首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
A discontinuous Galerkin (DG) finite element method is described for the two-dimensional, depth-integrated shallow water equations (SWEs). This method is based on formulating the SWEs as a system of conservation laws, or advection–diffusion equations. A weak formulation is obtained by integrating the equations over a single element, and approximating the unknowns by piecewise, possibly discontinuous, polynomials. Because of its local nature, the DG method easily allows for varying the polynomial order of approximation. It is also “locally conservative”, and incorporates upwinded numerical fluxes for modeling problems with high flow gradients. Numerical results are presented for several test cases, including supercritical flow, river inflow and standard tidal flow in complex domains, and a contaminant transport scenario where we have coupled the shallow water flow equations with a transport equation for a chemical species.  相似文献   

2.
A tidal bore is a water discontinuity at the leading edge of a ood tide wave in estuaries with a large tidal range and funneling topography. New measurements were done in the Garonne River tidal bore on 14 15 November 2016, at a site previously investigated between 2010 and 2015. The data focused on long, continuous, high-frequency records of instantaneous velocity and suspended sediment con- centration (SSC) estimate for several hours during the late ebb, tidal bore passage and ood tide. The bore passage drastically modi ed the ow eld, with very intense turbulent and sediment mixing. This was evidenced with large and rapid uctuations of both velocity and Reynolds stress, as well as large SSCs during the ood tide. Granulometry data indicated larger grain sizes of suspended sediment in water samples compared to sediment bed material, with a broader distribution, shortly after the tidal bore. The tidal bore induced a sudden suspended sediment ux reversal and a large increase in suspended sedi- ment ux magnitude. The time-variations of turbulent velocity and suspended sediment properties indicated large uctuations throughout the entire data set. The ratio of integral time scales of SSC to velocity in the x-direction was on average TE,SSC/TE,x 0.16 during the late ebb tide, compared to TE,SSC/ TE,x 0.09 during the late ood tide. The results imply different time scales between turbulent velocities and suspended sediment concentrations.  相似文献   

3.
The Kalman filter is an efficient data assimilation tool to refine an estimate of a state variable using measured data and the variable's correlations in space and/or time. The ensemble Kalman filter (EnKF) (Evensen 2004, 2009) is a Kalman filter variant that employs Monte Carlo analysis to define the correlations that help to refine the updated state. While use of EnKF in hydrology is somewhat limited, it has been successfully applied in other fields of engineering (e.g., oil reservoir modeling, weather forecasting). Here, EnKF is used to refine a simulated groundwater tetrachloroethylene (TCE) plume that underlies the Tooele Army Depot‐North (TEAD‐N) in Utah, based on observations of TCE in the aquifer. The resulting EnKF‐based assimilated plume is simulated forward in time to predict future plume migration. The correlations that underpin EnKF updating implicitly contain information about how the plume developed over time under the influence of complex site hydrology and variable source history, as they are predicated on multiple realizations of a well‐calibrated numerical groundwater flow and transport model. The EnKF methodology is compared to an ordinary kriging‐based assimilation method with respect to the accurate representation of plume concentrations in order to determine the relative efficacy of EnKF for water quality data assimilation.  相似文献   

4.
Traditionally, ocean tides have been modeled in frequency domain with a forcing from selected tidal constituents. It is a natural approach; however, it implicitly neglects non-linearities of ocean dynamics. An alternative approach is time-domain modeling with a forcing given by the full lunisolar potential, i.e., all tidal waves are a priori included. This approach has been applied in several ocean tide models; however, some challenging tasks still remain, for example, assimilation of satellite altimetry data. In this paper, we introduce the assimilative scheme applicable in a time-domain model, which is an alternative to existing techniques used in assimilative ocean tide models. We present results from DEBOT, a global barotropic ocean tide model, which has two modes: DEBOT-h, a purely hydrodynamical mode, and DEBOT-a, an assimilative mode. The accuracy of DEBOT in both modes is assessed through a series of tests against tide gauge data which demonstrate that DEBOT is comparable to state-of-the-art global ocean tide models for major tidal constituents. Furthermore, as signals of all tidal frequencies are included in DEBOT, we also discuss modeling of minor tidal constituents and non-linear compound tides. Our modeling approach can be useful for those applications where the frequency domain approach is not suitable.  相似文献   

