethite-rich cement. The formation of these layers could potentially have a significant effect on the environmental impacts of sulfide-bearing mine waste.  相似文献   

2.
《Applied Geochemistry》2005,20(3):639-659
The oxidation of sulfide minerals from mine wastes results in the release of oxidation products to groundwater and surface water. The abandoned high-sulfide Camp tailings impoundment at Sherridon, Manitoba, wherein the tailings have undergone oxidation for more than 70 a, was investigated by hydrogeological, geochemical, and mineralogical techniques. Mineralogical analysis indicates that the unoxidized tailings contain nearly equal proportions of pyrite and pyrrhotite, which make up to 60 wt% of the total tailings, and which are accompanied by minor amounts of chalcopyrite and sphalerite, and minute amounts of galena and arsenopyrite. Extensive oxidation in the upper 50 cm of the tailings has resulted in extremely high concentrations of dissolved SO4 and metals and As in the tailings pore water (pH < 1, 129,000 mg L−1 Fe, 280,000 mg L−1 SO4, 55,000 mg L−1 Zn, 7200 mg L−1 Al, 1600 mg L−1 Cu, 260 mg L−1 Mn, 110 mg L−1 Co, 97 mg L−1 Cd, 40 mg L−1 As, 15 mg L−1 Ni, 8 mg L−1 Pb, and 3 mg L−1 Cr). The acid released from sulfide oxidation has been extensive enough to deplete carbonate minerals to 6 m depth and to partly deplete Al-silicate minerals to a 1 m depth. Below 1 m, sulfide oxidation has resulted in the formation of a continuous hardpan layer that is >1 m thick. Geochemical modeling and mineralogical analysis indicate that the hardpan layer consists of secondary melanterite, rozenite, gypsum, jarosite, and goethite. The minerals indicated mainly control the dissolved concentrations of SO4, Fe, Ca and K. The highest concentrations of dissolved metals are observed directly above and within the massive hardpan layer. Near the water table at a depth of 4 m, most metals and SO4 sharply decline in concentration. Although dissolved concentrations of metals and SO4 decrease below the water table, these concentrations remain elevated throughout the tailings, with up to 60,600 mg L−1 Fe and 91,600 mg L−1 SO4 observed in the deeper groundwater. During precipitation events, surface seeps develop along the flanks of the impoundment and discharge pore water with a geochemical composition that is similar to the composition of water directly above the hardpan. These results suggest that shallow lateral flow of water from a transient perched water table is resulting in higher contaminant loadings than would be predicted if it were assumed that discharge is derived solely from the deeper primary water table. The abundance of residual sulfide minerals, the depletion of aluminosilicate minerals in the upper meter of the tailings and the presence of a significant mass of residual sulfide minerals in this zone after 70 a of oxidation suggest that sulfide oxidation will continue to release acid, metals, and SO4 to the environment for decades to centuries.  相似文献   

3.
4.
Mining activities have created great wealth, but they have also discharged large quantities of tailings. As an important source of heavy metal contamination, sulfide tailings are usually disposed of in open-air impoundments and thus are exposed to microbial oxidation. Microbial activities greatly enhance sulfide oxidation and result in the release of heavy metals and the precipitation of iron (oxy) hydroxides and sulfates. These secondary minerals in turn influence the mobility of dissolved metals and play important roles in the natural attenuation of heavy metals. Elucidating the microbe–mineral interactions in tailings will improve our understanding of the environmental consequence of mining activities.  相似文献   

