首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Catchment scale hydrological models are critical decision support tools for water resources management and environment remediation. However, the reliability of hydrological models is inevitably affected by limited measurements and imperfect models. Data assimilation techniques combine complementary information from measurements and models to enhance the model reliability and reduce predictive uncertainties. As a sequential data assimilation technique, the ensemble Kalman filter (EnKF) has been extensively studied in the earth sciences for assimilating in-situ measurements and remote sensing data. Although the EnKF has been demonstrated in land surface data assimilations, there are no systematic studies to investigate its performance in distributed modeling with high dimensional states and parameters. In this paper, we present an assessment on the EnKF with state augmentation for combined state-parameter estimation on the basis of a physical-based hydrological model, Soil and Water Assessment Tool (SWAT). Through synthetic simulation experiments, the capability of the EnKF is demonstrated by assimilating the runoff and other measurements, and its sensitivities are analyzed with respect to the error specification, the initial realization and the ensemble size. It is found that the EnKF provides an efficient approach for obtaining a set of acceptable model parameters and satisfactory runoff, soil water content and evapotranspiration estimations. The EnKF performance could be improved after augmenting with other complementary data, such as soil water content and evapotranspiration from remote sensing retrieval. Sensitivity studies demonstrate the importance of consistent error specification and the potential with small ensemble size in the data assimilation system.  相似文献   

2.
This paper, based on a real world case study (Limmat aquifer, Switzerland), compares inverse groundwater flow models calibrated with specified numbers of monitoring head locations. These models are updated in real time with the ensemble Kalman filter (EnKF) and the prediction improvement is assessed in relation to the amount of monitoring locations used for calibration and updating. The prediction errors of the models calibrated in transient state are smaller if the amount of monitoring locations used for the calibration is larger. For highly dynamic groundwater flow systems a transient calibration is recommended as a model calibrated in steady state can lead to worse results than a noncalibrated model with a well-chosen uniform conductivity. The model predictions can be improved further with the assimilation of new measurement data from on-line sensors with the EnKF. Within all the studied models the reduction of 1-day hydraulic head prediction error (in terms of mean absolute error [MAE]) with EnKF lies between 31% (assimilation of head data from 5 locations) and 72% (assimilation of head data from 85 locations). The largest prediction improvements are expected for models that were calibrated with only a limited amount of historical information. It is worthwhile to update the model even with few monitoring locations as it seems that the error reduction with EnKF decreases exponentially with the amount of monitoring locations used. These results prove the feasibility of data assimilation with EnKF also for a real world case and show that improved predictions of groundwater levels can be obtained.  相似文献   

3.
This paper describes an application of the ensemble Kalman filter (EnKF) in which streamflow observations are used to update states in a distributed hydrological model. We demonstrate that the standard implementation of the EnKF is inappropriate because of non-linear relationships between model states and observations. Transforming streamflow into log space before computing error covariances improves filter performance. We also demonstrate that model simulations improve when we use a variant of the EnKF that does not require perturbed observations. Our attempt to propagate information to neighbouring basins was unsuccessful, largely due to inadequacies in modelling the spatial variability of hydrological processes. New methods are needed to produce ensemble simulations that both reflect total model error and adequately simulate the spatial variability of hydrological states and fluxes.  相似文献   

4.
Groundwater modelling calls for an effective and robust data integrating method to fill the gap between the model and observation data. The ensemble Kalman filter (EnKF), a real‐time data assimilation method, has been increasingly applied in multiple disciplines such as petroleum engineering and hydrogeology. In this approach, a groundwater model is updated sequentially with measured data such as hydraulic head and concentration. As an alternative to the EnKF, the ensemble smoother (ES) has been proposed for updating groundwater models using all the data together, with much less computational cost. To further improve the performance of the ES, an iterative ES has been proposed for continuously updating the model by assimilating measurements together. In this work, we compare the performance of the EnKF, the ES, and the iterative ES using a synthetic example in groundwater modelling. Hydraulic head data modelled on the basis of the reference conductivity field are used to inversely estimate conductivities at unsampled locations. Results are evaluated in terms of the characterization of conductivity and groundwater flow predictions. It is concluded that (a) the iterative ES works better than the standard ES because of its continuous updating and (b) the iterative ES could achieve results comparable with those of the EnKF, with less computational cost. These findings show that the iterative ES should be paid much more attention for data assimilation in groundwater modelling.  相似文献   