5.
Catchment scale hydrological models are critical decision support tools for water resources management and environment remediation. However, the reliability of hydrological models is inevitably affected by limited measurements and imperfect models. Data assimilation techniques combine complementary information from measurements and models to enhance the model reliability and reduce predictive uncertainties. As a sequential data assimilation technique, the ensemble Kalman filter (EnKF) has been extensively studied in the earth sciences for assimilating in-situ measurements and remote sensing data. Although the EnKF has been demonstrated in land surface data assimilations, there are no systematic studies to investigate its performance in distributed modeling with high dimensional states and parameters. In this paper, we present an assessment on the EnKF with state augmentation for combined state-parameter estimation on the basis of a physical-based hydrological model, Soil and Water Assessment Tool (SWAT). Through synthetic simulation experiments, the capability of the EnKF is demonstrated by assimilating the runoff and other measurements, and its sensitivities are analyzed with respect to the error specification, the initial realization and the ensemble size. It is found that the EnKF provides an efficient approach for obtaining a set of acceptable model parameters and satisfactory runoff, soil water content and evapotranspiration estimations. The EnKF performance could be improved after augmenting with other complementary data, such as soil water content and evapotranspiration from remote sensing retrieval. Sensitivity studies demonstrate the importance of consistent error specification and the potential with small ensemble size in the data assimilation system.  相似文献   

6.
Hydrologic models are twofold: models for understanding physical processes and models for prediction. This study addresses the latter, which modelers use to predict, for example, streamflow at some future time given knowledge of the current state of the system and model parameters. In this respect, good estimates of the parameters and state variables are needed to enable the model to generate accurate forecasts. In this paper, a dual state–parameter estimation approach is presented based on the Ensemble Kalman Filter (EnKF) for sequential estimation of both parameters and state variables of a hydrologic model. A systematic approach for identification of the perturbation factors used for ensemble generation and for selection of ensemble size is discussed. The dual EnKF methodology introduces a number of novel features: (1) both model states and parameters can be estimated simultaneously; (2) the algorithm is recursive and therefore does not require storage of all past information, as is the case in the batch calibration procedures; and (3) the various sources of uncertainties can be properly addressed, including input, output, and parameter uncertainties. The applicability and usefulness of the dual EnKF approach for ensemble streamflow forecasting is demonstrated using a conceptual rainfall-runoff model.  相似文献   

7.
Storm surge and tidal interaction in the Tjeldsund channel, northern Norway   总被引:1,自引:1,他引:0  
The aim of this study is to investigate tide–surge interaction in narrow channels with complex and relatively shallow topography. A high-resolution depth-integrated tidal and storm surge model has been implemented for the Tjeldsund channel which is an important sailing lane in northern Norway. A horizontal grid resolution down to 50 m is applied in order to represent the complex bottom topography and the formation of jets and small-scale eddies. Two typically storm surge events in December 2004 have been examined in detail. The tide–surge interaction is found to influence the generation of higher harmonics and the formation of eddies in the current field. In some cases, the magnitude of storm surge currents may reach the same magnitude as the tidal currents enhancing the formation of jets and eddies.  相似文献   

8.
The validation and subsequent application of the current three-dimensional numerical hydrodynamic model of Chesapeake Bay is presented. The numerical model solves conservation equations for water mass, momentum, salinity, and heat on a boundary-fitted grid in the horizontal plane and a Cartesian z-grid in the vertical. A generalized ADI finite difference scheme is employed in conjunction with mode splitting technique, solving external and the internal modes. The 10-year boundary conditions including tide, slinity, temperature, wind, heat exchange coefficient, river and non-point source flows were constructed. Model validation was accomplished by demonstrating the model's ability to reproduce observed data over time scales ranging from tidal to seasonal periods. The major parameters compared include tidal elevation, intra-tidal and residual velocities, salinity, temperature, stratification, and flux calculated through the Bay mouth.After validation, the model was applied to simulate bay hydrodynamics for the 10 years of 1985–94. These results were used to drive the three-dimensional water quality model of Chesapeake Bay, which is discussed in a companion paper.  相似文献   