5.
Hardpans, or cemented layers, form by precipitation and cementation of secondary minerals in mine tailings and may act as both physical and chemical barriers. Precipitation of secondary minerals during weathering of tailings can sequester metal(loid)s, thereby limiting their release to the environment. At Montague Gold Mines in Nova Scotia, tailings are partially cemented by the Fe arsenate mineral scorodite (FeAsO4·2H2O). Previous studies have shown that the formation of scorodite can effectively limit aqueous As concentrations due to its relatively low solubility (<1 mg/L at pH 3–4) and high As content (43–52 wt.% As2O5, this study). Co-existing waters and solids were sampled at Montague Gold Mines to identify present-day field conditions influencing scorodite precipitation and dissolution, and to better understand the mineralogical and chemical relationship between hardpan and tailings. In addition to scorodite, hardpan cements were found to include amorphous Fe arsenate and Fe oxyhydroxide. Nearly all hardpan is associated with historical arsenopyrite-bearing concentrate which provides a source of acidity, As5+ and Fe3+ for secondary mineral precipitation. Pore waters sampled from the hardpan have pH values ranging from 2.43 to 7.06. Waters with the lowest pH values also have the highest As concentrations (up to 35.8 mg/L) and are associated with the most extensive hardpan and greatest amount of weathered sulfide. Samples from areas with discontinuous hardpan and less sulfide have near-neutral pH and lower As concentrations. Detailed petrographic observations indicate that the identity and stability of As-bearing secondary minerals depends on the continued availability of sulfide concentrate. The results of this study are being used to develop remediation strategies for highly weathered, hardpan-bearing tailings that consider the stability of both primary and secondary minerals under various cover scenarios.  相似文献   

6.
为探讨富硫化物尾矿酸化及重金属污染特征,选择安徽铜陵水木冲尾矿库浅层(0~90 cm)剖面为研究对象,对其结构特点、矿物组成、重金属(Pb、Cd、Zn、Ni、Cr、Mn、Cu和As)含量及赋存形态进行研究。结果表明,该尾矿库浅层出现分层现象,即表层为强硬化层,向下依次为弱硬化层和松散层,且呈酸性;矿物主要以辉石、长石、云母和石膏为主,由浅及深,金属硫化物及碳酸盐型矿物特征峰呈现增强的趋势;重金属呈现两种富集类型:表层(0~30cm,As、Pb)富集和中部(40~60 cm,Cd、Cu、Mn、Ni、Zn和Cr)富集型,其中Cu、Cd、As污染较为严重。由相关性分析可知,部分金属之间存在一定的伴生性,且p H值是影响重金属迁移的重要因素之一。该尾矿重金属主要以残渣态为主,其中Pb的潜在迁移能力最强,As最弱,顺序为Pb Cd Zn Ni Cr Mn Cu As。  相似文献   

7.
《Applied Geochemistry》2000,15(8):1219-1244
Arsenian pyrite, formed during Cretaceous gold mineralization, is the primary source of As along the Melones fault zone in the southern Mother Lode Gold District of California. Mine tailings and associated weathering products from partially submerged inactive gold mines at Don Pedro Reservoir, on the Tuolumne River, contain ∼20–1300 ppm As. The highest concentrations are in weathering crusts from the Clio mine and nearby outcrops which contain goethite or jarosite. As is concentrated up to 2150 ppm in the fine-grained (<63 μm) fraction of these Fe-rich weathering products.Individual pyrite grains in albite-chlorite schists of the Clio mine tailings contain an average of 1.2 wt.% As. Pyrite grains are coarsely zoned, with local As concentrations ranging from ∼0 to 5 wt.%. Electron microprobe, transmission electron microscope, and extended X-ray absorption fine-structure spectroscopy (EXAFS) analyses indicate that As substitutes for S in pyrite and is not present as inclusions of arsenopyrite or other As-bearing phases. Comparison with simulated EXAFS spectra demonstrates that As atoms are locally clustered in the pyrite lattice and that the unit cell of arsenian pyrite is expanded by ∼2.6% relative to pure pyrite. During weathering, clustered substitution of As into pyrite may be responsible for accelerating oxidation, hydrolysis, and dissolution of arsenian pyrite relative to pure pyrite in weathered tailings. Arsenic K-edge EXAFS analysis of the fine-grained Fe-rich weathering products are consistent with corner-sharing between As(V) tetrahedra and Fe(III)-octahedra. Determinations of nearest-neighbor distances and atomic identities, generated from least-squares fitting algorithms to spectral data, indicate that arsenate tetrahedra are sorbed on goethite mineral surfaces but substitute for SO4 in jarosite. Erosional transport of As-bearing goethite and jarosite to Don Pedro Reservoir increases the potential for As mobility and bioavailability by desorption or dissolution. Both the substrate minerals and dissolved As species are expected to respond to seasonal changes in lake chemistry caused by thermal stratification and turnover within the monomictic Don Pedro Reservoir. Arsenic is predicted to be most bioavailable and toxic in the reservoir’s summer hypolimnion.  相似文献   