5.
The ensemble particle filter (EnPF) in rainfall-runoff models   总被引:1,自引:1,他引:0  
Rainfall-runoff models play a very important role in flood forecasting. However, these models contain large uncertainties caused by errors in both the model itself and the input data. Data assimilation techniques are being used to reduce these uncertainties. The ensemble Kalman filter (EnKF) and the particle filter (PF) both have their own strengths. Research was carried out to a possible combination between both types of filters that will lead to a new type of filters that joins the strengths of both. The so called ensemble particle filter (EnPF) new combination is tested on flood forecasting problems in both the hindcast mode as well as the forecast mode. Several proposed combinations showed considerable improvement when a hindcast comparison on synthetic data was considered. Within the forecast comparison with field data, the suggested EnPF showed remarkable improvements compared to the PF and slight improvements compared to the EnKF.  相似文献   

6.
富营养化模型是进行湖泊水环境质量预测和管理的重要工具,然而模型客观存在的误差一直是应用者关心的重要问题.数据同化作为连接观测数据与数值模型的重要方法,可以有效提高模型的准确性.集合卡尔曼滤波(En KF)是众多数据同化算法中应用最为广泛的一种,可进行非线性系统的数据同化,并能有效降低数据同化的计算量.本研究以太湖作为具体实例,选择Delft3D-BLOOM作为富营养化模型,在数值实验确定En KF集合数为100、观测误差方差为1%、模拟误差方差为10%的基础上分别进行模型状态变量同化以及状态变量与关键参数同步同化.结果显示,仅同化状态变量时,模型预测精度有所增加;同时同化状态变量和关键参数时,可显著提升模型在湖泊水环境质量预测中的精度.该研究为应用集合卡尔曼滤波以提高复杂的湖库富营养化模型模拟精度提供了有效的方法.  相似文献   

7.
The ensemble Kalman filter (EnKF) has gained popularity in hydrological data assimilation problems. As a Monte Carlo based method, a sufficiently large ensemble size is usually required to guarantee the accuracy. As an alternative approach, the probabilistic collocation based Kalman filter (PCKF) employs the polynomial chaos expansion (PCE) to represent and propagate the uncertainties in parameters and states. However, PCKF suffers from the so-called “curse of dimensionality”. Its computational cost increases drastically with the increasing number of parameters and system nonlinearity. Furthermore, PCKF may fail to provide accurate estimations due to the joint updating scheme for strongly nonlinear models. Motivated by recent developments in uncertainty quantification and EnKF, we propose a restart adaptive probabilistic collocation based Kalman filter (RAPCKF) for data assimilation in unsaturated flow problems. During the implementation of RAPCKF, the important parameters are identified and active PCE basis functions are adaptively selected at each assimilation step; the “restart” scheme is utilized to eliminate the inconsistency between updated model parameters and states variables. The performance of RAPCKF is systematically tested with numerical cases of unsaturated flow models. It is shown that the adaptive approach and restart scheme can significantly improve the performance of PCKF. Moreover, RAPCKF has been demonstrated to be more efficient than EnKF with the same computational cost.  相似文献   

8.
This paper compares two Monte Carlo sequential data assimilation methods based on the Kalman filter, for estimating the effect of measurements on simulations of state error variance made by a one-dimensional hydrodynamic model. The first method used an ensemble Kalman filter (EnKF) to update state estimates, which were then used as initial conditions for further simulations. The second method used an ensemble transform Kalman filter (ETKF) to quickly estimate the effect of measurement error covariance on forecast error covariance without the need to re-run the simulation model. The ETKF gave an unbiased estimate of EnKF analysed error variance, although differences in the treatment of measurement errors meant the results were not identical. Estimates of forecast error variance could also be made, but their accuracy deteriorated as the time from measurements increased due in part to model non-linearity and the decreasing signal variance. The motivation behind the study was to assess the ability of the ETKF to target possible measurements, as part of an adaptive sampling framework, before they are assimilated by an EnKF-based forecasting model on the River Crouch, Essex, UK. The ETKF was found to be a useful tool for quickly estimating the error covariance expected after assimilating measurements into the hydrodynamic model. It, thus, provided a means of quantifying the ‘usefulness’ (in terms of error variance) of possible sampling schemes.  相似文献   

