首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 155 毫秒
1.
A new criterion is proposed for a more efficient assessment of free-surface particles in a particle-based simulation. Enhanced wave impact simulations are carried out by improved Incompressible SPH (ISPH) methods. The first improvement is the same as that in the Corrected ISPH (CISPH; [Khayyer A, Gotoh, H, Shao SD. Corrected incompressible SPH method for accurate water-surface tracking in breaking waves, Coast Eng 2008; 55 (3): 236–250]) method and is proposed for the improvement of momentum conservation. The second improvement is achieved by deriving and employing a higher order source term based on a more accurate differentiation to obtain a less fluctuating and more accurate pressure field. The enhanced performance of improved ISPH methods is demonstrated through the simulation of several fluid impact simulations in comparison with the experimental data and simulation results by other numerical methods.  相似文献   

2.
Incompressible SPH flow model for wave interactions with porous media   总被引:1,自引:0,他引:1  
The paper presents an Incompressible Smoothed Particle Hydrodynamics (ISPH) method to simulate wave interactions with a porous medium. The SPH method is a mesh free particle modeling approach that is capable of tracking the large deformation of free surfaces in an easy and accurate manner. The ISPH method employs a strict incompressible hydrodynamic formulation to solve the fluid pressure and the numerical solution is obtained by using a two-step semi-implicit scheme. The ISPH flow model solves the unsteady 2D Navier–Stokes (NS) equations for the flows outside the porous media and the NS type model equations for the flows inside the porous media. The presence of porous media is considered by including additional friction forces into the equations. The developed ISPH model is first validated by the solitary and regular waves damping over a porous bed and the solitary wave interacting with a submerged porous breakwater. The convergence of the method and the sensitivity of relevant model parameters are discussed. Then the model is applied to the breaking wave interacting with a breakwater covered with a layer of porous materials. The computational results demonstrate that the ISPH flow model could provide a promising simulation tool in coastal hydrodynamic applications.  相似文献   

3.
Liquid sloshing is a common phenomenon in the liquid tanks transportation. Liquid waves lead to fluctuating forces on the tank wall. Uncontrolled fluctuations lead to large forces and momentums. Baffles can control these fluctuations. A numerical method, which has been widely used to model this phenomenon, is Smoothed Particle Hydrodynamics(SPH). The Lagrangian nature of this method makes it suitable for simulating free surface flows. In the present study, an accurate Incompressible Smoothed Particle Hydrodynamics(ISPH) method is developed and improved using the kernel gradient correction tensors, particle shifting algorithms, k–ε turbulence model, and free surface particle detectors. Comparisons with the experimental data approve the ability of the present algorithm for simulating shallow water sloshing. The main aim of this study is to investigate the effects of the vertical baffle on the damping of liquid sloshing. Results show that baffles number has a major role in sloshing fluctuation damping.  相似文献   

4.
Free surface flows are of significant interest in Computational Fluid Dynamics(CFD). However, violent water wave impact simulation especially when free surface breaks or impacts on solid wall can be a big challenge for many CFD techniques. Smoothed Particle Hydrodynamics(SPH) has been reported as a robust and reliable method for simulating violent free surface flows. Weakly compressible SPH(WCSPH) uses an equation of state with a large sound speed, and the results of the WCSPH can induce a noisy pressure field and spurious oscillation of pressure in time history for wave impact problem simulation. As a remedy, the truly incompressible SPH(ISPH) technique was introduced, which uses a pressure Poisson equation to calculate the pressure. Although the pressure distribution in the whole field obtained by ISPH is smooth, the stability of the techniques is still an open discussion. In this paper, a new free surface identification scheme and solid boundary handling method are introduced to improve the accuracy of ISPH. This modified ISPH is used to study dam breaking flow and violent tank sloshing flows. On the comparative study of WCSPH and ISPH, the accuracy and efficiency are assessed and the results are compared with the experimental data.  相似文献   

5.
Modified Moving Particle method in Porous media (MMPP) is introduced in this study for simulating a flow interaction with porous structures. By making use of the sub-particle scale (SPS) turbulence model, a unified set of equations are introduced for the entire computational domain and a proper boundary treatment is suggested at the interfaces between fluid and the porous media. Similar to the Incompressible Smoothed Particle Hydrodynamic (ISPH) method, a robust two-step semi-implicit scheme is utilized to satisfy the incompressibility criterion. By means of the introduced model, different flow regimes through multi-layered porous structures with arbitrary shapes can be simulated and there is no need to implement calibration factors.The developed MMPP model is then validated via simulating the experiments of Liu et al. (1999) i.e. linear and turbulent flows through porous dams and the experiments of Sakakiyama and Liu (2001) i.e. wave overtopping on a caisson breakwater protected by multi layered porous materials. Good agreements between numerical and laboratory data present the ability of the introduced model in simulating various flow regimes through multi-layered porous structures. It is concluded that the turbulent flow is an important issue particularly at the interface between the free fluid and porous media and consequently, the accuracy of the previous Lagrangian models that were based on neglecting the turbulence effect can be improved significantly by means of the present model. In addition, to satisfy the continuity criteria in the SPH models, it is necessary to modify density of particles in accordance with their porosity.  相似文献   