8.
《Applied Geochemistry》2003,18(3):409-421
This study provides a geochemical partitioning pattern of Fe, Mn and potentially toxic trace elements (As, Cd, Cr, Cu, Ni, Pb, Zn) in sediments historically contaminated with acid mine drainage, as determined by using a 4-step sequential extraction scheme. At the upperstream, the sediments occur as ochreous precipitates consisting of amorphous or poorly crystalline oxy-hydroxides of Fe, and locally jarosite, whereas the estuarine sediments are composed mainly of detrital quartz, illite, kaolinite, feldspars, carbonates and heavy minerals, with minor authigenic phases (gypsum, vivianite, halite, pyrite). The sediments are severely contaminated with As, Cd, Cu, Pb and Zn, especially in the vicinity of the mining pollution sources and some sites of the estuary, where the metal concentrations are several orders of magnitude above background levels. Although a significant proportion of Zn, Cd and Cu is present in a readily soluble form, the majority of heavy metals are bonded to reducible phases, suggesting that Fe oxy-hydroxides have a dominant role in the metal accumulation. In the estuary, the sediments are potentially less reactive than in the riverine environment, because relevant concentrations of heavy metals are immobilised in the crystalline structure of minerals.  相似文献   

9.
This study investigates the retention of heavy metals in secondary precipitates from a sulfidic mine rock dump and underlying podzolic soils by means of mineralogical and chemical extraction methods. The rock dump, which is at least 50 years old, consists of a 5–10-cm-thick leached zone and an underlying 110–115-cm-thick accumulation zone. Optical microscopy and electron microprobe analyses confirm that pyrrhotite weathering has proceeded much further in the leached horizon relative to the accumulation horizon. The weathering of sulfides in the leached zone has resulted in the migration of most heavy metals to the accumulation zone or underlying soils, where they are retained in more stable phases such as secondary ferric minerals, including goethite and jarosite. Some metals are temporarily retained in hydrated ferrous sulfates (e.g., melanterite, rozenite). Received: 28 October 1996 · Accepted: 24 February 1997  相似文献   

10.
《Applied Geochemistry》1997,12(2):203-211
The metal attenuation capacities of secondary acid mine water precipitates is dependent upon such factors as pH, ionic strength, the presence of competing ions, and tailings mineralogy. At the abandoned Spenceville Cu mine in Nevada County, California, approximately 6800 m3 of jarosite overburden and 28,000 m3 of hematite residue are potential sources of heavy metals loading to infiltrating surface waters. A column study was performed to assess the ability of the overburden and the residue to attenuate heavy metals from acidic mine drainage. The study information was needed as part of a remedial design for the abandoned mine, and was designed to simulate a worst-case scenario to examine the plausibility of backfilling a large open pit with the waste materials. Ten pore volumes of acidic mine drainage were allowed to pass through the materials, and the column effluents were analyzed for dissolved Fe, Al, Ca, Mg, Na, K, Mn, Cu, Zn, Pb and Ni using ICP-AES. The oxidation-reduction potential (Eh) was measured with a combination PtAg/AgCl electrode and also calculated from Fe(II) and Fe(III) measurements using the Nernst equation. Ion activities in solution and saturation index (SI) values for various solid phases were calculated using the geochemical speciation model MINTEQA2, and mineralogical compositions of fine (< 2 mm) and coarse ( > 2 mm) fractions were determined by XRD. Geochemical modeling of the column effluent compositions indicate that goethite, jarosite, jurbanite and gypsum are potential solid phases that may control metal solubilities in the column effluents. Excellent agreement was observed between the measured Eh values and those calculated from the activity ratio of Fe2+(aq) to Fe3+(aq). The large attenuation capacities for Cu and Zn exhibited by the jarosite overburden also suggest that solid solution substitution plays a large role in controlling metal concentrations in the pore waters. Relatively little metal attenuation, however, was provided by the hematite residue.  相似文献   