9.
The ensemble Kalman filter (EnKF) performs well because that the covariance of background error is varying along time. It provides a dynamic estimate of background error and represents the reasonable statistic characters of background error. However, high computational cost due to model ensemble in EnKF is employed. In this study, two methods referred as static and dynamic sampling methods are proposed to obtain a good performance and reduce the computation cost. Ensemble adjustment Kalman filter (EAKF) method is used in a global surface wave model to examine the performance of EnKF. The 24-h interval difference of simulated significant wave height (SWH) within 1 year is used to compose the static samples for ensemble errors, and these errors are used to construct the ensemble states at each time the observations are available. And then, the same method of updating the model states in the EAKF is applied for the ensemble states constructed by a static sampling method. The dynamic sampling method employs a similar method to construct the ensemble states, but the period of the simulated SWH is changing with time. Here, 7 days before and after the observation time is used as this period. To examine the performance of three schemes, EAKF, static, or dynamic sampling method, observations from satellite Jason-2 in 2014 are assimilated into a global wave model, and observations from satellite Saral are used for validation. The results indicate that the EAKF performs best, while the static sampling method is relatively worse. The dynamic sampling method improves an assimilation effect dramatically compared to the static sampling method, and its overall performance is closed to the EAKF. In low latitudes, the dynamic sampling method has a slight advantage over the EAKF. In the dynamic or static sampling methods, only one wave model is required to run and their computational cost is reduced sharply. According to the performance of these three methods, the dynamic sampling method can treated as an effective alternative of EnKF, which could reduce the computational cost and provide a good performance of data assimilation.  相似文献   

10.
Groundwater models are critical decision support tools for water resources management and environmental remediation. However, limitations in site characterization data and conceptual models can adversely affect the reliability of groundwater models. Therefore, there is a strong need for continuous model uncertainty reduction. Ensemble filters have recently emerged as promising high-dimensional data assimilation techniques. Two general categories of ensemble filters exist in the literature: perturbation-based and deterministic. Deterministic ensemble filters have been extensively studied for their better performance and robustness in assimilating oceanographic and atmospheric data. In hydrogeology, while a number of previous studies demonstrated the usefulness of the perturbation-based ensemble Kalman filter (EnKF) for joint parameter and state estimation, there have been few systematic studies investigating the performance of deterministic ensemble filters. This paper presents a comparative study of four commonly used deterministic ensemble filters for sequentially estimating the hydraulic conductivity parameter in low- and moderately high-dimensional groundwater models. The performance of the filters is assessed on the basis of twin experiments in which the true hydraulic conductivity field is assumed known. The test results indicate that the deterministic ensemble Kalman filter (DEnKF) is the most robust filter and achieves the best performance at relatively small ensemble sizes. Deterministic ensemble filters often make use of covariance inflation and localization to stabilize filter performance. Sensitivity studies demonstrate the effects of covariance inflation, localization, observation density, and conditioning on filter performance.  相似文献   

11.
Stochastic Environmental Research and Risk Assessment - The ensemble Kalman filter (EnKF) has received substantial attention in hydrologic data assimilation due to its ease of implementation. In...  相似文献   

12.
The Kalman filter is an efficient data assimilation tool to refine an estimate of a state variable using measured data and the variable's correlations in space and/or time. The ensemble Kalman filter (EnKF) (Evensen 2004, 2009) is a Kalman filter variant that employs Monte Carlo analysis to define the correlations that help to refine the updated state. While use of EnKF in hydrology is somewhat limited, it has been successfully applied in other fields of engineering (e.g., oil reservoir modeling, weather forecasting). Here, EnKF is used to refine a simulated groundwater tetrachloroethylene (TCE) plume that underlies the Tooele Army Depot‐North (TEAD‐N) in Utah, based on observations of TCE in the aquifer. The resulting EnKF‐based assimilated plume is simulated forward in time to predict future plume migration. The correlations that underpin EnKF updating implicitly contain information about how the plume developed over time under the influence of complex site hydrology and variable source history, as they are predicated on multiple realizations of a well‐calibrated numerical groundwater flow and transport model. The EnKF methodology is compared to an ordinary kriging‐based assimilation method with respect to the accurate representation of plume concentrations in order to determine the relative efficacy of EnKF for water quality data assimilation.  相似文献   

