首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 311 毫秒
1.
The semi-empirical formulae by Pedersen (1996) for wave loads on vertical front faces of stiff crown walls are based on model tests with deep and intermediate water wave conditions. A new series of model tests performed at the same test facility as used by Pedersen has revealed that the formulae by Pedersen overpredict the loads in shallow water wave conditions. This paper presents a modification/expansion of the formulae to cover loads in both deep and shallow water wave conditions. The modification is based on a series of 162 physical model tests on typical rubble mound breakwaters with crown wall superstructures. The implementation of shallow water wave conditions in the formulae is done by modifying the term for wave run-up to be dependent on the incident wave height distribution. Moreover, the adjusted formulae provide more accurate estimates of the wave loads on free walls without front armour protection. Pressure transducers with very high eigen-frequencies were used in the present model tests as opposed to the transducers applied by Pedersen which in some cases seem to have been affected by dynamic amplifications.  相似文献   

2.
The problem of sea-wave run-up on a beach is discussed within the framework of exact solutions of a nonlinear theory of shallow water. Previously, the run-up of solitary waves with different forms (Gaussian and Lorentzian pulses, a soliton, special-form pulses) has already been considered in the literature within the framework of the same theory. Depending on the form of the incident wave, different formulas were obtained for the height of wave run-up on a beach. A new point of this study is the proof of the universality of the formula for the maximum height of run-up of a solitary wave on a beach for the corresponding physical choice of the determining parameters of the incident wave, so that the effect of difference in form is eliminated. As a result, an analytical formula suitable for applications, in particular, in problems related to tsunamis, has been proposed for the height of run-up of a solitary wave on a beach.  相似文献   

3.
Vegetation damping effects on propagating water waves have been investigated by many researchers. This paper investigates the effects of damping due to vegetation on solitary water wave run-up via numerical simulation. The numerical model is based on an implementation of Morison's formulation for vegetation induced inertia and drag stresses in the nonlinear shallow water equations. The numerical model is solved via a finite volume method on a Cartesian cut cell mesh. The accuracy of the numerical scheme and the effects of the vegetation terms in the present model are validated by comparison with experiment results. The model is then applied to simulate a solitary wave propagating on a plane slope with vegetation. The sensitivity of solitary wave run-up to plant height, diameter and stem density is investigated by comparison of the numerical results for different patterns of vegetation. The numerical results show that vegetation can effectively reduce solitary wave propagation velocity and that solitary wave run-up is decreased with increase of plant height in water and also diameter and stem density.  相似文献   

4.
Didenkulova  I. I.  Pelinovsky  E. N. 《Oceanology》2019,59(4):478-481
Oceanology - Abstract—The nonlinear problem of run-up of a long wave on a plane beach in presence of a tide is solved within nonlinear shallow water theory using the Carrier–Greenspan...  相似文献   

5.
This paper presents laboratory and numerical simulations of run-up induced by irregular waves breaking on a gentle-sloping planar beach. The experimental data are well reproduced by a numerical model based on the nonlinear shallow water equations. By extending the incoming wave conditions considered in the laboratory experiments, the model is applied to study the run-up variability under highly energetic incoming conditions. The numerical results support the idea that, for cases characterized by the same incident peak frequency, infragravity run-up increases almost linearly with the offshore significant wave height. Moreover, the most energetic conditions lead to an upper limit of the swash similarity parameter of about 1.8.  相似文献   

6.
The boundary integral equation method (BIEM) is developed as a tool for studying two-dimensional, nonlinear water wave problems, including the phenomena of wave generation, propagation and run-up. The wave motions are described by a potential flow theory. Nonlinear free-surface boundary conditions are incorporated in the numerical formulation. Examples are given for either a solitary wave or two successive solitary waves. Special treatment is developed to trace the run-up and run-down along a shoreline. The accuracy of the present scheme is verified by comparing numerical results with experimental data of maximum run-up.  相似文献   