11.
The pore-water geochemistry and mineralogy of tailings derived from a granitic tungsten deposit were characterized by collecting pore-water samples at discrete depth intervals throughout the tailings for the analysis of major and minor element concentrations. Mineralogical samples from the oxidation zone were analyzed by X-ray diffraction, scanning electron microscopy combined with energy dispersive X-ray spectroscopy (SEM/EDS), electron microprobe (EMP) combined with wavelength dispersive X-ray spectroscopy (WDS), and transmission electron microscopy (TEM). The oxidation of sulfide minerals in the near-surface tailings leads to a decrease in pore-water pH and elevated SO4, As, and metal concentrations. The unusual mineralogy of this deposit, compared with that of commonly studied base-metal and gold deposits, results in several unique geochemical characteristics. The dissolution of fluorite releases F into the pore water; the F forms strong complexes with Al and enhances the dissolution of aluminosilicate minerals within the oxidation zone. As a result, high Al concentrations (up to 151.7 mg/L) are detected in the near-neutral pore water in the oxidation zone. The combined dissolution of aluminosilicates and carbonate minerals maintains the pH near 10 in the pore water at depth. Elevated concentrations of W (up to 7.1 mg/L) are detected in the pore water throughout the tailings, likely as a result of the dissolution of wolframite. Consistent with geochemical model calculations, results from SEM/EDS, EMP/WDS and TEM/EDS analyses indicate that secondary minerals, which occur as orange-brown coatings on grains of primary-minerals, are Fe oxyhydroxides. Examples of these secondary minerals display a fibrous habit at high resolution in the TEM. One of these minerals, which contains substantial amounts of Al, As, and Si as impurities, was identified by selected-area electron diffraction (SAED) analyses to be goethite. Another mineral contains relatively high amounts of Si, Pb, Bi, and As, and SAED analyses suggest that the mineral is two-line ferrihydrite.  相似文献   

12.
Coal samples collected from four different sources in the Jaintia Hills of Meghalaya, northeast India, have been investigated for their sulfur content, mineral matter, and to assess their potential behavior upon beneficiation. These coals contain high sulfur which occurs both in organic and inorganic forms. The organic sulfur content is much higher than the inorganic sulfur. Studies on different size and gravity fractions indicated that the mineral phases are concentrated in higher density fractions (d > 1.8) and in general are fine grained (<50 μm). Data of reflected-light optical microscope and electron probe micro-analysis (EPMA) revealed that minerals in these coals are sulfides-pyrite, marcasite, sphalerite, pentlandite; sulfates-barite, jarosite; oxides-hematite, rutile; hydroxides-gibbsite, goethite; phosphate-monazite; carbonate-calcite, siderite and silicates-quartz, mica, chlorite, and kaolinitic clay. The disulfides of iron occur in two modes — mainly pyrite and occasionally marcasite with wide size ranges and in various forms, such as: framboid, colloidal precipitate, colloform-banded, fine disseminations, discrete grains, dendritic (feathery), recrystallized, nuggets, discoidal, massive, cavity-fracture- and cleat-fillings. Framboidal pyrite has formed primarily due to biological activities of sulfur reducing bacteria in the early stages of coalification. Massive and other varieties have formed at later stages due to coalescence and recrystallization of the earlier formed pyrites. Sulfur isotopic values indicate a biogenic origin for the pyrites. Association of trace metals, such as Ni, and Zn has been recorded in these pyrites. Given the large fractions of organic sulfur present, these coals can be upgraded only partially to reduce the sulfur content by beneficiation.  相似文献   

13.
《Applied Geochemistry》2003,18(3):395-408
Arsenopyrite-rich waste from a former metalliferous mine were spread out over the sloping side of a deep valley after processing. Over the past 30 a, they have been subjected to rainfall and acid water originating from the abandoned mine galleries. This intensive leaching has led to the formation of thin layers of As–Fe crusts on the tailings surface acting as a cement. X-ray diffraction and SEM coupled with EDS determined that jarosite was present in all mineral samples and could contain a small amount of As (∼5.7 wt.%). In addition EMPA and Raman microspectroscopy characterised the presence of amorphous As(V) Fe hydrates as well as rare arsenate minerals (e.g. scorodite). Raman microspectroscopy in particular identified a preponderance of goethite or hematite within the mineral framework of the tailings materials that is likely to sorb recalcitrant As species. The characterisation of the components of the tailings enable the identification of their evolution, shows the progressive decrease of their As-content and emphasises the consequences of the temporary trapping of As in the very acidic and oxidising conditions prevailing in such environments. Resinous amorphous material was identified as the richest in As with As ∼17.1 wt.%. This material evolved toward more crystallised phases (e.g. goethite, jarosite) which contained less As (3.2 wt.%<As <5.7 wt.%). Paragenesis showed the progressive release of As with the crystallisation evolution of the As-trapping material.  相似文献   