9.
Tidal and residual currents in the Bransfield Strait,Antarctica   总被引:1,自引:0,他引:1  
During the 1992–1993 oceanographic cruise of the Spanish R/V Hespérides, recording equipment was deployed in the Bransfield Strait. Six Aanderaa RCM7 current meters and three Aanderaa WLR7 tide gauges were successfully recovered after an operation period of 2.5 months. Relevant features of the time series obtained are presented and discussed in this paper. The emphasis is placed on the tidal character of the currents and the relative importance of tidal flow in the general hydrodynamics of the strait. For these purposes a dense grid of hydrographic stations, completed during the BIOANTAR 93 cruise, is used. Preliminary geostrophic calculations relative to a 400 m depth, yield current velocities of around 0.20 m s−1 in the study area, whereas the magnitude of tidal currents is seen to be 0.30-0.40 m s−1.  相似文献   

10.
11.
Tidal straining effect on sediment transport dynamics in the Huanghe (Yellow River) estuary was studied by field observations and numerical simulations. The measurement of salinity, suspended sediment concentration, and current velocity was conducted during a flood season in 1995 at the Huanghe river mouth with six fishing boats moored at six stations for 25-h hourly time series observations. Based on the measurements, the intra-tidal variations of sediment transport in the highly turbid river mouth was observed and the tidal straining effect occurred. Our study showed that tidal straining of longitudinal sediment concentration gradients can contribute to intra-tidal variability in sediment stratification and to asymmetries in sediment distribution within a tidal cycle. In particular, the tidal straining effect in the Huanghe River estuary strengthened the sediment-induced stratification at the flood tide, thus producing a higher bottom sediment concentration than that during the ebb. A sediment transport model that is capable of simulating sediment-induced stratification effect on the hydrodynamics in the bottom boundary layers and associated density currents was applied to an idealized estuary to demonstrate the processes and to discuss the mechanism. The model-predicted sediment processes resembled the observed characteristics in the Huanghe River estuary. We concluded that tidal straining effect is an important but poorly understood mechanism in the transport dynamics of cohesive sediments in turbid estuaries and coastal seas.  相似文献   

12.
The hydrodynamics of a small tributary channel and its adjacent mudflat is studied in Willapa Bay, Washington State, USA. Velocity profiles and water levels are simultaneously measured at different locations in the channel and on the mudflat for two weeks. The above tidal flat and channel hydrodynamics differ remarkably during the tidal cycle. When the water surface level is above the tidal flat elevation, the channel is inactive. At this stage, the above tidal flat flow is predominantly aligned along the Bay axis, oscillating with the tide as a standing wave with peak velocities up to 0.3 m/s. When the mudflat becomes emergent, the flow concentrates in the channel. During this stage, current velocities up to 1 m/s are measured during ebb; and up to 0.6 m/s during flood. Standard equations for open-channel flow are utilized to study the channel hydrodynamics. From the continuity equation, a lateral inflow is predicted during ebb, which likely originates from the drainage of the mudflat through the lateral runnels. Both advective acceleration and lateral discharge terms, estimated directly from the velocity profiles, play a significant role in the momentum equation. The computed drag coefficient for bottom friction is small, due to an absence of vegetation and bottom bedforms in the channel. Sediment fluxes are calculated by combining flow and suspended sediment concentration estimated using the acoustic backscatter signal of the instruments. A net export of the sediment from the channel is found during ebb, which is not balanced by the sediment import during flood. When the mudflat is submerged, ebb-flood asymmetries in suspended sediment concentration are present, leading to a net sediment flux toward the inner part of the Willapa Bay. Finally, a residual flow is detected inside the channel at high slack water, probably associated with the thermohaline circulation.  相似文献   