7.
Theoretical results for second-order wave run-up around a large diameter vertical circular cylinder are compared to results of 22 laboratory experiments conducted in regular nonlinear waves. In general, the second-order theory explains a significant portion of the nonlinear wave run-up distribution measured at all angles around the cylinder. At the front of the cylinder, for example, measured maximum run-up exceeds linear theory by 44% on average but exceeds the nonlinear theory by only 11% on average. In some cases, both measured run-up and the second-order theory exceed the linear prediction by more than 50%. Similar results are found at the rear of the cylinder where the second-order theory predicts a large increase in wave amplitude for cases where the linear diffraction theory predicts little or no increase. Overall, the nonlinear diffraction theory is found to be valid for the same relative depth and wave steepness conditions applicable to Stokes second-order plane-wave theory. In the last section of the paper, design curves are presented for estimating the maximum second-order wave run-up for a wide range of conditions in terms of the relative depth, relative cylinder size, and wave steepness.  相似文献   

8.
In this paper, first we introduce the wave run-up scale which describes the degree of wave run-up based on observed sea conditions near and on a coastal structure. Then, we introduce a simple method which can be used for daily forecast of wave run-up on a coastal structure. The method derives a multiple linear regression equation between wave run-up scale and offshore wind and wave parameters using long-term photographical observation of wave run-up and offshore wave forecasting model results. The derived regression equation then can be used for forecasting the run-up scale using the offshore wave forecasting model results. To test the implementation of the method, wave run-up scales were observed at four breakwaters in the East Coast of Korea for 9 consecutive months in 2008. The data for the first 6 months were used to derive multiple linear regression equations, which were then validated using the run-up scale data for the remaining 3 months and the corresponding offshore wave forecasting model results. A comparison with an engineering formula for wave run-up is also made. It is found that this method can be used for daily forecast and warning of wave run-up on a coastal structure with reasonable accuracy.  相似文献   

9.
为了研究波浪非线性对爬高的影响,解决防波堤等工程设计的实际问题,通过对数学模型试验、物理模型试验、规范公式得到的防波堤波浪爬高对比分析,分析了非线性主要影响参数厄塞尔数、相对水深和波陡对波浪爬高的影响规律,指出规范公式计算时存在的缺陷,并对其计算公式、适用范围进行修正、拟合,得到了强非线性规则波浪爬高的计算方法,可适用于斜坡堤断面的波浪爬高计算,与物理模型试验和数学模型试验结果对比表明,新的波浪爬高计算公式具有较好的计算精度,研究结果可为防波堤等实际工程设计提供重要参考。  相似文献   

10.
Wave run-up on a sea wall built on a convex bottom profile is studied in the framework of linear shallow water theory. When the wall is located in “deeper water,” a wave is reflected from the wall without changing its shape and phase, which is fully consistent with classical considerations. If the wall is shifted towards the shore, the shape of the wave changes in a complex way. Note that the wave phase changes to the opposite in the limiting case when the wall is located right on the shore. The role of nonlinear effects is studied by means of numerical simulations using nonlinear shallow water theory. It is shown that the contribution of nonlinear effects and breaking is high on a convex-shaped beach, which makes the structure of the wave field rather complicated.  相似文献   

11.
Different shoreline boundary conditions for numerical models of the Non-Linear Shallow Water Equations based on Godunov-type schemes are compared. The study focuses on the Peregrine and Williams [Peregrine, D.H., Williams, S.M., 2001. Swash overtopping a truncated plane beach. Journal of Fluid Mechanics 440, 391–399.] problem of a single bore collapsing on a slope. This is considered the best test to assess performances of the shoreline boundary treatments in terms of all the parameters of interest in swash zone modelling. Emphasis is given to the shoreline trajectory and flow velocity modelling. A mismatch of the velocity at the early stage of the motion is highlighted. Most of the tested techniques perform similarly in terms of maximum run-up, the backwash phase is critical in all cases. Starting from the Brocchini et al. [Brocchini, M., Bernetti, R., Mancinelli, A., Albertini, G., 2001. An efficient solver for nearshore flows based on the WAF method. Coastal Engineering 43(2), 105–129.] shoreline boundary treatment, a simple technique that improves the accuracy of velocity predictions is also developed. A sensitivity analysis of the domain resolution and the threshold value of the water depth that defines a wet cell is also presented.  相似文献   