6.
Smoothed Particle Hydrodynamics method (SPH) has a good adaptability for simulating of free surface flow problems. However, there are some shortcomings of SPH which are still in open discussion. This paper presents a corrected solid boundary handling method for weakly compressible SPH. This improved method is very helpful for numerical stability and pressure distribution. Compared with other solid boundary handling methods, this corrected method is simpler for virtual ghost particle interpolation and the ghost particle evaluation relationship is clearer. Several numerical tests are given, like dam breaking, solitary wave impact and sloshing tank waves. The results show that the corrected solid boundary processing method can recover the spurious oscillations of pressure distribution when simulating the problems with complex geometry boundary.  相似文献   

7.
《Coastal Engineering》2006,53(2-3):141-147
Smoothed Particle Hydrodynamics (SPH) is a relatively new method for examining the propagation of highly nonlinear and breaking waves. At Johns Hopkins University, we have been working since 2000 to develop an engineering tool using this technique. However, there have been some difficulties in taking the model from examples using a small number of particles to more elaborate and better resolved cases.Several improvements that we have implemented are presented here to handle turbulence, the fluid viscosity and density, and a different time-stepping algorithm is used. The final model is shown to be able to model breaking waves on beaches in two and three dimensions, green water overtopping of decks, and wave–structure interaction.  相似文献   

8.
基于SPH方法建立波浪数值水槽,对岛礁地形上的波浪传播变形进行了数值模拟,分析了岛礁地形上波浪破碎过程的波高和水质点波动流速分布,并采用波浪水槽物理模型试验数据进行对比验证。结果表明,该模型可以较准确地模拟岛礁地形上波浪破碎引起的波高和波动流场沿程变化。在此基础上模拟了礁坪上建设斜坡堤后的波动流场,分析了斜坡堤对礁坪上流场形态、沿程波高、波动流速垂向分布及近底流速的影响。结果表明:在建设斜坡堤后,礁坪上波浪破碎更加猛烈,波浪破碎点前移;沿程波高与波动流速受反射波影响明显,沿程波高变化呈现为先增大、再减小、再增大,最后在防波堤堤脚处减小,近底流速变化趋势则与之相反;在堤前半倍波长范围内反向近底流速峰值较非岛礁地形上规范公式计算值增幅较大。  相似文献   

9.
为研究以流体粒子描述波浪运动,以固体单元描述砾石运动的两相介质大变形运动,在港口、海岸工程科学研究中具有重要意义。本文提出砾石单元法(GEM),介绍了光滑粒子动力学方法(SPH)和GEM的基本原理,阐述了GEM与离散单元法(DEM)的异同之处,说明了采用SPH方法与GEM构建波浪砾石耦合运动数学模型的方法和过程。应用SPH方法建立数值波浪水槽,用GEM模拟波浪作用下堆积砾石的滚落、坍塌变形,构建了SPH方法与GEM耦合数学模型。模拟了水槽造波和波浪生成过程和波浪作用下砾石的滚落、坍塌变形,并与物理模型试验成果进行了比较,结果基本吻合。本文提出的GEM法具有模拟单相堆积砾石运动和堆积砾石与流体粒子耦合多相介质运动的功能,是对DEM法的补充和改善。本文提出的堆积力学球概念和拟序排列求解方法是砾石单元法的重要组成部分。  相似文献   

10.
This paper presents a numerical model for simulating wave interaction with porous structures. Incompressible smoothed particle hydrodynamics in porous media (ISPHP) method is introduced in this study as a mesh free particle approach that is capable of efficiently tracking the large deformation of free surfaces in a Lagrangian coordinate system. The developed model solves two porous and pure fluid flows simultaneously by means of one equation that is equivalent to the unsteady 2D Navier–Stokes (NS) equations for the flows outside the porous media and the extended Forchheimer equation for the flows inside the porous media. Interface boundary between pure fluid and porous media is effectively modeled by the SPH integration technique. A two-step semi-implicit scheme is also used to solve the fluid pressure satisfying the fluid incompressibility criterion.The developed ISPHP model is then validated via different experimental and numerical data. Fluid flow pattern through porous dam with different porosities is studied and regular wave attenuation over porous seabed is investigated. As a practical case, wave running up and overtopping on a caisson breakwater protected by a porous armor layer are modeled. The results show good agreements between numerical and laboratory data in terms of free surface displacement, overtopping rate and pressure distribution. Based on this study, ISPHP model is an efficient method for simulating the coastal applications with porous structures.  相似文献   