14.
Despite its importance within environmental management strategies, little concern is shown to sulfide oxidation and/or hardpan formation at neutral pH where dry condition prevails. Two gold mine tailings in Egypt, El Sid and Barramiya, were studied for their geochemical/mineralogical properties, and climate influence on hardpan formation. The tailings are characterised by homogeneous silt-sized sediments (>42%), have high carbonate, predominantly as calcite for El Sid and dolomite-ankerite for Barramiya, and low-sulfide contents, chiefly as pyrite, galena and sphalerite for El Sid, and arsenopyrite–pyrite for Barramiya. El Sid is characterised by high average concentrations of Pb (2,758 mg/Kg) and Zn (2,314 mg/Kg), its lower part dominated by mafics, overlaid by granitoids. Barramiya has higher As (average 2,836 mg/Kg) content and represents a mixture of mica-schists/mafics-ultramafics. During field investigations, no hardpans were identified, only bassanite and gypsum were found at the surface of El Sid tailings, forming thin layers and desiccation crack fillings. Column experiments showed a thin crust consisting of gypsum, halite and sodium sulfate formed at the top of the column of El Sid tailings after 2 weeks, this was not recognized in the column from Barramiya. The homogenous thickened tailings deposition in both areas did not favour hardpan formation, since the critical amounts of reacting sulfides were never achieved in individual lamina, due to missing mineral/grain size fractionation. The high-temperature/low-water availability, characteristic for desert climate regions did not allow significant sulfides oxidation. Therefore, both tailings will suffer from continuous erosion and spreading out of contaminants to the environment for a prolonged period of time by sporadic flash floods.  相似文献   

15.
This study examined the chemical speciation and mobility of As and heavy metals in a tailings impoundment in Samsanjeil mine located in Gosung, Korea, as well as the factors affecting them. XRD, SEM, and 5-step sequential extraction were used to examine the samples at two sampling sites (NN and SN sites). The pH of the tailings decreased with increasing depth at the NN site (from 7.2 to 2.8), whereas no significant differences were observed at the SN site (8.1–8.8). The samples at the SN site showed a larger amount of calcite than those at the NN site, indicating that calcite plays an important role buffering the pH in the study sites. Jarosite was found only at the lower part of the NN site, where calcite was not found. The mineralogical observation of jarosite and calcite was also confirmed by SEM. The concentrations of As and heavy metals in the tailings were as follows: Cu > As > Zn > > Pb > Co > Cr > Ni > Cd. The total concentrations of Ni, Zn, Co, and Cd were higher at the SN site than those at the NN site. On the other hand, the concentrations of As and Cr existing as oxyanions were higher at the NN site, which can be explained by the mobility changes of those elements affected by pH variations. At the NN site, the fractions of heavy metals bound to the Fe/Mn oxides, except for As and Cr, decreased, and Cu, Zn, and Co showed an increasing fraction of exchangeable metals with increasing depth. This suggests that the pH and resulting surface charge of minerals, such as goethite and jarosite, are the dominant factors controlling the chemical speciation of metals. These results highlight the importance of mineralogy in controlling the mobility and possible bioavailability of heavy metals in tailings.  相似文献   