13.
Based on field data of river discharge, tide, tidal bore, and riverbed topography, the characteristics of river discharge, the effect of river discharge on riverbed erosion and sedimentation, and the feedback effect of riverbed erosion and sedimentation on the tide and tidal bore in the Qiantang River are analyzed. The results show that the inter-annual and seasonal variation of river discharge in the Qiantang River is noticeable, while the seasonal distribution of river discharge tends to be un...  相似文献   

14.
A localized truncation error analysis with complex derivatives (LTEA+CD) is applied recursively with advanced circulation (ADCIRC) simulations of tides and storm surge for finite element mesh optimization. Mesh optimization is demonstrated with two iterations of LTEA+CD for tidal simulation in the lower 200 km of the St. Johns River, located in northeast Florida, and achieves more than an over 50% decrease in the number of mesh nodes, relating to a twofold increase in efficiency, at a zero cost to model accuracy. The recursively generated meshes using LTEA+CD lead to successive reductions in the global cumulative truncation error associated with the model mesh. Tides are simulated with root mean square error (RMSE) of 0.09–0.21 m and index of agreement (IA) values generally in the 80s and 90s percentage ranges. Tidal currents are simulated with RMSE of 0.09–0.23 m s?1 and IA values of 97% and greater. Storm tide due to Hurricane Matthew 2016 is simulated with RMSE of 0.09–0.33 m and IA values of 75–96%. Analysis of the LTEA+CD results shows the M2 constituent to dominate the node spacing requirement in the St. Johns River, with the M4 and M6 overtides and the STEADY constituent contributing some. Friction is the predominant physical factor influencing the target element size distribution, especially along the main river stem, while frequency (inertia) and Coriolis (rotation) are supplementary contributing factors. The combination of interior- and boundary-type computational molecules, providing near-full coverage of the model domain, renders LTEA+CD an attractive mesh generation/optimization tool for complex coastal and estuarine domains. The mesh optimization procedure using LTEA+CD is automatic and extensible to other finite element-based numerical models. Discussion is provided on the scope of LTEA+CD, the starting point (mesh) of the procedure, the user-specified scaling of the LTEA+CD results, and the iteration (termination) of LTEA+CD for mesh optimization.  相似文献   

15.
Reduction of Used Memory Ensemble Kalman Filtering (RumEnKF) is introduced as a variant on the Ensemble Kalman Filter (EnKF). RumEnKF differs from EnKF in that it does not store the entire ensemble, but rather only saves the first two moments of the ensemble distribution. In this way, the number of ensemble members that can be calculated is less dependent on available memory, and mainly on available computing power (CPU). RumEnKF is developed to make optimal use of current generation super computer architecture, where the number of available floating point operations (flops) increases more rapidly than the available memory and where inter-node communication can quickly become a bottleneck. RumEnKF reduces the used memory compared to the EnKF when the number of ensemble members is greater than half the number of state variables. In this paper, three simple models are used (auto-regressive, low dimensional Lorenz and high dimensional Lorenz) to show that RumEnKF performs similarly to the EnKF. Furthermore, it is also shown that increasing the ensemble size has a similar impact on the estimation error from the three algorithms.  相似文献   

16.
Two 24-h surveys were conducted in St. Andrew Bay, Florida, during spring and neap tides to describe the tidal and non-tidal circulation patterns and to determine the factors that affect these patterns. In particular, the effect of tidal forcing in modulating such circulation patterns was explored. Observed velocities were fitted to diurnal and semidiurnal harmonics separating tidal motions from sub-tidal motions. Residual flows were compared with an analytic model that allowed variations in the relative contributions from Coriolis acceleration and friction using the Ekman number. A solution with an Ekman number of 0.04 resembled the observations best and indicated that the hydrodynamics were governed by pressure gradient, Coriolis and friction. Locally, advective accelerations became important around headlands in sub-estuaries in the system. The consistency of the mean pattern from October to March suggests that tides play a minor role in modulating the exchange flow. Deviations from the long-term mean are mainly caused by wind-driven coastal setup and setdown.  相似文献   