11.
A smoothed particle hydrodynamic (SPH) model is developed to simulate wave interaction with porous structures. The mean flow outside the porous structures is obtained by solving Reynolds Averaged Navier–Stokes (RANS) equations and the turbulence field is calculated by a large eddy simulation (LES) model. The porous flow is described by the spatially averaged Navier–Stokes type equations with the resistance effect of the porous media being represented by an empirical frictional source term. The interface boundaries between the porous flow and the outside flow are modeled by means of specifying a transition zone along the interface. The model is validated against other available numerical results and experimental data for wave damping over porous seabed with different levels of permeability. The validated model is then employed to investigate wave breaking over a submerged porous breakwater and good agreements between the SPH model results and the experimental data are obtained in terms of free surface displacement. In addition the predicted velocity, vorticity and pressure fields near the porous breakwater and in the breaking wave zone are also analyzed.  相似文献   

12.
This paper presents a method to statistically predict the magnitude of impact pressure (including extreme values) produced by deep water waves breaking on a circular cylinder representing a column of an ocean structure. Breaking waves defined here are not those whose tops are blown off by the wind but those whose breaking is associated with steepness. The probability density function of wave period associated with breaking waves is derived for a specified wave spectrum, and then converted to the probability density function of impact pressure. Impacts caused by two different breaking conditions are considered; one is the impact associated with waves breaking in close proximity to the column, the other is an impact caused by waves approaching the column after they have broken. As an example of the application of the present method, numerical computations are carried out for a wave spectrum obtained from measured data in the North Atlantic.  相似文献   

13.
《Coastal Engineering》2006,53(9):723-735
The paper presents an incompressible Smoothed Particle Hydrodynamics (SPH) model to investigate the wave overtopping of coastal structures. The SPH method is a grid-less Lagrangian approach which is capable of tracking the large deformations of the free surface with good accuracy. The incompressible algorithm of the model is implemented by enforcing the constant particle density in the pressure projection. The SPH model is employed to reproduce a transient wave overtopping over a fixed horizontal deck and the regular/irregular waves overtopping of a sloping seawall. The computations are validated against the experimental and numerical data and a good agreement is observed. The SPH modelling is shown to provide a promising tool to predict the overtopping characteristics of different waves. The present model is expected to be of practical purpose if further improvement in the spatial resolution and CPU time can be adequately made.  相似文献   

14.
三维极限波的产生方法及特性   总被引:11,自引:2,他引:9  
柳淑学  洪起庸 《海洋学报》2004,26(6):133-142
极限破碎波浪是造成海洋结构物破坏的主要因素之一,对极限波浪的产生方法和特性进行研究具有重要的工程意义.利用长波传播快、短波传播慢的原理,从理论上给出了产生三维极限波的方法,利用基于Boussinesq方程的数值模拟对该方法进行了验证,同时研究了中心频率、频率宽度和频谱形式等对极限波浪特性的影响,为该方法的进一步应用提出了建议.  相似文献   

15.
Turbulent vortical structures under broken solitary waves are studied using three-dimensional smoothed particle hydrodynamics (SPH) method. The numerical model predicts water surface evolution and horizontal velocity very well in comparison with the experimental results. The numerical results detect organized coherent structures characterized as reversed horseshoe (hairpin) vortices being generated at the back of the broken spilling wave and traveling downward. The counter rotating legs of the reversed horseshoe structures appear to be a continuous form of the previously found obliquely descending eddies. The reversed horseshoe structures are associated with the turbulence motion of sweep events (downwelling motion) and transport momentum and turbulent kinetic energy downward into the water column. Vortex turning play an important role on the generation and evolution of three dimensional reversed horseshoe structures from the spanwise breaking wave rollers.  相似文献   

16.
As known fromin situ observations, inhomogeneities of flows and of the atmospheric boundary layer produce variations of the intensity of wind wave breaking. A relevant phenomenological model is suggested here, describingin situ data on the breaking of waves in the presence of internal waves. The response of the wave breaking to the flow's inhomogeneity enhances with the growth of its spatial or temporal scale. For the mesoscale (10–100 km) inhomogeneities, the model is essentially simplified—wave breakings depict the local energy inputs to wind waves. The model allows us to compute currents of various type in the wave breaking intensity field. The results may have practical implications, in terms of remote sensing of the ocean. Translated by Vladimir A. Puchkin.  相似文献   