12.
A numerical method for non-hydrostatic, free-surface, irrotational flow governed by the nonlinear shallow water equations including the effects of vertical acceleration is presented at the aim of studying surf zone phenomena. A vertical boundary-fitted grid is used with the water depth divided into a number of layers. A compact finite difference scheme is employed for accurate computation of frequency dispersion requiring a limited vertical resolution and hence, capable of predicting the onset of wave breaking. A novel wet–dry algorithm is applied for a proper handling of moving shoreline. Mass and momentum are strictly conserved at discrete level while the method only dissipates energy in the case of wave breaking. The numerical results are verified with a number of tests and show that the proposed model using two layers without ad-hoc assumptions enables to resolve propagating nonlinear shoaling, breaking waves and wave run-up within the surf and swash zones in an efficient manner.  相似文献   

13.
《Coastal Engineering》2005,52(3):285-302
Modifications to a model describing swash motion based on solutions to the non-linear shallow water equations were made to account for interaction between up-rush and back-wash at the still water shoreline and within the swash zone. Inputs to the model are wave heights and arrival times at the still water shoreline. The model was tested against wave groups representing idealized vessel-generated wave trains run in a small wave tank experiment. Accounting for swash interaction markedly improved results with respect to the maximum run-up length for cases with rather gentle foreshore slopes (tanβ=0.07). For the case with a steep foreshore slope (tanβ=0.20) there was very little improvement compared to model results if swash interaction was not accounted for. In addition, an equation was developed to predict the onset and degree of swash interaction including the effects of bed friction.  相似文献   

14.
A finite element model of Boussinesq-type equations was set up, and a direct numerical method is proposed so that the full reflection boundary condition is exactly satisfied at a curved wall surface. The accuracy of the model was verified in tests. The present model was used to further examine cnoidal wave propagation and run-up around the cylinder. The results showed that the Ursell number is a nonlinear parameter that indicates the normalized profile of cnoidal waves and has a significant effect on the wave run-up. Cnoidal waves with the same Ursell number have the same normalized profile, but a difference in the relative wave height can still cause differences in the wave run-up between these waves. The maximum dimensionless run-up was predicted under various conditions. Cnoidal waves hold entirely distinct properties from Stokes waves under the influence of the water depth, and the nonlinearity of cnoidal waves enhances rather than weakens with increasing wavelength. Thus, the variations in the maximum run-up with the wavelength for cnoidal waves are completely different from those for Stokes waves, and there are even significant differences in the variation between different cnoidal waves.  相似文献   

15.
This paper presents new laboratory experiments carried out in a supertank (300 m × 5 m × 5.2 m) of breaking solitary waves evolution on a 1:60 plane beach. The measured data are employed to re-examine existing formulae that include breaking criterion, amplitude evolution and run-up height. The properties of shoreline motion, underwater particle velocity and scale effect on run-up height are briefly discussed. Based on our analyses, it is evidently found that there exist five zones during a wave amplitude evolution course on the present mild slope. A simple formula which is capable of predicting maximum run-up height for a breaking solitary wave on a uniform beach with a wide range of beach slope (1:15–1:60) is also proposed. The calculated results from the present model agree favorably with available laboratory data, indicating that our method is compatible with other predictive models.  相似文献   

16.
The note extends and completes the analysis carried out by Briganti and Dodd [Briganti, R., Dodd, N., 2009. Shoreline motion in nonlinear shallow water coastal models. Coastal Eng. 56(5–6) (doi:101016/j.coastaleng.2008.10.008), 495–505.] on the performance of a state of the art Non-Linear Shallow Water Equations solver in common coastal engineering applications. The case of bore-generated overtopping of a truncated plane beach is considered and the performance of the model is assessed by comparing with the Peregrine and Williams [Peregrine, D., Williams, S.M., 2001. Swash overtopping a truncated beach. J. Fluid Mech. 440, 391–399.] analytical solution. In particular the influence of shoreline boundary conditions is investigated by considering the two best performing approaches discussed in Briganti and Dodd [Briganti, R., Dodd, N., 2009. Shoreline motion in nonlinear shallow water coastal models. Coastal Eng. 56(5–6) (doi:101016/j.coastaleng.2008.10.008), 495–505.]. Different distances of the edge of the beach from the bore collapse point are tested. For larger distances, the accuracy of the overtopping modelling decreases, as a consequence of the error in modelling the tip of the swash lens and, consequently, the run-up. A sensitivity analysis using the numerical resolution is carried out. This reveals that the approach in which cells shallower than a prescribed threshold are drained and wave propagation speeds for wet/dry Riemann problem are used at the interface between a wet and a dry cell (referred as Option 2ea in [Briganti, R., Dodd, N., 2009. Shoreline motion in nonlinear shallow water coastal models. Coastal Eng. 56(5–6) (doi:101016/j.coastaleng.2008.10.008), 495–505.]) performs consistently better than the other.  相似文献   