16.
Tailings generated during processing of sulfide ores represent a substantial risk to water resources. The oxidation of sulfide minerals within tailings deposits can generate low-quality water containing elevated concentrations of SO4, Fe, and associated metal(loid)s. Acid generated during the oxidation of pyrite [FeS2], pyrrhotite [Fe(1−x)S] and other sulfide minerals is neutralized to varying degrees by the dissolution of carbonate, (oxy)hydroxide, and silicate minerals. The extent of acid neutralization and, therefore, pore-water pH is a principal control on the mobility of sulfide-oxidation products within tailings deposits. Metals including Fe(III), Cu, Zn, and Ni often occur at high concentrations and exhibit greater mobility at low pH characteristic of acid mine drainage (AMD). In contrast, (hydr)oxyanion-forming elements including As, Sb, Se, and Mo commonly exhibit greater mobility at circumneutral pH associated with neutral mine drainage (NMD). These differences in mobility largely result from the pH-dependence of mineral precipitation–dissolution and sorption–desorption reactions. Cemented layers of secondary (oxy)hydroxide and (hydroxy)sulfate minerals, referred to as hardpans, may promote attenuation of sulfide-mineral oxidation products within and below the oxidation zone. Hardpans may also limit oxygen ingress and pore-water migration within sulfide tailings deposits. Reduction–oxidation (redox) processes are another important control on metal(loid) mobility within sulfide tailings deposits. Reductive dissolution or transformation of secondary (oxy)hydroxide phases can enhance Fe, Mn, and As mobility within sulfide tailings. Production of H2S via microbial sulfate reduction may promote attenuation of sulfide-oxidation products, including Fe, Zn, Ni, and Tl, via metal-sulfide precipitation. Understanding the dynamics of these interrelated geochemical and mineralogical processes is critical for anticipating and managing water quality associated with sulfide mine tailings.  相似文献   

17.
Secondary copper enrichment in tailings at the Laver mine, northern Sweden   总被引:3,自引:2,他引:1  
 Field and laboratory studies of the sulphide-bearing tailings at Laver, northern Sweden, show that the present release of metals from the tailings is low, especially with regard to Cu. A large part of the Cu released by sulphide oxidation is enriched in a distinct zone just below the oxidation front. The enrichment zone occurs almost all over the tailings area except in areas with a shallow groundwater table. The Cu enrichment is caused by formation of covellite and adsorption onto mineral surfaces. The transport of Zn, Co, Cd, Ni and S seems to be controlled mainly by adsorption. No secondary zone or secondary minerals containing these metals have been found. Just below the groundwater table, metals are released into solution when the enrichment zone reaches the groundwater due to the low pH. An increased release of metals, especially Cu, can be expected in the future, since the enrichment zone is moving towards the groundwater table. Received: 4 December 1997 · Accepted: 17 December 1998  相似文献   

18.
《Applied Geochemistry》2006,21(8):1301-1321
Low-quality pore waters containing high concentrations of dissolved H+, SO4, and metals have been generated in the East Tailings Management Area at Lynn Lake, Manitoba, as a result of sulfide-mineral oxidation. To assess the abundance, distribution, and solid-phase associations of S, Fe, and trace metals, the tailings pore water was analyzed, and investigations of the geochemical and mineralogical characteristics of the tailings solids were completed. The results were used to delineate the mechanisms that control acid neutralization, metal release, and metal attenuation. Migration of the low-pH conditions through the vadose zone is limited by acid-neutralization reactions, resulting in the development of distinct pore-water pH zones at depth; the neutralization reactions involve carbonate (pH  5.7), Al-hydroxide (pH  4.0), and aluminosilicate solids. As the zone of low-pH pore water expands, the pH will then be primarily controlled by less soluble solids, such as Fe(III) oxyhydroxides (pH < 3.5) and the relatively more recalcitrant aluminosilicates (pH  1.3). Precipitation/dissolution reactions involving secondary Fe(III) oxyhydroxides and hydroxysulfates control the concentrations of dissolved Fe(III). Concentrations of dissolved SO4 are principally controlled by the formation of gypsum and jarosite. Geochemical extractions indicate that the solid-phase concentrations of Ni, Co, and Zn are associated predominantly with reducible and acid-soluble fractions. The concentrations of dissolved trace metals are therefore primarily controlled by adsorption/complexation and (or) co-precipitation/dissolution reactions involving secondary Fe(III) oxyhydroxide and hydroxysulfate minerals. Concentrations of dissolved metals with relatively low mobility, such as Cu, are also controlled by the precipitation of discrete minerals. Because the major proportion of metals is sequestered through adsorption and (or) co-precipitation, the metals are susceptible to remobilization if low-pH or reducing conditions develop within the tailings.  相似文献   