17.
Hydraulic conductivity distribution and plume initial source condition are two important factors affecting solute transport in heterogeneous media. Since hydraulic conductivity can only be measured at limited locations in a field, its spatial distribution in a complex heterogeneous medium is generally uncertain. In many groundwater contamination sites, transport initial conditions are generally unknown, as plume distributions are available only after the contaminations occurred. In this study, a data assimilation method is developed for calibrating a hydraulic conductivity field and improving solute transport prediction with unknown initial solute source condition. Ensemble Kalman filter (EnKF) is used to update the model parameter (i.e., hydraulic conductivity) and state variables (hydraulic head and solute concentration), when data are available. Two-dimensional numerical experiments are designed to assess the performance of the EnKF method on data assimilation for solute transport prediction. The study results indicate that the EnKF method can significantly improve the estimation of the hydraulic conductivity distribution and solute transport prediction by assimilating hydraulic head measurements with a known solute initial condition. When solute source is unknown, solute prediction by assimilating continuous measurements of solute concentration at a few points in the plume well captures the plume evolution downstream of the measurement points.  相似文献   

18.
Observation data of along-estuary and lateral current velocities over a transect located at the South Channel of the Yangtze estuary was obtained during a spring tide in August 2011.Harmonic analysis was done on the current velocities to get a mean component and a semi-diurnal component.Based on these two components,the driving mechanisms of mean lateral flow and M2 lateral tidal flow are shown and analyzed respectively.The dominant driving force of mean lateral flow is nonlinear advection and that of lateral M2 tidal flow is Coriolis force.The friction plays an important role near the bottom and surface for both lateral mean flow and M2 tidal flow.  相似文献   

19.
First, we investigated some aspects of tsunami–tide interactions based on idealized numerical experiments. Theoretically, by changing total ocean depth, tidal elevations influence the speed and magnitude of tsunami waves in shallow regions with dominating tidal signals. We tested this assumption by employing a simple 1-D model that describes propagation of tidal waves in a channel with gradually increasing depth and the interaction of the tidal waves with tsunamis generated at the channel's open boundary. Important conclusions from these studies are that computed elevations by simulating the tsunami and the tide together differ significantly from linear superposing of the sea surface heights obtained when simulating the tide and the tsunami separately, and that maximum tsunami–tide interaction depends on tidal amplitude and phase. The major cause of this tsunami–tide interaction is tidally induced ocean depth that changes the conditions of tsunami propagation, amplification, and dissipation. Interactions occur by means of momentum advection, bottom friction, and variable water flux due to changing total depth and velocity. We found the major cause of tsunami–tide interactions to be changing depth. Secondly, we investigate tsunami–tide interactions in Cook Inlet, Alaska, employing a high-resolution 2-D numerical model. Cook Inlet has high tides and a history of strong tsunamis and is a potential candidate for tsunami impacts in the future. In agreement with previous findings, we find that the impacts of tsunamis depend on basin bathymetries and coastline configurations, and they can, in particular, depend on tsunami–tide interactions. In regions with strong tides and tsunamis, these interactions can result in either intensification or damping of cumulative tsunami and tide impacts, depending on mean basin depth, which is regulated by tides. Thus, it is not possible to predict the effect of tsunami–tide interaction in regions with strong tides without making preliminary investigations of the area. One approach to reduce uncertainties in tsunami impact in regions with high tides is to simulate tsunamis together with tidal forcing.  相似文献   

20.
The problem of deriving tidal fields from observations by reason of incompleteness and imperfectness of every data set practically available has an infinitely large number of allowable solutions fitting the data within measurement errors and hence can be treated as ill-posed. Therefore, interpolating the data always relies on some a priori assumptions concerning the tides, which provide a rule of sampling or, in other words, a regularization of the ill-posed problem. Data assimilation procedures used in large scale tide modeling are viewed in a common mathematical framework as such regularizations. It is shown that they all (basis functions expansion, parameter estimation, nudging, objective analysis, general inversion, and extended general inversion), including those (objective analysis and general inversion) originally formulated in stochastic terms, may be considered as utilizations of one of the three general methods suggested by the theory of ill-posed problems. The problem of grid refinement critical for inverse methods and nudging is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号