17.
Knowledge on intermittency of wave breaking is so far limited to a few summary statistics, while the probability distribution of time interval between breaking events can provide a full view of intermittency. Based on a series of experiments on wind wave breaking, such probability distributions are investigated. Breaking waves within a wave group were taken as a single breaking event according to recent studies. Interval between successive wave groups with breaker is the focus of this paper. For intervals in our experiments with different fetch and wind conditions, their distributions are all skewed and weighted on small intervals. Results of Kolmogorov-Smirnov tests on time series of these intervals indicate that they all follow gamma distribution, and some are even exponential type. Average breaking-group-interval decreases with friction velocity and significant steepness until the wind is strong enough;most of them are more than 10 times the dominant wave period. Group breaking probability proposed by Babanin recently and the average number of breaking waves in wave groups are also discussed, and they are seemingly more reasonable and sensitive than traditional breaking probability defined in terms of single wave.  相似文献   

18.
Using data from laboratory, field, and numerical experiments, we investigated regularities in changes in the relative limit height of breaking waves (the breaking index) from peculiarities of nonlinear wave transformations and type of wave breaking. It is shown that the value of the breaking index depends on the relative part of the wave energy in the frequency range of the second nonlinear harmonic. If this part is more than 35%, then the breaking index can be taken as a constant equal to 0.6. These waves are spilling breaking waves, asymmetric on the horizontal axis, and are almost symmetric on the vertical axis. If this part of the energy is less than 35%, then the breaking index increases with increasing energy in the frequency range of the second harmonic. These waves are plunging breaking waves, asymmetric on the vertical axis, and are almost symmetric on the horizontal axis. It is revealed that the breaking index depends on the asymmetry of waves on the vertical axis, determined by the phase shift between the first and second nonlinear harmonic (biphase). It is shown that the relation between the amplitudes of the second and first nonlinear harmonics for an Ursell number less than 1 corresponds to Stokes’ second-order wave theory. The empirical dependences of the breaking index on the parameters of nonlinear transformation of waves are proposed.  相似文献   

19.
Coupled SPHS–BEM method is proposed for transient fluid–structure interaction problems: SPH shell (SPHS) is selected to discretize shell structures, the second-order doubly asymptotic approximations (DAA2) of boundary element method (BEM) is chosen to analyze flow-field. BEM can remedy the expensive costs for three-dimensional SPH (smoothed particle hydrodynamics), yet SPHS provides a structural solver for BEM. The coupled method is attractive, since only a layer of SPHS particles and a piece of flow-field boundary elements are needed to be modeled; the compatibility conditions of the coupled surface are performed with moving least square (MLS) function. The final two benchmarks on underwater impacts prove the feasibility, stability and accuracy of the proposed method.  相似文献   

20.
The present study focused on tracing tsunami-drifted objects under a real tsunami based on an integrated numerical method. Instead of a solitary wave that is much shorter and steeper than real-world tsunami waves, an extra-long tsunami wave is represented here in a nearshore region using a new approach. To this end, propagation of a seismic tsunami from the source to the nearshore region was simulated using two-dimensional depth-averaged equations. When the waves reached the target coastal area, the time series of the free surface of the tsunami was approximated by a theoretical relation based on a combination of several solitons, which were then used to solve the linearized trajectory equation of the wave-maker to generate the intended time series of the tsunami wave. Finally, in a nearshore model, the movement of drifted bodies under the generated tsunami wave was simulated based on the smoothed-particle hydrodynamics (SPH) method. In order to verify the accuracy of the proposed method in tracing the drifted bodies under a real tsunami, the giant fish-oil tank, which was transported about 300 m during the 2011 Tohoku tsunami of Japan, was selected as the benchmark. The results demonstrate that the time series of the long tsunami wave was successfully generated by the piston wave-maker in the GPU-based SPH model, and the proposed approach can be regarded as a suitable alternative for reproduction of a real tsunami. The results also showed that the simulated fish-oil tank properly followed the estimated trajectory in Ishinomaki but it was transported more than the reported distance, which was expected due to absence of a holding connection between the tank and the ground in the SPH model. It should be emphasized that this study is one of the first studies on three-dimensional tracing of a tsunami-drifted body during a real event, and the tracing can be more accurate in further simulations by applying higher-resolution topography data and faster computation systems that help include more details in the nearshore model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号