17.
During the last decade, several offshore wind-farms were built and offshore wind energy promises to be a suitable alternative to provide green energy. However, there are still some engineering challenges in placing the foundations of offshore wind turbines. For example, wave run-up and wave impacts cause unexpected damage to boat landing facilities and platforms. To assess the forces due to wave run-up, the distribution of run-up around the pile and the maximum run-up height need to be known. This article describes a physical model study of the run-up heights and run-up distribution on two shapes of foundations for offshore wind turbines, including both regular and irregular waves. The influence of wave steepness, wave height and water depth on run-up is investigated. The measured run-up values are compared with applicable theories and previous experimental studies predicting run-up on a circular pile.  相似文献   

18.
An Explicit High Resolution Scheme for Nonlinear Shallow Water Equations   总被引:1,自引:0,他引:1  
The present study develops a numerical model of the two-dimensional fully nonlinear shallow water equations (NSWE) for the wave run-up on a beach. The finite volume method (FVM) is used to solve the equations, and a second-order explicit scheme is developed to improve the computation efficiency. The numerical fluxes are obtained by the two dimensional Roe' s flux function to overcome the errors caused by the use of one dimensional fluxes in dimension splitting methods. The high-resolution Godunov-type TVD upwind scheme is employed and a second-order accuracy is achieved based on monotonic upstream schemes for conservation laws (MUSCL) variable extrapolation; a nonlinear limiter is applied to prevent unwanted spurious oscillation. A simple but efficient technique is adopted to deal with the moving shoreline boundary. The verification of the solution technique is carried out by comparing the model output with documented results and it shows that the solution technique is robust.  相似文献   

19.
张景新  刘桦 《海洋工程》2009,(3):553-564
Submerged barriers are constructed in coastal zones for shoreline or harbor protection or to prevent the beach erosion. In the present study, the wave run-up on a vertical seawall protected by a submerged barrier is analyzed. The physical configurations include a rigid barrier and a long channel of finite depth. For linear water waves, by matching the velocity along the barrier and along the gap, the systems of linear equations about the velocity potentials are obtained. The wave run-up is further analyzed for various settings of barrier height and distance between the barrier and the wall, i.e. the chamber length. For nonlinear waves and random sea waves, a numerical model is extended to investigate the effect parameters of the barrier on the wave run-up against the seawall. Not only the numerical simulations, but also the analytical results illustrate that the wave run-up on the seawall depends very much on the distance between the barrier and the vertical seawall.  相似文献   

20.
才瀚涛  黄华  苏炜 《海洋科学》2020,44(6):91-100
应用椭圆余弦波的绕射理论,推导了V形防波堤的浅水波浪绕射解析解,从而对现有的Airy微幅波理论进行了有效拓展。据此理论对V形防波堤的浅水波绕射作用进行了解析计算,并与几何形状相近的圆弧型防波堤结果加以了对比。结果表明:椭圆余弦波理论计算的V形防波堤最大波浪力和最大绕射波面明显大于微幅波理论的对应值。本方法适用于张角180°的有限长直立薄壁防波堤的浅水波绕射作用计算,从而将无限长直立薄壁堤的反射波理论加以有效拓展。张角同为120°的V形堤与圆弧堤的堤后防浪效果相近,而180°圆弧堤的堤后防浪效果优于张角90°的V形堤。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号