19.
The Sarcheshmeh is one of the largest Oligo-Miocene porphyry Cu deposits in the world. Comparative hydrochemical, mineralogical and chemical fractionation associated with mining efflorescence salts and processing wastes of this mine are discussed. Hydrochemical results showed that rock waste dumps, reject wastes and old impoundments of tailings are the main sources of acid mine drainage waters (AMD) that contain potentially toxic metals such as Cd, Co, Cu, Mn, Ni and Zn as well as Al. Episodic fluxes of highly contaminated acidic waters were produced in a tailings dam over a short period of time. Secondary soluble minerals provide important controls on the quality of AMD produced, especially in old, dry tailings impoundments. Secondary sulfate minerals such as gypsum, magnesiocopiapite, hydronium jarosite, kornelite and coquimbite were found in rock waste drainages and in old weathered reject wastes. Highly soluble secondary minerals such as gypsum, eriochalcite, and bonattite are also observed in an evaporative layer on old tailings impoundments. Chemical fractionation patterns of potentially toxic elements showed that the geochemical behavior of metals is primarily controlled by the mineralogical composition of waste samples. Elements such as Co, Cr, Cu, Mn, Ni and Zn are readily released into the water soluble fraction from efflorescence salts associated with rock waste drainages, as well as from the evaporative layer of old tailings. Potentially toxic elements, such as As, Mo and Pb, are principally adsorbed or co-precipitated with amorphous and crystalline Fe oxides, but they may also be associated with oxidizing, primary sulfides and residual fractions. Following the development of the dammed tailings pond, the secondary minerals were dissolved, producing acidic waters contaminated by Al (154 mg L−1), Cu (150 mg L−1), Cd (0.31 m gL−1), Co (2.13 mg L−1), Mn (73.7 mg L−1), Ni (1.74 mg L−1), Zn (20.3 mg L−1) and Cl (1690 mg L−1). Therefore, the potential use of recycled water from the Sarcheshmenh dammed tailings pond is diminished by the presence of corrosive ions like Cl in highly acidic fluids that promote corrosion of pipes and pumps in the water recycling system.  相似文献   

20.
Mineral extraction and processing, especially metal mining, produces crushed and milled waste; such material, exposed to weathering, poses the potential threat of environmental contamination. In this study, mill tailings from inactive Pb-Zn mines in New Mexico, southwest USA, have been examined for their potential environmental impacts by means of detailed mineralogical and geochemical characterization. The principal ore minerals remaining in the tailings material are sphalerite, chalcopyrite, and very minor galena, smithsonite, and cerrusite, accompanied by the gangue minerals pyrite, pyrrhotite, magnetite, hematite, garnet, pyroxene, quartz, and calcite. White precipitate occurring on tailings surfaces is composed of gypsum and hydrated magnesium sulfates. Pyrite is mostly unaltered or shows only micron-scale rims of oxidation (goethite/hematite) in some surface samples. This iron oxide rim on pyrite is the only indication of weathering-derived minerals found by microscopy. There are variations in element concentrations with depth that reflect primary variations through time as the tailings ponds were filled. Cadmium and Zn concentrations increase with depth and Ag and Pb are low for the uppermost core samples, while Cu, Ni, and Co concentrations are generally high for the uppermost core samples. These elemental distributions indicate that little or no leaching has taken place since emplacement of the tailings because no accumulation or enrichment of these metals is observed in Hanover tailings, even in reducing portions of tailings piles. Element concentrations of surface samples surrounding the tailings reflect underlying mineralized zones rather than tailings-derived soil contamination. We observed no successive decreasing metal concentrations in prevalent wind directions away from the tailings. Stream sediment samples from Hanover Creek have somewhat elevated Zn, Cd, and Pb concentrations in areas that receive sediments from erosion of the tailings. However, input from tributaries downstream of the ponds appears to be principal source of heavy metals in Hanover Creek. The results of this study indicate that there is low risk for groundwater heavy-metal contamination from Hanover tailings. Tailings material do not show significant geochemical oxidation/alteration or metal leaching with depth. Our studies indicate that neutralizing minerals present in the tailings are sufficient to keep the tailings material chemically stable. Geochemically, however, tailings materials are being eroded and may pose a threat to Hanover Creek via siltation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号