13.
A series of numerical experiments for data assimilation with the Ensemble Kalman Filter (EnKF) in a shallow water model are reported. Temperature profiles measured at a North Sea location, 55°30ˊ North and 0°55ˊ East (referred to as the CS station of the NERC North Sea project), are assimilated in 1-D simulations. Comparison of simulations without assimilation to model results obtained when assimilating data with the EnKF allows us to assess the filter performance in reproducing features of the observations not accounted for by the model. The quality of the model error sampling is tested as well as the validity of the Gaussian hypothesis underlying the analysis scheme of the EnKF. The influence of the model error parameters and the frequency of the data assimilation are investigated and discussed. From these experiments, a set of optimal parameters for the model error sampling are deduced and used to test the behavior of the EnKF when propagating surface information into the water column.  相似文献   

14.
The ensemble Kalman filter (EnKF) is a commonly used real-time data assimilation algorithm in various disciplines. Here, the EnKF is applied, in a hydrogeological context, to condition log-conductivity realizations on log-conductivity and transient piezometric head data. In this case, the state vector is made up of log-conductivities and piezometric heads over a discretized aquifer domain, the forecast model is a groundwater flow numerical model, and the transient piezometric head data are sequentially assimilated to update the state vector. It is well known that all Kalman filters perform optimally for linear forecast models and a multiGaussian-distributed state vector. Of the different Kalman filters, the EnKF provides a robust solution to address non-linearities; however, it does not handle well non-Gaussian state-vector distributions. In the standard EnKF, as time passes and more state observations are assimilated, the distributions become closer to Gaussian, even if the initial ones are clearly non-Gaussian. A new method is proposed that transforms the original state vector into a new vector that is univariate Gaussian at all times. Back transforming the vector after the filtering ensures that the initial non-Gaussian univariate distributions of the state-vector components are preserved throughout. The proposed method is based in normal-score transforming each variable for all locations and all time steps. This new method, termed the normal-score ensemble Kalman filter (NS-EnKF), is demonstrated in a synthetic bimodal aquifer resembling a fluvial deposit, and it is compared to the standard EnKF. The proposed method performs better than the standard EnKF in all aspects analyzed (log-conductivity characterization and flow and transport predictions).  相似文献   

15.
The local ensemble transform Kalman filter (LETKF) is implemented with the Weather Research and Forecasting (WRF) model, and real observations are assimilated to assess the newly-developed WRF-LETKF system. The WRF model is a widely-used mesoscale numerical weather prediction model, and the LETKF is an ensemble Kalman filter (EnKF) algorithm particularly efficient in parallel computer architecture. This study aims to provide the basis of future research on mesoscale data assimilation using the WRF-LETKF system, an additional testbed to the existing EnKF systems with the WRF model used in the previous studies. The particular LETKF system adopted in this study is based on the system initially developed in 2004 and has been continuously improved through theoretical studies and wide applications to many kinds of dynamical models including realistic geophysical models. Most recent and important improvements include an adaptive covariance inflation scheme which considers the spatial and temporal inhomogeneity of inflation parameters. Experiments show that the LETKF successfully assimilates real observations and that adaptive inflation is advantageous. Additional experiments with various ensemble sizes show that using more ensemble members improves the analyses consistently.  相似文献   

16.
Coastal management and maritime safety strongly rely on accurate representations of the sea state. Both dynamical models and observations provide abundant pieces of information. However, none of them provides the complete picture. The assimilation of observations into models is one way to improve our knowledge of the ocean state. Its application in coastal models remains challenging because of the wide range of temporal and spatial variabilities of the processes involved. This study investigates the assimilation of temperature profiles with the ensemble Kalman filter in 3-D North Sea simulations. The model error is represented by the standard deviation of an ensemble of model states. Parameters’ values for the ensemble generation are first computed from the misfit between the data and the model results without assimilation. Then, two square root algorithms are applied to assimilate the data. The impact of data assimilation on the simulated temperature is assessed. Results show that the ensemble Kalman filter is adequate for improving temperature forecasts in coastal areas, under adequate model error specification.  相似文献   

17.
This paper presents a coupling of an ensemble Kalman filter (EnKF) with a discontinuous Galerkin-based, two-dimensional circulation model (DG ADCIRC-2DDI) to improve the state estimation of tidal hydrodynamics including water surface elevations and depth-integrated velocities. The methodology in this paper using EnKF perturbs the modeled hydrodynamics and bottom friction parameterization in the model while assimilating data with inherent error, and demonstrates a capability to apply EnKF within DG ADCIRC-2DDI for data assimilation. Parallel code development presents a unique aspect of the approach taken and is briefly described in the paper, followed by an application to a real estuarine system, the lower St. Johns River in north Florida, for the state estimation of tidal hydrodynamics. To test the value of gauge observations for improving state estimation, a tide modeling case study is performed for the lower St. Johns River successively using one of the four available tide gauging stations in model-data comparison. The results are improved simulations of water surface elevations and depth-integrated velocities using DG ADCIRC-2DDI with EnKF, both locally where data are available and non-locally where data are not available. The methodology, in general, is extensible to other modeling and data applications, for example, the use of remote sensing data, and specifically, can be readily applied as is to study other tidal systems.  相似文献   

18.
The Land Information System (LIS) is an established land surface modeling framework that integrates various community land surface models, ground measurements, satellite-based observations, high performance computing and data management tools. The use of advanced software engineering principles in LIS allows interoperability of individual system components and thus enables assessment and prediction of hydrologic conditions at various spatial and temporal scales. In this work, we describe a sequential data assimilation extension of LIS that incorporates multiple observational sources, land surface models and assimilation algorithms. These capabilities are demonstrated here in a suite of experiments that use the ensemble Kalman filter (EnKF) and assimilation through direct insertion. In a soil moisture experiment, we discuss the impact of differences in modeling approaches on assimilation performance. Provided careful choice of model error parameters, we find that two entirely different hydrological modeling approaches offer comparable assimilation results. In a snow assimilation experiment, we investigate the relative merits of assimilating different types of observations (snow cover area and snow water equivalent). The experiments show that data assimilation enhancements in LIS are uniquely suited to compare the assimilation of various data types into different land surface models within a single framework. The high performance infrastructure provides adequate support for efficient data assimilation integrations of high computational granularity.  相似文献   

19.
The effectiveness of an ensemble Kalman filter (EnKF) is assessed in the Selat Pauh of Singapore using observing system simulation experiment. Perfect model experiments are first considered. The perfect model experiments examine the EnKF in reducing the initial perturbations with no further errors than those in the initial conditions. Current velocity at 15 observational sites from the true ocean is assimilated every hour into the false ocean. While EnKF reduces the initial velocity error during the first few hours, it fails after one tidal cycle (approximately 12 h) due to the rapid convergence of the ensemble members. Successively, errors are introduced in the surface wind forcing. A random perturbation ε is applied independently to each ensemble member to maintain the ensemble spread. The assimilation results showed that the success of EnKF depends critically on the presence of ε, yet it is not sensitive to the magnitude of ε, at least in the range of weak to moderate perturbations. Although all experiments were made with EnKF only, the results could be applicable in general to all other ensemble-based data assimilation methods.  相似文献   

20.
A localized ensemble Kalman filter (EnKF) method is developed to assimilate transient flow data to calibrate a heterogeneous conductivity field. To update conductivity value at a point in a study domain, instead of assimilating all the measurements in the study domain, only limited measurement data in an area around the point are used for the conductivity updating in the localized EnKF method. The localized EnKF is proposed to solve the problems of the filter divergence usually existing in a data assimilation method without localization. The developed method is applied, in a synthetical two dimensional case, to calibrate a heterogeneous conductivity field by assimilating transient hydraulic head data. The simulations by the data assimilation with and without localized EnKF are compared. The study results indicate that the hydraulic conductivity field can be updated efficiently by the localized EnKF, while it cannot be by the EnKF. The covariance inflation and localization are found to solve the problem of the filter divergence efficiently. In comparison with the EnKF method without localization, the localized EnKF method needs smaller ensemble size to achieve stabilized results. The simulation results by the localized EnKF method are much more sensitive to conductivity correlation length than to the localization radius. The developed localized EnKF method provides an approach to improve EnKF method in conductivity calibration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号